Synthesis of 1,2-Di-t-butyl-6-hydroxy-1,2-dihydro-1,2,4-triazines

Toshikazu HIRAO, Toshio MASUNAGA, Yoshiki OHSHIRO*, Toshio AGAWA

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565, Japan

Three-membered heterocycles have been known to undergo ring enlargement on reaction with compounds containing an unsaturated function or with carbanions; this process presents a versatile route to heterocycles. In general, 1,2-di-t-butyldiaziridinone (1) is not suitable for cycloaddition because of the

$$t \cdot C_{4}H_{9} \xrightarrow{1} C_{4}H_{9} - t \xrightarrow{t} C_{4}H_{9} - t \xrightarrow{t} C_{4}H_{9} - t \xrightarrow{t} C_{4}H_{9} \xrightarrow{N} \overset{O}{H} \overset{R}{R} \overset{R}{R} \xrightarrow{R} \overset{Q}{H} \overset{R}{R} \overset{R}{R} \xrightarrow{R} \overset{Q}{H} \overset{R}{R} \overset{R}{R} \overset{R}{R} \xrightarrow{R} \overset{Q}{H} \overset{R}{R} \overset{R}{$$

478 Communications synthesis

Table. 1,2-Di-t-butyl-6-hydroxy-1,2-dihydro-1,2,4-triazines 4a-c

Product No.		Base	Reaction Temp./Time	Yield [%]	m.p. ^a [°C]	Molecular ^b formula	I.R. (KBr) v [cm ⁻¹]	1 H-N.M.R. (CDCl ₃ /TMS) δ [ppm]
 4a	C₂H₅OOC	NaH t-C ₄ H ₉ OK	r.t./15 h r.t./37 h	48 48	99101°	C ₁₄ H ₂₅ N ₃ O ₃ (283.4)	3270, 3110, 1690, 1570, 1520	0.92 (s, 9 H, t -C ₄ H ₉); 1.16 (s, 9 H, t -C ₄ H ₉); 1.41 (t, 3 H, J = 7.2 Hz, CH ₃); 4.39 (q, 2 H, J = 7.2 Hz, CH ₂); 5.0-5.2 (br., 1 H, OH); 7.58 (s, 1 H, HC \rightleftharpoons N)
4b	C ₆ H ₅	NaH t-C ₄ H ₉ OK	1. r.t./ 4 h 2. 50 °C/18 h r.t./25 h	8 22	108~109°	C ₁₇ H ₂₅ N ₃ O (287.4)	3280, 3120, 1610, 1560, 1520	0.98 (s, 9 H, t-C ₄ H ₉); 1.16 (s, 9 H, t-C ₄ H ₉); 3.4-3.7 (br., 1 H, OH); 7.2-8.4 (m, 5 H, C ₆ H ₅); 7.75 (s, 1 H, HC=N)
4c	Н	n-C ₄ H ₉ Li	66 °C/7 h	25	syrup	$C_{11}H_{21}N_3O$ (211.3)	3270, 3130, 1600, 1580, 1500°	0.98 (s, 9 H, <i>t</i> -C ₄ H ₉); 1.12 (s, 9 H, <i>t</i> -C ₄ H ₉); 3.0–3.3 (br., 1 H, OH); 6.49 (s, 1 H, HC=C); 7.60 (s, 1 H, HC=N)

^a Melting points are uncorrected.

steric hindrance of the *t*-butyl groups¹. Earlier work in our laboratory has shown that ring enlargement of 1,2-di-*t*-butyldiaziridinone (1) with diphenylketene, benzoyl isocyanate, or benzonitrile in the presence of a Lewis acid gives the corresponding five-membered heterocycles². Now we report the synthesis of 1,2-di-*t*-butyl-6-hydroxy-1,2-dihydro-1,2,4-triazines 4 by the reaction of 1,2-di-*t*-butyldiaziridinone (1) with metallated isocyanides 2.

Treatment of 1 with metallated ethyl isocyanoacetate (2, $R = C_2H_5OOC$) at room temperature gave 1,2-di-*t*-butyl-5-ethoxycarbonyl-6-hydroxy-1,2-dihydro-1,2,4-triazine (4a). Starting from benzyl isocyanide or methyl isocyanide, the corresponding triazines 4 were also prepared (Table).

The triazine 4 is assumed to be formed via attack of the carbanion 2 on the carbonyl function of 1,2-t-butyldiaziridinone (1). The thus obtained intermediate 3 is subject to α -addition on the isocyanide moiety to form the triazine 4.

1,2-Di-t-butyl-5-ethoxycarbonyl-6-hydroxy-1,2-dihydro-1,2,4-triazine (4a):

To a stirred solution of potassium t-butoxide (0.49 g, 4.4 mmol) in tetrahydrofuran (5 ml) is added dropwise ethyl isocyanoacetate (0.45 g, 4 mmol) followed by 1,2-di-t-butyldiaziridinone (1; 0.68 g, 4 mmol) in tetrahydrofuran (5 ml) at room temperature. The mixture is stirred for 37 h, and cooled to 0 °C. Water (3 ml) is added to the resultant mixture, which is extracted with ether (3 × 10 ml). The combined organic layers are washed with aqueous saturated sodium chloride solution (3 × 5 ml), and concentrated under reduced pressure. The residue is chromatographed on a silica gel column using benzene as an eluent to give the almost pure triazine 4a, which is recrystallized from hexane; yield: 0.54 g (48%).

Received: January 14, 1982

^b Satisfactory microanalyses obtained: C ± 0.10 , H ± 0.14 , N ± 0.36 .

c Neat.

F. D. Greene, J. C. Stowell, W. R. Bergmark, J. Org. Chem. 34, 2254 (1969).

² Y. Ohshiro, M. Komatsu, Y. Yamamoto, K. Takaki, T. Agawa, Chem. Lett. 1974, 383.