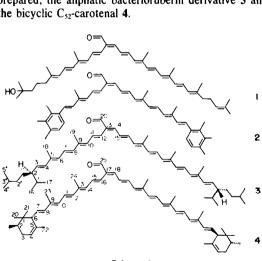
TOTAL SYNTHESES OF CROSS-CONJUGATED CAROTENALS

JON EIGILL JOHANSEN and SYNNØVE LIAAEN-JENSEN

Organic Chemistry Laboratories, Norwegian Institute of Technology, University of Trondheim, N-7034 Trondheim-NTH, Norway

(Received in USA 11 June 1976; Received in UK for publication 23 September 1976)

Abstract—Total syntheses of the cross-conjugated carotenals renierapurpurin-20-al $(\chi,\chi$ -caroten-20-al, 2), (2R,2'R)-tetradesoxybacterioruberin-20-al $((2R,2'R)-2,2'-bis-(3-methylbutyl)-3,4,3',4'-tetrahydro-<math>\psi,\psi$ -caroten-20-al, 3) and (2R,6R,2'R,6'R)-2,2'-dimethyl-decapreno- ϵ,ϵ -caroten-25-al (4) from the common intermediate 8,8'-diapo-20-acetoxycarotene-8,8'-dial (5) are described. The cross-conjugated 20-(2,3,4-trimethylbenzal)renierapurpurin (16) has also been synthesized.

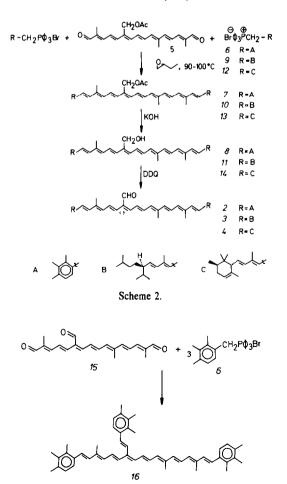

Cross-conjugated carotenals of the rhodopinal (1) type are encountered in many photosynthetic bacteria.¹ These carotenals exhibit peculiar electronic spectra and are known to have the 13-double bond in *cis* configuration.²⁻⁴ Small scale total synthesis of aliphatic carotenals of this type has recently been effected in our laboratory.⁵

Since the general instability of these aliphatic crossconjugated carotenals does not allow a full characterization, total synthesis of a related, more stable carotenal with aryl end groups, namely renierapurpurin-20-al (2) has now been effected with the special purpose of configurational studies.⁶

For the investigation of chiroptical properties of such carotenoids with bent polyene chain two cross-conjugated carotenals with chiral end groups have also been prepared, the aliphatic bacterioruberin derivative 3 and the bicyclic C_{52} -carotenal 4.

corresponding to the acetate 5 readily was oxidized during Wittig condensation with the phosphonium salt 6, thus resulting in undesired condensation products such as 16 (Scheme 3).

However, Wittig condensation of the acetylated dialdehyde 5 with the appropriate phosphonium salts, using 1,2-butylene oxide to avoid excess base, provided the desired di-condensation products 7, 10 and 13 without complications. Hydrolysis of the acetates to the free alcohols 8, 11 and 14 followed by allylic oxidation with


Scheme 1.

RESULTS AND DISCUSSION

We have recently reported the synthesis of the key intermediate 8,8'-diapo-20-acetoxycarotene-8,8'-dial (5) from the corresponding dial.⁷ The synthesis of the cross-conjugated carotenals 2-4 (Scheme 1) followed the route outlined in Scheme 2.

The phosphonium salts 6 and 12 were available^{8,9} and the chiral phosphonium salt 9 was synthesized as described elsewhere.^{10,11}

Test experiments showed that the free C₂₀-alcohol

Scheme 3.

DDQ gave the cross-conjugated carotenals 2, 3 and 4. All intermediates are fully spectroscopically characterized.

Renierapurpurin-20-al (2) was obtained as crystals, m.p. 185-186° and was characterized by electronic, IR, 'H NMR and mass spectra. The 13-*cis* configuration of the polyene chain is now established.⁶

The aliphatic bacterioruberin derivative 3 and the bicyclic carotenal 4 could not be crystallized, but were characterized by the same criteria. From their electronic and ¹H NMR spectra and by analogy with 1⁴ and 2⁶ cis-configuration of the double bond α to the carbonyl is assumed.⁶ CD properties of the two chiral aldehydes 3 and 4 will be reported elsewhere.

Finally the cross-conjugated triaryl carotene 16 was prepared by Wittig condensation of the previously prepared trial 15 with 2,3,4-trimethylbenzyl triphenyl-phosphonium bromide (6, Scheme 3) and now shown to be 13-cis.⁶

Linear dichroic spectra of 2, 15 and 16 are reported elsewhere.⁶

EXPERIMENTAL

Materials and methods were as described elsewhere.⁷ Yields were calculated from absorption spectra using extinction coefficients obtained for the crystalline products. However, due to the ready *cis-trans* isomerization of these compounds calculation of concentrations in soln is approximative. For products not obtained in the crystalline state $E_{1\%,1cm} = 2500$ at λ_{max} was used when not otherwise stated.

20-Acetoxy-renierapurpurin (7). Compounds 5 (7.7 mg) and 6 (140 mg) were transferred to a test tube and dissolved in chloroform-1,2-butylene oxide (1:1, 1 ml). The tube was filled with N_2 , sealed and kept at 100° for 3 hr. The solvents were removed and the products chromatographed on a silica gel column developed with benzene to give 7, yield 3.7 mg (29%). The combined products from several experiments (24.5 mg) were rechromatographed in the same system and crystallized from ethermethanol to give 7, yield 6.3 mg, m.p. $172-173^{\circ}$; UV-visible λ_{max} (acetone) 471.5 nm ($E_{1\%,1cm} = 2230$, $\epsilon = 130,000$), % $D_B/D_{11}^3 = 9$; λ_{max} (hexane) 296, (363) and 468 nm; IR (KBr) ν_{max} 3015, 2990, 2910 (w), 1736 (s), 1466, 1440 (w), 1369 (m), 1225 (s), 1049 (w), 1022 (m), 962 (s), 828, 802 and 778 (w); 'H NMR δ (CDCl₃) 2.02 (3H, H-20'), 2.08s (-OCOCH₃), 2.10s (H-19,19'), 2.08 and 2.10 (9H), 2.22s (6H, H-16,16'), 2.32 s (12H, H-17,18,17',18'), 5.02 s (2H, -CH2OAc), 6.15-7.0 (14 olefinic H), 7.00 d (2H, H-4,4' (5,5'), $J_{4-5} = 8.5$ Hz) and 7.31 d (2H, H-5,5' $(4,4'), J_{4-5} = 8.5 \text{ Hz}); \text{ MS } m/e (220^{\circ}) 586 (M, 47\%) 526 (M-60,$ 5.1%), 511 (M-75, 0.8%), 494 (M-92, 0.8%), 470 (M-106, 6.2%), 436 (M-150, 4.1%), 422 (M-164, 34%) and 133 (100%).

Renierapurpurin-20-ol (8). Compound 7 (17.4 mg) was treated with ether-10% KOH in MeOH (1:1, 50 ml) for 2 hr. The mixture was diluted with ether and washed until neutral with 5% NaCl aq. The solvents were removed and the product dried and purified on a silica gel column developed with 10% ether in chloroform, yield 16.1 mg (100%, cis-trans mixture); UV-visible λ_{max} (acetone) 462.5 mm; 'H NMR δ (CDCl₃) 1.99 s (3H, H-20'), 2.07 s (6H, H-19,19'), 2.21 s (6H, H-16,16'), 2.30 s (12H, H-17,18,17',18'), 4.43 and 4.55 (2H, -CH₂OH), 6.1-7.1 (14 olefinic H), 6.98 (2H, H-44'(5,5'), J_{-5} = 8.5 Hz) and 7.29(2H,H-5,5'(4.4'), J_{+5} = 8.5 Hz)

All-trans 8 was crystallized from chloroform-ther, yield 4.0 mg, m.p. 195-196°; UV-visible λ_{max} (CS₂) 504 ($E_{196,1cm} = 2060$) 536.5 nm, λ_{max} (acetone) 472.5 ($E_{196,1cm} = 2580$, $\epsilon = 140,000$) and 501.5 nm, % D_n/D₁₁ = 7, % III/II = 7, λ_{max} (hexane) 298.5, 470 and 498 nm; IR (KBr) ν_{max} 3440 (m), 3030, 2995 (w), 2915 (m), 2860, 1476, 1444, 1392, 1251, 1050 (w), 1006 (m), 960 (s), 883, 828, 803 and 779 (w) cm⁻¹; 'H NMR δ (CDCl₃, 100 MHz) 2.00 s, 2.06 s, 2.20 s, 2.29 s, 4.56 s (-CH₂OH, no signal at 4.43), 7.02 d and 7.30 d (H-4,5,4',5', $J_{4-5} = 8$ Hz); MS *m/e* (210°) 544 (M, 53%), 526 (M-18, 6.1%), 513 (M-31, 0.7%), 465 (M-79, 0.2%), 452 (M-92, 0.6%), 438 (M-106, 4.2%), 436 (M-108, 3.3%), 422 (M-122, 2.8%) and 133 (100%).

Renierapurpurin-20-al (2). DDQ in ether-dioxane (2.9 ml, 2.9 mg DDQ) was added dropwise to a soln of 8 (1.85 mg) in ether-dioxane (1:1, 2 ml) at \div 5- \div 10°. The reaction was monitored by TLC and addition of DDQ was stopped when the conversion was considered complete. The mixture was chromatographed on a silica gel column developed with chloroform, yield of 2 was 1.80 mg (97%). The combined product from several experiments was rechromatographed on silica gel (benzene). Crystallization from acetone-methanol gave 5.7 mg of 2, m.p. 185-186°; UV-visible λ_{max} (acetone) 365 and 496.5 nm $(E_{1\%,1\,cm} = 1450, \ \epsilon = 79,000), \ \% \ D_B/D_{11} = 42; \ \lambda_{max}$ (hexane) 232), 314, 369 and 490.5 nm; IR (KBr) ν_{max} 2915, 2830 (w), 1676 (s), 1580, 1583 (m), 1371, 1216, 1165 (m), 965 (s), 904 and 800 cm⁻¹; 'H NMR δ (CDCl₃) 2.09 s (9H, H-19,19',20'), 2.21 s (6H, H-16,16'), 2.29 (12H, H-17,18,17'), 6.10-7.80 (aromatic and olefinic H), 6.99 (H-4,4' (5,5'), $J_{4-5} = 8.5$ Hz), 7.28 (H-5,5' (4,4'), $J_{4-5} =$ 8.5 Hz), 7.70 dd (H-11?, $J_{10-11} = 5$ Hz, $J_{11-12} = 12$ Hz) and 9.58 d (1H, -CHO, J = ca. 1.9 Hz); MS m/e (210°) 542 (M, 76%), 450 (M-92, 1.0%), 436 (M-106, 4.6%), 422 (M-120, 21%), 408 (M-134, 2.7%) and 133 (100%).

 $(2R,2'R) - 2,2' - Bis(3 - methylbutyl) - 3,4,3',4' - tetradihydro - <math>\psi,\psi$ - caroten - 20 - acetate (10). Compounds 5 (20.1 mg) and 9^{10,11} (230 mg) were dissolved in a test tube with chloroform-1,2butylene oxide (1:1, 1 ml). The tube was filled with N₂, sealed and kept at 90° for 2.5 hr, the solvents removed and the product chromatographed on TLC (silica gel G, 4% acetone in hexane = AH). Several zones of approximately the same polarity were observed. Two fractions were collected. The less polar fraction 10A consisted of zone 1 (yellow) and 2 (orange), yield 3.0 mg (4%); UV-visible λ_{max} (ether) (372), 388 and 481 nm.

3.0 mg (4%); UV-visible λ_{max} (ether) (372), 388 and 481 nm. Fraction 10B, zone 3–8 (red); yield 27.0 mg (39%); UV-visible λ_{max} (ether) 371, 387, 488.5, 518 nm. IR(KBr) ν_{max} 3035, 2955, 2930, 2970 (m), 1730 (s), 1467, 1385, 1367 (w), 1223, 1023 (m) and 964 (s); ¹H NMR δ (CDCl₃) 0.86 d (24H, isopropyl CH₃, $J_{1-16} = J_{3^*-4^*} = 5.5$ Hz), 1.3–1.9 (12H, >CH- and -CH₂-, complex), 1.93 s (6H, H-18,18'), 1.98 (9H, H-19,19',20', broad), 2.07 and 2.08 (3H, -OCOCH₃), ca. 2.25 (2H, H-2,2', complex), ca. 4.86 and 4.99 (2H, broad), ca. 5.52 dd (2H, H-3,3', $J_{2-3} = 9$ Hz, $J_{3-4} = 16$ Hz), and 5.9–7.0 (18 olefinic H); MS *mle* (240°) 734 (M, 35%), 674 (M-60, 3.1%), 642 (M-92, 0.9%), 628 (M-106, 20%), 584 (M-150, 3.4%), 576 (M-158, 0.9%), 570 (M-164, 18%), 518 (M-216, 5.4%) and 43 (100%).

 $(2R,2'R) - 2,2' - Bis(3 - methylbutyl) - 3,4,3',4' - tetrahydro - <math>\psi,\psi$ - caroten - 20 - ol (11). Hydrolysis of 10A (3.0 mg) and 10B (25.5 mg) was effected with ether-10% KOH in MeOH (1:1, 20 + 50 ml). Co-chromatography prior to work-up indicated identity. Hydrolyzed 10A and 10B were combined and worked up after 2.5 hr according to the procedure described for 8. Chromatography on TLC (silica gel, 8% AH) gave 7 zones which were collected in two fractions. The less polar fraction 11A; zone 1 (yellow) and zone 2 and 3 (orange); yield 2.8 mg (10%); UV-visible λ_{max} (ether) 370.5, 387 and 481 nm.

The main fraction (11B) consisted of four red zones, yield 20.6 mg (77%); UV-visible λ_{max} (ether) 370, 386.5, 487.5 and 516.5 nm; IR (KBr) ν_{max} 3035 (w), 2955, 2925, 2870 (m), 1467, 1384, 1368, 1004 (w) and 964 (s), 'H NMR δ (CDCl₃) 0.87 d (24H, isopropyl CH₃), $J_{1-16} = J_{1^* \cdot e^*} = 5.5$ Hz). 1.3-1.9 (12H, >CH- and -CH₂-, complex), 1.93 s (6H, H-18,18'), 2.00 (9H, H-19,19',20', broad), *ca.* 2.25 (2H, H-2,2', complex), *ca.* 4.43 and 4.54 (2H, -CH₂OH, broad), *ca.* 5.56 dd (2H, H-3,3, J_2 3 = 9 Hz, J_{3-4} = 16 Hz) and 5.95-7.0 (18 olefinic H); MS *m/e* (235°) 692 (M, 32%), 674 (M-18, 1.3%), 600 (M-92, 0.8%), 586 (M-106, 27%), 584 (M-108, 3.7%), 570 (M-122, 18%), 534 (M-158, 0.7%), 518 (M-216, 5.4%) and 43 (100%).

 $(2R,2'R) - 2,2' - Bis(3 - methylbutyl) - 3,4,3',4' - tetrahydro - <math>\psi,\psi$ - caroten - 20 - al (3). Combined 11A and 11B (16.7 mg) was oxidized with DDQ (21 mg) according to the procedure described for 8. The mixture was chromatographed on a silica gel column (benzene) and the crude product rechromatographed on TLC (silica gel, 6% AH) giving three major zones (blue-violet). The product was collected in one fraction, Yield 7.3 mg (44%, Ets.,tem = 1400 used); UV-visible λ_{max} (acetone) 391 and 520 nm; IR (KBr) ν_{max} 2955, 2925, 2830 (m), 1736 (imp.), 1680 (s), 1466, 1377 (m), 1280, 1220, 1169, 1074 (w), 967 (s) and 910 (w); 'H

NMR δ (CDCl₃) 0.87 d (24H, isopropyl, $J_{1-16} = J_{3^*-4^*} = 5.5$ Hz), 1.26 imp., 1.3–1.9 (12H, >CH-, and -CH₂-, complex), 1.93 s (6H, H-18,18'), 2.03 (9H, H-19,19',20', broad), ca. 2.25 (2H, H-2,2', complex), ca. 4.0 imp., 5.5–7.00 (20 olefinic H) and 9.56 d (1H, -CHO, $J_{14-20} = ca.$ 1.9 Hz, broad); MS m/e (230°) 690 (M, 54%), 688 (M-2, 35%), 598 (M-92), 1.8%), 584 (M-106, 7.5%), 570 (M-120, 8.8%), 518 (M-172, 9.1%) and 43 (100%).

Upon rechromatography the eluted pigment from the main zone had UV-visible λ_{max} (acetone) 392 and 529, $\% D_B/D_{II} = 63$, λ_{max} (ether) 354, 390.5 and 518 nm. Crystallization before and after rechromatography was unsuccessful.

 $(2R,6R,2'R,6'R) - 25 - Acetoxy - 2,2' - dimethyl - decapreno - <math>\epsilon,\epsilon$ - carotene (13) was prepared from 5 (15 mg) and 12° (200 mg) according to the procedure described for 9. Chromatography on TLC (silica gel G, 3% AH) gave fraction 13A (least polar, two orange zones), yield 2.3 mg (5%); UV-visible λ_{max} (ether) 374, 388 and 485 nm.

Fraction 13B (most polar, one broad band), yield 18.2 mg (41%); UV-visible λ_{max} (ether) 373.5, 389, 491 and 520. IR (KBr) ν_{max} 3030, 2960, 2915, 2875 (m), 2835 (w), 1740 (s), 1447, 1366, 1376 (w), 1228 (s), 1052, 1024 (w), 964 (s) and 810 (w); ¹H NMR δ (CDCl₃) 0.82 s (isopropyl CH₃), 0.83 d (CH₃-2,2', J = 5 Hz), 0.82 and 0.83 (24H), 1.61 (H-22,22', broad), 1.92 s (6H, H-23,23'), 1.99 s (9H, H-24,24',25'), 2.08 (3H, -OCOCH₃, broad), 1.6-2.4 (8H, H-2,3,6,2',3',6', complex), ca. 4.84 and 4.99 (2H, broad), ca. 5.41 (2H, H-4,4'), 5.58 dd (2H, H-7,7', $J_{5-7} = 9$ Hz, $J_{7-8} = 16$ Hz) and 5.9-7.0 (18 olefinic H); MS *mle* (230°) 754 (M, 66%), 694 (M-60, 61%), 662 (M-92, 2.3%), 648 (M-106, 9.3%), 618 (M-136, 2.3%), 604 (M-150, 6.8%), 596 (M-158, 1.4%), 590 (M-164, 34%), 538 (M-216, 10.5%) and 137 (100%).

 $(2R,6R,2'R,6'R) - 2,2' - Dimethyl - decapreno - \epsilon,\epsilon - caroten - 25 - ol (14). 13A and 13B (20 mg) were combined, hydrolyzed and chromatographed as described for 11. The product was collected in two fractions. Fraction 14A (least polar, orange); yield 1.4 mg (7%); UV-visible <math>\lambda_{max}$ (ether) 472, 388, 482 and (509) nm.

Fraction 14B (most polar, red), yield 17.0 mg (90%); UVvisible λ_{max} 371.5, 388, 487.5 and 517 nm. IR (KBr) ν_{max} 3420, 3030, 2960, 2915, 2875 (m), 2830, 1705, 1548 (w), 1447 (m), 1366, 1376, 1387, 1184, 1153, 1007 (w), 964 (s), 912, 886 and 809 (w); 'H NMR & (CDCl₃) 0.82 s (isopropyl CH₃), 0.84 D (CH₃-2,2', J = 5 Hz), 0.82 and 0.84 (24H), 1.59 (6 H, H-22,22', broad), 1.91 s (6H, H-23,23'), 1.98 s (9H, H-24,24',25'), 1.6–2.4 (8H, H-2,3,6,2',3',6', complex), *ca.* 4.41 and 4.53 (2H, broad), *ca.* 5.38 (2H, H-4,4', broad), *ca.* 5.57 dd (2H, H-7,7', $J_{e-7} = 9$ Hz, $J_{7-8} =$ 16 Hz) and 5.9–7.0 (18 olefinic H), MS *m/e* (220°) 712 (M, 40%), 684 (M-18, 2.7%), 642 (M-70, 2.3%), 620 (M-92, 2.1%), 606 (M-106, 8.1%), 604 (M-108, 7.8%), 590 (M-122, 29%), 538 (M-174, 8.2%) and 137 (100%).

 $(2R,6R,2'R,6'R) - 2,2' - Dimethyl-decapreno - \epsilon,\epsilon - caroten - 25 - al (4). Combined 14A and 14B (180 mg) was oxidized with DDQ (17 mg) and purified according to the procedure described for 11. TLC yielded three main zones (all blue-violet) which were collected together, yield 17.0 mg (95%); 'H NMR <math>\delta$ (CDCl₃) 0.82 s (isopropyl CH₃), 0.84 d (CH₃-2,2', J = 5 Hz), 0.82 and 0.84 (24H), 1.59 (6H, H-22,2', broad), 1.92s (6H, H-23,2'), 2.03 (9H, H-24,24',25', broad), 1.6-2.4 (H-2,3,6,2',3',6', complex), ca. 5.39 (H-4,4', broad), ca. 5.58 (H-7,7', J_{e-1} = 9 Hz, J₁₋₈ = 16 Hz), 5.9-7.0 (18 olefinic H) and 9.56 d (1H, -CHO, J₁₄₋₂₀ = ca. 1.9 Hz, broad).

Attempted crystallization from acetone-methanol gave a solid ppt; yield 7.9 mg (m.p. unsharp at 102-110°); UV-visible λ_{max} (hexane) 333, 392.5 and 515 ($E_{1\%,1cm} = 1290$, $\epsilon = 92,000$), λ_{max} (acetone) 392 and 518 nm; MS m/e (220°) 710 (M, 60%), 708 (M-2,

2.7%), 640 (M-70, 3.6%), 618 (M-92, 1.7%), 604 (M-106, 4.6%), 590 (M-120, 9.8%) 573 (M-137, 7.9%), 552 (M-158, 0.7%), 538 (M-170, 8.8%) and 137 (100%).

The mother liquor was purified by TLC (silica gel G, 5% AH). The pigments from the three zones, numbered 4A-C from top, were isolated. 4A (ca. 5%), two zones on Merck silica gel 60 pre-coated plates (0.2 mm thick); had; UV-visible λ_{max} (acetone) 392 and 512.5 nm; 4B (ca. 15%) had UV-visible λ_{max} (acetone) 391.5 and 518.5 nm; 4C (80%) showed UV-visible λ_{max} (acetone) 392 and 525, % $D_B/D_{II} = 61; \lambda_{max}$ (hexane) 340, 392 and 520, % $D_B/D_{II} = 55$; Attempted crystallization of 4C from acetone-methanol was unsuccessful.

20-(2,3,4-Trimethylbenzal)-renierapurpurin (16) was prepared from 15 (31.4 mg) and 6 (1.35 g) according to the procedure described for the preparation of 7. The product was chromatographed on a column of silica gel (3% AH), yield 34.5 mg (52%).

Rechromatography on TLC (silica gel G, 1% acetone in CS₂) gave two zones. The least polar zone **16A** (65%) had UVvisible λ_{max} (acetone) 481.5 nm and the most polar zone **16B** (35%) had UV-visible λ_{max} (acetone) 476 nm.

16A was crystallized from acetone-CS₂-methanol, yield 4.5 mg, m.p. 165-167°; UV-visible λ_{max} (acetone) 370 and 485 nm (E_{196,1cm} = 1670, $\epsilon = 110,000$); λ_{max} (hexane) 362.5 and 478.5 nm; IR (KBr) ν_{max} 3030 (w), 2920 (m), 2855 (w), 1441, 1387, 1247, 1170, 1049, 1004 (w), 969 (s), 885, 843, 825 (w), 803 (m), 778 and 723 (w); MS *m/e* (230°) 658 (M, 41%), 566 (M-92, 6.7%), 552 M-106, 8.4%), 525 (M-133, 5.5%), 422 (M-236, 22%) and 133 (100%).

A second batch of crystals was obtained from the mother liquor, yield 5.9 mg from acetone-methanol; 'H NMR δ (CDCl₃) ca. 2.01 and 2.06 (9H, H-19,19',20'), 221 (9H, H-16,16',16''), 2.29 (18H, H-17,18,17',18'',17'',18'') and 6.2-7.3 (aromatic and olefinic H).

16B was not further investigated.

Acknowledgements—J.E.J. was supported by a personal grant from the University of Trondheim and by a grant from the Norwegian Council of Science and the Humanities to S.L.J.

REFERENCES

¹K. Schmidt, Biosynthesis of carotenoids. In Photosynthetic Bacteria (Edited by R. K. Clayton and W. R. Sistrom). Plenum Press, New York (1976).

- ²A. J. Aasen and S. Liaaen-Jensen, *Acta Chem. Scand.* 21, 2185 (1967).
- ³B. Ke, F. Imsgaard, H. Kjøsen and S. Liaaen-Jensen, *Biochim. Biophys. Acta* 210, 139 (1970).
- 4C.-A. Chin and P.-S. Song, J. Molec. Spectros. 52, 216 (1974).
- ⁵O. Puntervold and S. Liaaen-Jensen, Acta Chem. Scand. B 28, 1096 (1974).
- ⁶Q. Chae, P.-S. Song, J. E. Johansen and S. Liaaen-Jensen, to be published.
- ⁷J. E. Johansen and S. Liaaen-Jensen, Acta Chem. Scand. B 29, 315 (1975).
- ⁸A. J. Aasen and S. Liaaen-Jensen, Ibid. 21, 970 (1967).
- ^oA. G. Andrewes, G. Borch and S. Liaaen-Jensen, *Ibid. B* 30, In press. (1976).
- ¹⁰J. E. Johansen and S. Liaaen-Jensen, Tetrahedron Letters 995 (1976).
- ¹¹J. E. Johansen, *Thesis*, Norw. Inst. Technology, Univ. Trondheim, 1977.