Downloaded by: National University of Singapore. Copyrighted material.

A Simple Conversion of 4-Substituted 5-Hydroxy-3-oxocyclopentenes into the 2-Substituted Analogs

G. Piancatelli, A. Scettri

Istituto di Chimica Organica dell'Università di Roma, P. delle Scienze 5, I-00185 Roma, Italia

The substituted 3-oxocyclopentenes and their 5-hydroxy derivatives are major synthons for several important natural products, such as *cis*-jasmone, rethrolone, and the prostaglandins; this fact gives rise to considerable interest in developing synthetic routes to these compounds¹.

Recently, we have described a new and efficient two-step synthesis of 5-hydroxy-3-oxocyclopentene 4-derivatives (1a-c)² by the acid-catalyzed molecular rearrangement of the corresponding 2-furylmethanols, which are obtained from the normal Grignard reaction of furan-2-carboxaldehyde with alkyl-(or phenyl-)magnesium bromide³. We have now achieved a simple and convenient one-step conversion of compounds 1a-c to the racemic 2-substituted 5-hydroxy-3-oxocyclopentenes 2a-c.

This conversion takes place during column chromatography of compounds 1 on neutral (for 1a) or basic (for 1b, c) alumina in benzene/ether (4:1): the stable compounds 2a-c are isolated in 85 95% yield. The analytical and spectrometric data of compounds 2a-c are in accord with the proposed structures. In particular, in the ¹H-N.M.R. spectrum of

February 1977 Communications 117

Table. 2-Substituted 5-Hydroxy-3-oxocyclopentenes (2) from the 4-Substituted Analogs (1)

Pro- duct	Yield [%]	Empirical formula ^a	n_D^{23}	I.R. (neat) ^b v [cm ⁻¹]	¹H-N.M.R. (CDCl₃) ^b δ [ppm]
2 a	90	C ₁₁ H ₁₀ O ₂ (174.2)	(m.p. 58–59°, from hexane)	1710 (C=O); 1600 (C=C)	7.58 (m, $2H_{arom}$); 7.51 (d, 1H, 1-H, $J=3Hz$); 7.32 (m, $3H_{arom}$); 4.93 (m, 1H, 5-H); 3.2 (broad s, 1H, —OH); 2.91 (dd, 1H, 4-H, $J_1=18Hz$, $J_2=6Hz$); 2.4 (dd, 1H, 4-H, $J_1=18Hz$, $J_2=2Hz$)
2 b	95	C ₁₁ H ₁₈ O ₂ (182.3)	1.4808	1710 (C=O); 1635 (C=C)	7.14 (m, 1H, 1-H); 4.9 (m, 1H, 5-H); 3.3 (broad s, 1H, —OH); 2.8 (dd, 1H, 4-H, J_1 = 18 Hz. J_2 = 6 Hz); 2.28 (dd, 1H, 4-H, J_1 = 18 Hz, J_2 = 2 Hz); 2.14 (m, 2H, allylic —CH ₂ —); 1.3 (sharp s, 8 H, 4 —CH ₂ —); 0.86 (t, 3 H, —CH ₃)
2 c	85	C ₆ H ₈ O ₂ (112.1)	1.4895	1710 (C=O); 1640 (C=C)	7.22 (m, 1H, 1-H); 4.9 (m, 1H, 5-H); 3.4 (broad s, 1H, —OH); 2.82 (dd, 4-H, 1H, $J_1 = 18$ Hz, $J_2 = 6$ Hz); 2.24 (dd, 1H, 4-H, $J_1 = 18$ Hz, $J_2 = 2$ Hz); 1.83 (d, 3H, —CH ₃ , $J = 1$ Hz)

 $^{^{\}rm a}$ The microanalyses were in satisfactory agreement with the calculated values: C, $\pm 0.18;$ H, $\pm 0.19.$

2a the proton at C-5 shows a complex multiplet at δ =4.93; by double irradiation at δ =7.51 (H_{olefin} at C-1), it turns into a dd (J₁=6Hz, J₂=2Hz), which is completely in accord with the presence of the group—CO—CH₂—CH(OH)—CH=C(R)—.

2-Substituted 5-Hydroxy-3-oxocyclopentenes (2) from the 4-Substituted Analogs (1);

Compound 1 (1 g, prepared according to Ref.³) is column-chromatographed on alumina (100 g: Brockmann Grade III, neutral for 1a; Brockmann Grade III, basic for 1b, c) using benzene/ether (4:1) as eluent. The products 2a-c are obtained as colorless oils which are pure and free from starting material by T.L.C. (silica gel, benzene/ether 1:1).

We are grateful to the Italian C.N.R. for financial support.

Received: July 1, 1976 (Revised form: September 10, 1976)

^b The I.R.- and ¹H-N.M.R. data are consistent with those reported for similar compounds⁴.

¹ R. A. Ellison, Synthesis 1973, 397.

² Compounds 1a-c were obtained as racemic mixtures of only one pair of enantiomers (4R, 5S and 4S, 5R).

³ G. Piancatelli, A. Scettri, S. Barbadoro, *Tetrahedron Lett.* 1976, 3555

⁴ K. Ogura, M. Yamashita, G. Tsuchihashi, Tetrahedron Lett. 1976, 759.