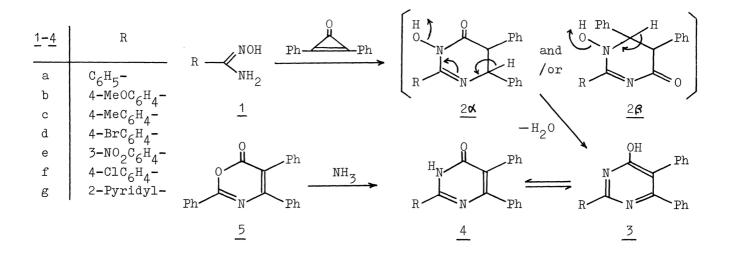
CHEMISTRY LETTERS, pp. 1213-1214, 1979. Published by the Chemical Society of Japan


REACTION OF AMIDOXIMES WITH DIPHENYLCYCLOPROPENONE. SYNTHESIS OF 2-ARYL-5,6-DIPHENYLPYRIMIDIN-4-ONES

Masahiko TAKAHASHI and Shin-ichi WATANABE Department of Industrial Chemistry, Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316

The reaction of arylamidoximes with diphenylcyclopropenone in refluxing toluene gave 2-aryl-5,6-diphenylpyrimidin-4-ones in good yields.

The reaction of diphenylcyclopropenone (DPP) has attracted considerable synthetic interest recently.¹⁾ In the previous paper we reported that the reaction of aromatic azines with DPP proceeded via 1:1 (2+3) cycloadducts to give 5-aryl-2,3-diphenyl-2-pyrrolin-4-ones.²⁾ As part of our synthetic study of heterocycles using DPP we examined the reaction of arylamidoximes with DPP and found that the reaction afforded 2-aryl-5,6-diphenylpyrimidin-4-ones in one step in good yields. Recently, Eicher et al. reported that the reaction of guanidines and amidines with DPP afforded 2-substituted 5,6-diphenyl-5,6-dihydropyrimidin-4-ones, which were then dehydrogenated by o-chloranil or elemental sulfur to 2-substituted 5,6diphenylpyrimidin-4-ones.³⁾ We wish to report our more facile and general synthesis of the pyrimidin-4-ones.

The reaction was carried out in the following general procedure: a mixture of amidoxime (1) (1.0 mmol) and an equimolar amount of DPP in toluene (5 ml) was refluxed for 2 h. After cooling the precipitates were collected and recrystallized from DMF to give the product 4. The results are summarized in Table.

					_
4	Yield %	Mp °C	IR (KBr) cm ⁻¹	NMR (CF ₃ COOH) & ppm	UV (MeOH) nm (log E)
a	60	292 - 293 ^{b)}	3000 2880	7.27-8.00 (m)	256 (4.35)
			1630 1593		325 (4.07)
b	82	273 - 281	3140 — 2790	7.30-8.13 (m)	226 sh (4.33) 276 (4.35)
			1645 1608	3.97 (s)	332 (4.27)
с	70	>300	3130 — 2760	7.28-8.07 (m)	262 (4.43)
			1640 1590	2.55 (s)	328 (4.18)
d	63	>300	3140 2760	7.30-7.92 (m)	262 (4.45)
			1640 1593		328 (4.17)
е	51	288-293	3080 - 2760	7.33-9.12 (m)	258 (4.54)
			1633 1595		322 (4.05)
ſ	56	>300	3040 — 2760	7.30-8.15 (m)	261 (4. 39)
			1630 1593		327 (4.07)
g ^c)	58	258-259	3050	7.33-9.15 (m)	246 (4.27) 270 sh (4.25)
			1650 1595		335 (4.10)

Table. 2-Aryl-5,6-diphenylpyrimidin-4-ones (4)^{a)}

a) Satisfactory elemental analyses were obtained for all compounds. b) Lit.⁵⁾ mp 290-294°C. c) 18 **h** of reflux for giving 4g.

The structure of the product obtained from <u>1a</u> was assigned as 2,5,6-triphenylpyrimidin-4-one (<u>4a</u>) on the basis of the analytical and spectral data, especially agreement of the observed MS (M^+ 324) and UV data with those reported in the literatures.^{4,5}) For further structural confirmation the ring transformation of 1,3-oxazin-6-one into pyrimidin-4-one⁶) was attempted. Thus, 2,4,5-triphenyl-1,3oxazin-6-one⁷) (<u>5</u>) was treated with aqueous ammonia at room temperature to afford a product in a 79% yield, which was identical in all respects to 4a.

The reaction pathway may be visualized as follows: the initially formed 1:1 adduct $2\mathbf{A}$ and/or its regioisomer $2\mathbf{\beta}$ would be dehydrated and enolated to give 4-pyrimidinol (3), which tautomerizes to 4.

The authors are indebted to Sankyo Co., Ltd., for the mass measurements.

References

- 1) K. T. Potts and J. S. Baum, Chem. Rev., 74, 189 (1974).
- 2) M. Takahashi, N. Inaba, H. Kirihara, and S. Watanabe, Bull. Chem. Soc. Jpn., <u>51</u>, 3312 (1978).
- 3) T. Eicher, G. Franke, and F. Abdesaken, Tetrahedron Lett., 1977, 4067.
- 4) R. A. Y. Jones and N. Sadighi, J. Chem. Soc., Perkin Trans. 2, 1977, 412.
- 5) J. F. M. Wajon and J. F. Arens, Recl. Trav. Chim. Pays-Bas, <u>76</u>, 79 (1957); Chem. Abstr., <u>52</u>, 9109h (1958).
- 6) F. Eiden and B. S. Nagar, Naturwissenschaften, 50, 403 (1963).
- 7) V. Sprio, Gazz. Chim. Ital., <u>85</u>, 569 (1955); Chem. Abstr., <u>50</u>, 4910b (1956).

(Received July 27, 1979)