Journal für praktische Chemie Chemiker-Zeitung © Johann Ambrosius Barth 1992

Synthesis and Structure of Tetraaryl Orthocarbonates from Carbonimidic Acid Esters

M. Bauer* and D. Janietz

Teltow, Institut für Polymere Chemie

G. Reck and B. Schulz

Berlin-Adlershof, Zentralinstitut für Physikalische Chemie

Received February 6th, 1991.

Under the influence of acids arylcyanates trimerize to yield 2,4,6-tris (aryloxy)-1,3,5-triazines [1]. It is also known that the thermal cyclotrimerisation of aromatic cyanic acid esters is catalyzed by small amounts of phenols and water where intermediately a carbonimidic acid ester is formed by addition of the phenol to the cyanate [2].

Martin and coworkers investigated the methanol addition to cyanates. They obtained tetramethoxy methane and substituted triazines via carbonimidic acid dimethylester formed in situ [3]. On the other hand, the corresponding 2,4,6-tris(aryloxy)-1,3,5-triazines and phenols have been isolated exclusively in thermal reactions of carbonimidic acid diarylesters [4].

We found that thermolysis of aromatic carbonimidic acid esters an interesting side reaction takes place. If the carbonimidic acid bis(4-chlorophenyl) ester 1 is heated at $180 \degree C$ for 1 hour the appropriate triazine 2, 4-chlorophenol 3 and tetrakis-(4-chlorophenoxy)methane 4 are obtained as shown in scheme 1.

The crystal structure of **4** was determined by an X-ray structure analysis. Fig. 1 shows a stereoplot of the molecule. Bond lengths and angles are given in Fig. 2. The central C-atom is coordinated by four oxygen atoms forming a

nearly regular tetrahedron. The average C-O distance amounts to 1.388 Å. The molecular conformation is defined by the dihedral angles between the four aryl groups. These are listed in table 2. For X-ray data of further tetraaryl orthocarbonates see ref. [5].

Tetraphenoxymethane was obtained at first in 1961 by the reaction of diphenoxy dichloromethane with phenol [6]. Furthermore, the synthesis of other tetraaryl orthocarbonates has been described starting from copper phenoxides which react either with carbon tetrachloride [7, 8] or carbon disulfide [9].

Nothing is known about the formation of tetrakis(aryloxy)methanes from carbonimidic acid esters. Thus the example described herein is the first of this kind.

Experimental

Decomposition of carbonimidic acid ester (1)

In a sealed tube 5 g (17.72 mmol) carbonimidic acid bis(4chlorophenyl)ester 1 [10] are heated at 180 °C for 1 hour. After cooling to room temperature diethylether is added and the 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine 2 is filtered off.

Yield: 2.05 g m.p. 215 – 217 °C (acetic acid) (lit. 206 – 208 °C [1])

To remove 4-chlorophenol 3 the etheric solution is washed three times with sodium hydroxide solution (5%) and with water. After drying with sodium sulfate the solution is concentrated in vacuum. The resulting oily tetrakis(4-chlorophenoxy)methane 4 is crystallized by addition of a small amount of n-hexane.

Yield: 200 mg	m.p. 128 – 129 °C (ethanol)
	(lit. 129–130 °C [8])
¹³ C-NMR(CDCl ₃):	$\delta = 117.82, 121.40, 128.86, 129.77,$
	150.09 ppm

Fig. 1 Molgraf [11] stereoplot of the molecule of 4

X-ray structure determination of 4

Crystal data: $Cl_4C_{25}O_4H_{16}$, triclinic, space group P 1, a = 16.136(1), b = 10.719(4), c = 12.577(2)Å, $\alpha = 73.69(2)$, $\beta = 67.45(2)$, $\gamma = 73.85(2)^\circ$, V = 1188(1)Å³, z = 2, calculated density $D_x = 1.57 \text{ g} \cdot \text{cm}^{-3}$, linear absorption coefficient $\mu = 5.4 \text{ cm}^{-1}$, crystal size: $0.2 \times 0.2 \times 0.3 \text{ mm}^3$.

The intensity data of 3042 independent non-zero reflections ($I > \sigma$ (I)) were collected up to 2 Θ of 46° on an Enrafnonius Cad4-diffractometer using graphit monochromated

Fig. 2 Bond lengths and angles in the molecule of 4

Table	1	Positional	parameters	and	equivalent	isotropic
temper	atu	re factors c	of 4 (e.s.d. 's	in pa	arentheses)	

	x	У	z	B_{eq}/A
Cl(1)	0.5946(1)	0.21312(9)	0.45416(7)	6.33(2)
Cl(2)	1.1817(1)	-0.82421(8)	0.58205(9)	7.31(3)
Cl(3)	0.4150(1)	-0.45437(9)	1.36835(7)	6.44(3)
Cl(4)	1.2755(1)	-0.0413(1)	0.9892(1)	9.72(3)
O(1)	0.8144(2)	-0.1499(2)	0.8217(2)	4.63(5)
O(2)	0.9384(2)	-0.3011(2)	0.7097(2)	5.09(6)
O(3)	0.7420(2)	-0.3514(2)	0.8637(2)	4.90(5)
O(4)	0.9353(2)	-0.3395(2)	0.9013(2)	5.25(6)
C	0.8574(3)	-0.2856(3)	0.8244(3)	4.76(8)
C(1)	0.6602(3)	0.1012(3)	0.5624(2)	4.34(7)
C(2)	0.5811(3)	0.0121(3)	0.6390(3)	5.24(9)
C(3)	0.6316(3)	-0.0752(3)	0.7257(3)	5.24(9)
C(4)	0.7626(3)	-0.0705(2)	0.7313(2)	4.05(2)
C(5)	0.8408(3)	0.0211(3)	0.6538(3)	5.01(8)
C(6)	0.7909(3)	0.1088(3)	0.5673(3)	5.26(9)
C(7)	1.1083(3)	-0.6716(3)	0.6252(3)	4.7(8)
C(8)	1.1948(3)	-0.6077(3)	0.6438(3)	5.11(9)
C(9)	1.1358(3)	-0.4851(3)	0.6758(3)	4.96(8)
C(10)	0.9931(3)	-0.4299(3)	0.6881(2)	4.25(7)
C(11)	0.9073(3)	-0.4945(3)	0.6691(3)	5.01(8)
C(12)	0.9659(3)	-0.6168(3)	0.6376(3)	5.24(8)
C(13)	0.5088(3)	-0.4221(3)	1.2183(3)	4.55(8)
C(14)	0.5232(4)	-0.2955(3)	1.1627(3)	6.8(1)
C(15)	0.6006(4)	-0.2698(3)	1.0445(3)	7.3(1)
C(16)	0.6643(3)	-0.3711(3)	0.9838(2)	4.33(7)
C(17)	0.6461(3)	-0.4970(3)	1.0401(3)	5.17(9)
C(18)	0.5678(4)	-0.5219(3)	1.1580(3)	5.7(1)
C(19)	1.1070(3)	-0.2645(3)	0.9161(2)	4.61(8)
C(20)	1.0016(4)	-0.2677(3)	1.0310(3)	6.0(1)
C(21)	1.0835(4)	-0.2001(4)	1.0520(3)	6.7(1)
C(22)	1.1759(3)	-0.1298(3)	0.9611(3)	5.81(9)
C(23)	1.1919(3)	-0.1261(3)	0.8475(3)	5.71(9)
C(24)	1.1114(3)	-0.1946(3)	0.8248(3)	5.23(9)

 MoK_{α} -radiation. The intensities were corrected for Lorentz and polarization effects. An additional correction was necessary because of loss of intensities of 36 % after an exposure time of 69 h.

The structure was solved by a straight-forward application of Multan 82 [12]. All hydrogen atoms could be located by difference Fourier syntheses. The final full-matrix leastsquares refinement of atomic coordinates, anisotropic thermal parameters of nonhydrogen atoms and isotropic B-values of hydrogens converged with R = 0.042 (unit weights). The resulting parameters are listed in table 1.

Table 2Dihedral angles in the molecule of 4

E 1	E2	E3
_	_	_
67.2	_	_
91.1	77.4	
45.1	100.7	128.6
	E1 	E1 E2 67.2 - 91.1 77.4 45.1 100.7

References

- [1] D. Martin, R. Bacaloglu: Organische Synthesen mit Cyansäureestern, Berlin: Akademie-Verlag 1979.
- [2] M. Bauer, J. Bauer, G. Kühn: Acta Polymerica 37 (1986) 715.
- [3] D. Martin, A. Berger, H.J. Niclas, R. Bacaloglu: J. Prakt. Chem. 315 (1973) 274.
- [4] M. Hedayatullah, M. Brancourt, L. Denivelle: C.R. Acad. Sci., Paris, Ser. C 267 (1968) 246; Bull. Soc. Chim. Fr. 1970, 2637.
- [5] N. Narasimhamurthy, H. Manohar, A.G. Samuelson, J. Chandrasekhar: J. Am. Chem. Soc. 112 (1990) 2937.
- [6] H. Gross, A. Rieche, E. Höft: Chem. Ber. 94 (1961) 544.
- [7] T.H. Chan, J.F. Harrod, P. van Gheluwe: Tetrahedron Lett. 1974, 4409.
- [8] J.F. Harrod, P. van Gheluwe: Can. J. Chem. 57 (1979) 890.
- [9] N. Narasimhamurthy, A.G. Samuelson: Tetrahedron Lett. **1986**, 991.
- [10] E. Vowinkel, C. Wolff: Chem. Ber. 107 (1974) 1739.
- [11] G. Reck, R.-G. Kretschmer: Molgraf. A computer program for illustration of single, symm., equiv. and fitted molecules. Analytical Center Berlin-Adlershof 1990.
- [12] Multan 82. A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data. Univ. of York, England, and Louvian, Belgium 1982.

Authors' address:

Dr. D. Janietz, Prof. Dr. M. Bauer Institut für Polymerenchemie Kantstr. 55 O-1530 Teltow, Bundesrepublik Deutschland

B. Schulz, Dr. G. Reck Analytisches Zentrum Rudower Chaussee 5 O-1199 Berlin, Bundesrepublik Deutschland