Note

Subscriber access provided by Kaohsiung Medical University

Degradation of Sulfur Mustard (HD) on KF/Al2O3: The role of Organic Solvents and Active Species

Gil Fridkin, Ishay Columbus, Lea Yehezkel, and Yossi Zafrani

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01314 • Publication Date (Web): 13 Jul 2018

Downloaded from http://pubs.acs.org on July 17, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Degradation of Sulfur Mustard (HD) on KF/Al₂O₃: The role of Organic Solvents and Active Species

Gil Fridkin,* Ishay Columbus, Lea Yehezkel and Yossi Zafrani*

Department of Organic Chemistry, Israel Institute for Biological Research,

Ness-Ziona 74100, Israel

gilf@iibr.gov.il; yossiz@iibr.gov.il

Abstract

Solvent effects on the ability of KF/Al₂O₃ supports to degrade the warfare agent sulfur mustard (HD) were explored. RP-KF/Al₂O₃ possessing hydroxide ions and ECUF/KF/Al₂O₃ holding fluoride ions, were examined. Reactions on RP-KF/Al₂O₃ containing 10 wt % of organic solvents were faster than those on ECUF/KF/Al₂O₃. Additionally, RP-KF/Al₂O₃ led to elimination products while ECUF/KF/Al₂O₃ mainly to substitution derivatives. Enlarging the solvent amounts to 90 wt % resulted in decreased reaction rates. The significance of solvent identity/amount and active species are discussed.

Development of effective methods for decontamination of chemical warfare agents (CWAs)¹⁻⁴ applied in both military and homeland scenarios is most relevant as evident from recent events of CWAs use.⁵ Among the array of approaches available for that purpose, reactive sorbents that physically adsorb and chemically degrade CWAs to nontoxic products seems to hold great potential. Indeed, in recent years an extensive effort has been directed towards the study of various active supports, such as nanosized MgO,⁶ Al₂O₃,⁷⁻¹⁰ CaO,¹¹ $Zr(OH)_{4}$,¹² and TiO₂,¹³⁻¹⁵ as well as metal organic frameworks (MOFs)¹⁶⁻¹⁸ that have capabilities to decontaminate CWAs. Acknowledging the attractiveness of this approach we were recently engaged with the examination of the potential of various impregnated alumina supports, i.e. RP-KF/Al₂O₃ (regular preparation), ECUF/KF/Al₂O₃ (Enriched with Coordinatively Unsaturated Fluoride)19,20 and R4NF/Al2O3,21 to actively and effectively decontaminate CWAs. Indeed, we have found that the extremely toxic organo-phosphorus (OP) based CWAs VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) and GB (O-isopropyl methylphosphonofluoridate, sarin) as well as the blister agent sulfur mustard (2.2'-dichloroethyl sulfide, HD) were effectively degraded on these supports with reaction half-life times ranging from few minutes to several hours.¹⁹⁻²¹ Typically, small amount of water was added to the supports in these studies to achieve these results, while with the dry powders extremely long reaction times were obtained. However, in respect of potential application of these types of powders in the field, we envisioned that further addition of an organic solvent will be required to promote facile and effective dispersal of the sorbent as well as rapid diffusion of the CWAs towards the powder active sites. Accordingly, we have recently explored the effects organic solvents have on the fluoride-promoted heterogeneous hydrolysis and alcoholysis of various OP compounds,²² among them the CWA VX,²³ on the surface of ECUF/KF/Al₂O₃. These experiments showed that not only is the

identity of the solvent important in these reactions but also its quantity. It was proposed that addition of minute quantity (3-10 wt %) of the proper solvents is suffice to permit mobility of the reaction components while maintaining their very high local concentration in close proximity to the solid-support large porous surface area. Under these conditions, acceleration of reactions rates by order of magnitudes was obtained. Most importantly, leaching of fluoride ions, which were found pivotal in the mechanism of OP's hydrolysis/alcoholysis, was prevented in such small amounts of solvents.

In order to develop a universal decontamination sorbent, namely, one that will effectively detoxify OP CWA's as well as HD type of agents, it was of interest for us to complete and examine whether the above notions on solvents effects could also be implemented for the effective decontamination of the more hydrophobic agent HD on such matrices. To the best of our knowledge, solvent effects on HD decontamination reactions on solid-supports were not explored before. A study on the reactions of an HD simulant, 2-chloroethylethyl sulfide (2-CEES), in the presence of MgO (~150 mg) and large amounts (10 mL) of pentane, methanol and THF was however reported.²⁴ Using GC-MS as their method of analysis, the authors showed that surprisingly the most hydrophobic and inert solvent pentane led to the fastest reactions. Accordingly, we envisioned that degradation studies of HD itself on KF impregnated alumina supports wetted with different amounts (minute to large) of organic solvents and monitored by NMR would provide significant information. The results of these studies are described herein with specific attention to products identity and volume of solvents used.

For this study, methanol and ethanol were chosen as representatives of polar protic solvents, acetonitrile as an example of a polar aprotic solvent and heptane as a hydrophobic solvent. On the basis of previous kinetic data, we have decided to perform the solvent effect study on

HD decontamination with two of our leading supports, namely, RP-KF/Al₂O₃ and

ECUF/KF/Al₂O₃ (Table 1).¹⁹⁻²¹

Table 1. Kinetics and product distribution of HD degradation reactions on RP-KF/Al₂O₃ and ECUF/ KF/Al₂O₃ in the presence of solvents.^a

Run	Solid support	Sol.	Sol. %	$t_{1/2}(h)$	Elimination ^d vs Substitution ^{e,f,g} Products(%)		
1	RP-KF/Al ₂ O ₃	-	-	355 ^b	80	20 ^e	
2	ECUF/KF/Al ₂ O ₃	-	-	319 ^b	23	77 ^e	
3	RP-KF/Al ₂ O ₃	Water	10	138 ^b	18	82 ^e	
4	ECUF/KF/Al ₂ O ₃	Water	10	224 ^b	19	81 ^e	
5	RP-KF/Al ₂ O ₃	MeOH	10	18.5°	97	3 ^f	
6	RP-KF/Al ₂ O ₃	MeOH	90	102 °	3	$97^{\rm f}$	
7	None	MeOH	100	347 °	0	$100^{\rm f}$	
8	ECUF/KF/Al ₂ O ₃	MeOH	10	30.1 °	91	9 ^f	
9	RP-KF/Al ₂ O ₃	EtOH	10	21.1 °	93	7 ^g	
10	ECUF/KF/Al ₂ O ₃	EtOH	10	578°	39	61 ^{e,g}	
11	RP-KF/Al ₂ O ₃	Нер	10	42.0 °	93	7 ^e	
12	RP-KF/Al ₂ O ₃	Hep	90	105°	93	7 ^e	
13	ECUF/KF/Al ₂ O ₃	Hep	10	996°	81	19 ^e	
14	RP-KF/Al ₂ O ₃	MeCN	10	50.6 °	95	5 ^e	
15	ECUF/KF/Al ₂ O ₃	MeCN	10	1751°	14	86 ^e	
^a Products ratio at the end of the reactions. ^b On the basis of our previous							
study, loading of 6.5% of HD. ^{20 c} Loading of 5% HD. ^d CEVS (1), DVS							
(3) traces of HOEVS (2) ^e TDC (4) TDC objectments (5) This yang (6) ^f							

(3), traces of HOEVS (2). ^e TDG (4), TDG oligomers (5), Thioxane (6). ^f methoxyethyl chloroethylsulfide (7), bis(2-methoxyethyl)sulfide (8). ^g ethoxyethyl chloroethylsulfide (9), bis(2-ethoxyethyl)sulfide (10).

Although prepared from the same materials, i.e. alumina and KF, due to variation in their protocol of preparation these supports differ in the nature of their active species. Specifically, in the case of RP-KF/Al₂O₃ which is prepared in water, the fluoride ions are mainly consumed for the formation of inactive water-insoluble K_3AlF_6 and the support active species are hydroxide ions.²⁵ In the case of ECUF/KF/Al₂O₃, which is prepared in methanol or ethanol, the fluoride ions are "free" and available for reactions, as the formation of K_3AlF_6 is prevented in these solvents (eq. 1-2).¹⁹⁻²¹

$$12KF + Al_2O_3 \xrightarrow{3H_2O} 2K_3AIF_6 + 6KOH RP-KF/Al_2O_3$$
(1)
"Free" hydroxide

$$KF + Al_2O_3 \xrightarrow{ROH} Al_2O_3 + KF ECUF/KF/Al_2O_3$$
 (2)
"Free" fluoride

Page 5 of 15

This difference was previously shown to have marked effect on the kinetics of OP CWAs decontamination reactions on these dry or water wetted matrices, i.e. reactions on ECUF/KF/Al₂O₃ were found to be much faster and effective than those on RP-KF/Al₂O₃, presumably due to the major role the fluoride ion has in the hydrolysis mechanism of OPs.^{19,26} As can be seen in table 1, this pattern also exists in the case of HD reactions (5 wt %) on these matrices in the presence of 10 wt % of organic solvents, however in an opposite direction. Namely, RP-KF/Al₂O₃ appears superior than ECUF/KF/Al₂O₃ for these reactions in all solvents. In the case of ethanol, heptane and acetonitrile this behavior is most pronounced with degradation reactions up to $\sim 20-30$ times faster on RP-KF/Al₂O₃ than on ECUF/KF/Al₂O₃ (runs 9, 11, and 14 versus 10, 13 and 15 respectively). In the case of methanol, however, the reaction on the former was only ~ 1.5 times faster than that on the latter (run 5 versus 8). Interestingly, reactions on RP-KF/Al₂O₃ in the presence of all organic solvent examined resulted in improved kinetics as compared to reactions on the dry or water wetted supports. For example, reaction in the presence of 10 wt % methanol (run 5) was found to be \sim 7 times faster than that in the presence of 10 wt % of water (run 3). However, in the case of ECUF/KF/Al₂O₃, only methanol (run 8) led to a faster reaction, \sim 7 times, than that obtained in the presence of water (run 4). All other solvents led to extremely slow transformation rates, even much slower than that observed on the dry support. Apart of the different kinetics, the reactions on the two supports differed also in the identity of the products obtained as well as their ratio (Table 1). It should be noted that hydrolysis²⁷ or elimination pathways are favored over oxidation for this environmentally persistent and hydrophobic CWA, as some of its oxidation products are toxic.²⁸ Reactions on RP-KF/Al₂O₃ in the presence of all solvents led almost exclusively (93-97%) to the elimination products, 2chloroethyl vinyl sulfide (CEVS, 1) and divinyl sulfide (DVS, 3), while only small amount (3-7%) of substitution products were observed (Scheme 1 and Figure 1). However, on ECUF/KF/Al₂O₃ the product identity and distribution varied contingent on the solvent used. In the case of methanol and heptane, elimination products were mostly obtained, while in the case of ethanol and acetonitrile substitution products were predominant. Significantly, all products obtained in these experiments are relatively of non-toxic nature.²⁸

Scheme 1. Optional HD degradation products on KF alumina supports.

Figure 1. Selected 13 C-NMR spectra of HD degradation reactions on RP-KF/Al₂O₃ in the presence of 10 wt % of methanol. See scheme 1 for structures.

In order to understand the above results, the solubility/mobility of HD in the organic solvents and the relative activity of the powders active species towards this substrate should be considered. Although only minute amounts, i.e. 10 wt %, of solvents were added, such that the supports maintained their solid nature, this volume is in principal suffice, as we recently showed for the degradation of OP-based CWA and simulants,^{22,23} to afford effective mobility of all reaction components. Since in a specific solvent HD is mobile on the two supports to the same extent, the different reactions kinetics obtained on them must arise from the fact that KOH is a stronger base than KF. Accordingly, it probably better activates the RP-KF/Al₂O₃ support towards reaction with HD and makes it superior than ECUF/KF/Al₂O₃, although the surface area of the former matrix is lower than the latter.²⁰ The different kinetics obtained on a specific support in the presence of the various solvents may stem from the different solubility of HD as well as of the active species KOH or KF in them. Interestingly, in the case of RP-KF/Al₂O₃ these differences somewhat compensated each other such that all four solvents (although different in nature) led to similar kinetics with $t_{1/2}$ times ranging from 18.5h to 50.6h. Specifically, due to the rather high solubility of KOH in methanol and ethanol (Table S1 in the supporting information) these solvents led to 2-3 times faster reaction rates (runs 5 and 9) than those obtained in heptane and acetonitrile (runs 11 and 14). The latter solvents managed to mediate relatively fast reactions, albeit the negligible solubility of KOH in them, due to their ability to promote effective diffusion of HD to the support active pores. In the case of ECUF/KF/Al₂O₃ experiments, however, a large difference in reaction times was obtained (~30 to 1750h) among these solvents. The substantial reactions rate difference between the two polar protic solvents methanol and ethanol (runs 8 and 10) stems from the large difference of KF solubility's in these solvents (MeOH- 10.3g/100g solvent, EtOH-0.1g/100g solvent, see Table S1 in the supporting information). A similar reaction rate difference phenomena in the presence of these solvents was also observed by us in the case of an organo-phosphorous compound.²² Heptane and acetonitrile which negligibly solubilize KF mediated even much slower reactions than ethanol (runs 13 and 15). In respect to the products obtained and their ratio, the activity of KOH and KF in elimination or substitution reactions should be examined. Evidently, once strong bases like KOH are present on the support and are accessible in the presence of organic solvents, elimination reactions are favored over substitution. For example, in the RP-KF/Al₂O₃ experiments the elimination products CEVS (1) and DVS (3) were almost the sole products obtained while substitution products were obtained only in trace amounts. Since KF is a weaker base than KOH and in addition it exhibits lower solubility in the examined solvents (Table S1 in the supporting information),²⁹⁻³³ reactions on ECUF/KF/Al₂O₃ apart of slower kinetics typically provided a much more complex mixture of products. In general, as longer the reactions became, the ratio between elimination and substitution products shifted towards the latter. Apparently, elimination reactions of HD are quicker, however, if not occurring, slow hydrolysis promoted by surface hydroxyl group or residual amounts of water present in the solvents is obtained.

In order to evaluate the effect large amounts of solvents promote, experiments in the presence of 90 wt % of solvents were next performed. Specifically, RP-KF/Al₂O₃ was mixed with 90 wt % of methanol or heptane holding 5 wt % of HD, and the mixtures were examined periodically, after vigorous shaking, using solution NMR. The results showed that enlarging the solvent amounts led to decreased reactions rates, i.e. ~5 times for methanol (run 6) and ~2.5 times for heptane (run 12), as compared to reactions in the presence of 10 wt % of solvents (runs 5 and 11). Most interestingly was the fact that the increased amount of methanol led solely to the methanol-based substitution products methoxyethyl chloroethylsulfide (7) and bis (2-methoxyethyl)sulfide (8),³⁴ while in the presence of 10 wt % of methanol elimination products were predominantly obtained (Figure S2 in the Supporting Information). Evidently, the relatively large amount of methanol afforded effective leaching

The Journal of Organic Chemistry

of both KOH and HD from the KF/Al₂O₃ support, such that the decontamination reactions practically occurred in the solution phase in the presence of active methoxide ions. The fact that the pH of the solution at the end of the experiment was found to be 11 further supports this notion. Under heterogeneous conditions, i.e. once a minute amount of solvent is added, KOH leaching is prevented and elimination reactions of HD, which probably forms specific interactions with the RP-KF/Al₂O₃ support, are promoted on the basic solid media.

To further substantiate that the reactions in the presence of 90 wt % of methanol occurs mainly due to KOH leaching from the RP-KF/Al₂O₃ support and not only from methanol intrinsic nucleophilic activity, a control solvolysis experiment in which only methanol and HD were mixed, was performed. Indeed, it was found, that although not inert, methanol itself led to a solvolysis reaction ~3 times slower (run 7) than that obtained in the presence of 10 wt % of the powder (run 6). In the case of heptane, since KOH has negligible solubility in it, even large amount of this hydrophobic solvent did not mediate leaching of the salt, as was also evident from the neutral pH the solution exhibited at the end of the experiment. In accord, reactions of HD must have occurred only after its diffusion and adsorption to the RP/KF/Al₂O₃ matrix. Once adsorbed, the support mediated the formation of the elimination product CEVS (1) which was also the major product obtained under heterogeneous conditions in the presence of 10 wt % of solvent.

Solvent effects on the degradation reactions of HD were explored. Our results demonstrated that organic solvent wetted supports mediated much quicker reactions than those obtained on the dry or water wetted matrices, seemingly due to the improved diffusion HD exhibits under these conditions. Reactions of HD on RP-KF/Al₂O₃ were found to be much faster than those on ECUF/KF/Al₂O₃. It seems reasonable to assume that the increased RP-KF/Al₂O₃ activity is derived from hydroxide ion being a stronger base than fluoride ion. Small amounts of solvents were found beneficial for such reactions as leaching of active species was avoided

while effective mobility of the reaction components and high concentration reactions were still maintained. Usage of small amounts of solvent is of course also mostly desired from environmental and economical considerations. We believe, that the fact that this pattern was observed in our studies might suggest that using minute amounts of the appropriate solvent is advantageous in general.

Experimental section

Caution: These experiments should only be performed by trained personnel using applicable safety procedures.

Materials and chemicals. HD labeled with ¹³C (HD*) was prepared (>99% purity) according to a literature procedure.³⁵ The ¹³C label was distributed evenly among the carbons. KF (\geq 99%), Al₂O₃ (activated, neutral, 150 mesh 58Å), Methanol (HPLC grade), Heptane (HPLC grade) and acetonitrile (HPLC grade) were purchased from commercial suppliers. Deionized water was obtained from a laboratory water purification system. RP-KF/Al₂O₃ (regular preparation) and ECUF/KF/Al₂O₃ (Enriched with Coordinatively Unsaturated Fluoride) powders were prepared as previously described.^{20,23}

Preparation of powders wetted with 10% solvent: Dry powders (0.45 g) were placed in glass vials and solvents (0.05 g) were added on top. The mixtures were vortexed and ground thoroughly, using a glass rod, until homogenous powders were obtained (typically two or three cycles).

Preparation of powder wetted with 90% solvent: dry powder, 0.03g, were placed in Teflon NMR tubes, and 0.27 g of solvent (which contained 1.2 μl of HD) was added.

Sample preparation. Samples of the appropriate powders (40 mg) were added to the 0.4 cm ZrO_2 rotor and 1.6 μ L HD, 5 wt %, were applied via syringe to the center of the sample. The rotor was then sealed with a fitted Kel-F cap. For the 90 wt %: 1.2 μ l of HD was added to the

solvent as described above. For the 100 % methanol (control experiment): 1.2 μ l of HD was added to 340 μ L of methanol and the mixture was placed in a Teflon NMR tube.

Kinetic studies using MAS NMR: To obtain clear NMR data, ¹³C-labeled HD (HD*) was used. ¹³C spectra were obtained at 125 MHz on a 11.7 T (500 MHz) spectrometer, equipped with a 0.4 cm standard CP-MAS probe, using direct polarization (i.e., no cross polarization (CP) was used). Typical spinning rates were 5 kHz. Chemical shifts for ¹³C were referenced to external TMS as 0.0 ppm. The number of transients per spectrum varied between 100 and 2000. For comparison purposes, spectra were recorded under identical conditions. Spectra were measured periodically to determine remaining starting material and identify degradation products. In all cases, the reactions profiles fitted a pseudo-first-order seemingly due to the large excess of hydroxide or fluoride ions and a rate-determining step, such as diffusion of the reactants.

Supporting Information

NMR spectra and kinetic profiles of all reactions. The supporting information is available free of charge on the ACS Publications website at DOI.

Corresponding Authors

E-mail: gilf@iibr.gov.il; yossiz@iibr.gov.il

* Tel.: +972 8 9381740. Fax: +972 8 9381548.

Notes

The authors declare no competing financial interest.

Acknowledgments

This work was internally funded by the Israeli Prime Minister's office.

References

- 1. Yang, Y.-C.; Baker, J. A.; Ward, J. R. Decontamination of Chemical Warfare Agents. *Chem. Rev.* **1992**, *92*, 1729-1743.
- 2. Smith, B. M. Catalytic Methods for the Destruction of Chemical Warfare Agents under Ambient Conditions. *Chem. Soc. Rev.* **2008**, *37*, 470-478.
- 3. Singh, B.; Prasad, G. K.; Pandey, K. S.; Danikhel, R. K.; Vijayaraghavan, R. Decontamination of Chemical Warfare Agents. *Def. Sci. J.* **2010**, *60*, 428-441.
- Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Destruction and Detection of Chemical Warfare Agents. *Chem. Rev.* 2011, 111, 5345-5403.
- 5. Tu, A.T. Chemical Terrorism: Horrors in Tokyo Subway and Matsumoto City. Alaken: Fort Collins, CO, USA, 2002.
- 6. Wagner, G. W.; Bartram, P. W.; Koper, O.; Klabunde, K. J. Reactions of VX, GD, and HD with Nanosize MgO. *J. Phys. Chem. B* **1999**, *103*, 3225-3228.
- Wagner, G. W.; Procell, L.R.; O'Connor, R. J.; Munavalli, S.; Carnes, C. L.; Kapoor,
 P. N.; Klabunde, K. J. Reactions of VX, GB, GD, and HD with Nanosize Al₂O₃.
 Formation of Aluminophosphonates. *J. Am. Chem. Soc.* 2001, *123*, 1636-1644.
- Wagner, G. W.; Procell, L. R.; Munavalli, S. ²⁷Al, ^{47,49}Ti, ³¹P, and ¹³C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al₂O₃, Conventional Al₂O₃ and TiO₂, and Aluminum and Titanium Metal. *J. Phys. Chem. C* 2007, *111*, 17564-17569.
- Saxena, A.; Sharma, A.; Srivastava, A. K.; Singh, B.; Gutch, P. K.; Semwal, R. P. Kinetics of Adsorption of Sulfur Mustard on Al₂O₃ nanoparticles with and without Impregnants. J. Chem. Technol. Biotechnol. 2009, 84, 1860-1872.
- Saxena, A.; Srivastava, A. K.; Sharma, A.; Singh, B. Kinetics of Adsorption of 2chloroethylethylsulphide on Al₂O₃ Nanoparticles with and without Impregnants. *J. Hazard. Mater.* 2009, *169*, 419-427.
- Wagner, G. W.; Koper, O.; Lucas, E.; Decker, S.; Klabunde, K. J. Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic Dehydrohalogenation of HD. *J. Phys. Chem. B* 2000, , 5118-5123.
- Bandosz, T. J.; Laskoski, M.; Mahle, J.; Mogilevsky, G.; Peterson, G. W.; Rossin, J. A.; Wagner, G. W. Reactions of VX, GD, and HD with Zr(OH)₄: Near Instantaneous Decontamination of VX. *J. Phys. Chem. C* 2012, *116*, 11606-11614.
- 13. Wagner, G. W.; Chen, Q.; Wu, Y. Reactions of VX, GD, and HD with Nanotubular Titania. J. Phys. Chem. C 2008, 112, 11901-11906.

1	
2	
3 ⊿	
4 5	
6	
7	
8 9	
10	
11	
12	
14	
15	
16	
17	
19	
20	
21	
23	
24	
25 26	
27	
28	
29 30	
31	
32	
33	
35	
36	
37	
30 39	
40	
41	
42	
44	
45	
40 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58	
60	

- Prasad, G. K.; Singh, B.; Ganesan, K.; Batra, A.; Kumeria, T.; Gutch, P. K.; Vigayaraghavan, R. Modified Titania Nanotubes for Decontamination of Sulphur Mustard. J. Hazard. Mater. 2009, 167, 1192-1197.
- 15. Hirakawa, T.; Sato, K.; Komano, A.; Kishi, S.; Nishimoto, C. K.; Mera, N.; Kugishima, M.; Sano, T.; Ichinose, H.; Negishi, N.; Seto, Y.; Takeuchi, K. Experimental Study on Adsorption and Photocatalytic Decomposition of Isopropyl Methylphosphonofluoridate at Surface of TiO₂. J. Phys. Chem. C 2010, 114, 2305-2314.
- Mondloch, J. E; Katz, M. J.; Isley III, W. C.; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W.; Snurr, R. Q.; Cramer, C. J.; Hupp, J. T.; Farha, O. K. Destruction of Chemical Warfare Agents using Metal–Organic Frameworks. *Nat. Mater.* 2015, *14*, 512-516.
- Moon, S.-Y.; Wagner, G. W.; Mondloch, J. E.; Peterson, G. W.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr₆-Based Metal–Organic Frameworks. *Inorg. Chem.* 2015, 54, 10829-10833.
- Liu, Y.; Buru, C. T.; Howarth, A. J.; Mahle, J. J.; Buchanan, J. H.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Efficient and Selective Oxidation of Sulfur Mustard Using Singlet Oxygen Generated by a Pyrene-based Metal-organic Framework. *J. Mater. Chem. A.* 2016, *4*, 13809-13813.
- Gershonov, E.; Columbus, I.; Zafrani, Y. Facile Hydrolysis-Based Chemical Destruction of the Warfare Agents VX, GB, and HD by Alumina-Supported Fluoride Reagents. J. Org. Chem. 2009, 74, 329-338.
- Zafrani, Y.; Goldvaser, M.; Dagan, S.; Feldberg, L.; Mizrahi, D.; Waysbort, D. Gershonov, E.; Columbus, I. Degradation of Sulfur Mustard on KF/Al₂O₃ Supports: Insights into the Products and the Reactions Mechanisms. *J. Org. Chem.* 2009, *74*, 8464-8467.
- Zafrani, Y.; Yehezkel, L.; Goldvaser, M.; Marciano, D.; Waysbort, D.; Gershonov, E.; Columbus, I. The Reactivity of Quaternary Ammonium- versus Potassium-Fluorides Supported on Metal Oxides: Paving the Way to an Instantaneous Detoxification of Chemical Warfare Agents. *Org. Biomol. Chem.* 2011, *9*, 8445-8451.
- 22. Fridkin, G.; Columbus, I.; Saphier, S.; Yehezkel, L.; Goldvaser, M.; Marciano, D.; Ashkenazi, N.; Zafrani, Y. Component Mobility by a Minute Quantity of the

Appropriate Solvent as a Principal Motif in the Acceleration of Solid-Supported Reactions. J. Org. Chem. 2015, 80, 5176-5188.

- Fridkin, G.; Yehezkel, L.; Columbus, I.; Zafrani, Y. Solvent Effects on the Reactions of the Nerve Agent VX with KF/Al₂O₃: Heterogeneous or Homogeneous Decontamination? *J. Org. Chem.* 2016, *81*, 2154-2158.
- Narske, R. M.; Klabunde, K. J.; Fultz, S. Solvent Effects on the Heterogeneous Adsorption and Reactions of (2-Chloroethyl)ethyl Sulfide on Nanocrystalline Magnesium Oxide. *Langmuir* 2002, 18, 4819-4825.
- Weinstock, L. M.; Stevenson, J. M.; Tomellini, S. A.; Pan, S-. H.; Utne, T.; Jobson, R. B.; Reinhold, D. F. Characterization of the Actual Catalytic Agent in Potassium Fluoride on Activated Alumina Systems. *Tetrahedron Lett.* **1986**, *27*, 3845-3848.
- Marciano, D.; Columbus, I.; Elias, S.; Goldvaser, M.; Shoshanim, O.; Ashkenazi, N.; Zafrani, Y. Role of the P-F Bond in Fluoride-promoted Aqueous VX Hydrolysis: an Experimental and Theoretical Study. *J. Org. Chem.* **2012**, *77*, 10042-10049.
- 27. Yang, Y.-C.; Szafraniec, L. L.; Beaudry, W. T.; Ward, J. R. Kinetics and Mechanism of the Hydrolysis of 2-Chloroethyl Sulfides. *J. Org. Chem.* **1988**, *53*, 3293-3297.
- Munro, N. B.; Talmage, S. S.; Griffin, G. D.; Waters, L. C.; Watson, A. P.; King, J. F.; Hauschild, V. The Sources, Fate, and Toxicity of Chemical Warfare Agent Degradation Products. *Environmental Health Perspectives* 1999, *107*, 933-974.
- 29. Stenger, V. A. Solubilities of Various Alkali Metal and Alkaline Earth Metal Compounds in Methanol. J. Chem. Eng. Data **1996**, *41*, 1111-1113.
- Labban, A.-K. S.; Marcus, Y. The Solubility and Solvation of Salts in Mixed Nonaqueous Solvents. 2. Potassium Halides in Mixed Protic Solvents. J. Solution Chem. 1997, 26, 1-12.
- The Merck Index, 14th ed. O'Neil, M. J., Ed.; Merck & Co., Inc.: Whitehouse Station, NJ, USA, 2006; p 1316.
- 32. Wynn, D. A.; Roth, M. M.; Pollard, B. D. The Solubility of Alkali-Metal Fluorides in Non-Aqueous Solvents with and without Crown Ethers, as Determined by Flame Emission Spectrometry. *Talanta* 1984, *31*, 1036-1040.
- 33. Labban, A.-K. S.; Marcus, Y. The Solubility and Solvation of Salts in Mixed Nonaqueous Solvents. 1. Potassium Halides in Mixed Aprotic Solvents. J. Solution Chem. 1991, 20, 221-232.
- 34. Products 7 and 8 were identified by NMR (Figure S2 in the supporting information), albeit the methyl ether peak originating from methanol was not conclusively

observed, as the methanol was not ${}^{13}C$ labeled. Product's **8** identity was further verified using GC-MS, $(M+H)^+$, 152.

35. Reiff, L. P.; Taber, D. F.; Yet, L. Proceeding of the 1996 ERDEC Scientific Conference on Chemical and Biological Defense Research, 19-22 November, 1996. P. 799.