Tetrahedron Letters No.36, pp. 4389-4392, 1966. Pergamon Press Ltd. Printed in Great Britain.

TRIALKYLCERMYL ALKALI METAL DERIVATIVES*

E.J.Bulten and J.G.Noltes Institute for Organic Chemistry TNO, Utrecht, the Netherlands (Received 4 July 1966)

Various methods are available for the synthesis of triarylgermyl alkali metal derivatives, <u>e.g.</u> the cleavage of the Ge-Ge bond of hexaphonyldigermane with Li in other solvents⁽¹⁾ (1, R = Ph; M = Li):

$$R_6 Ge_2 + 2 \amalg \longrightarrow 2 R_3 GeE$$
 (1)

However, reaction (1) does not take place under comparable conditions if $R = alkyl^{(2)}$. Only one successful, but rather unattractive route to the alkyl derivatives has been reported: Kraus and Flood obtained Et₃GeK by shaking Et₆Ge₂ with potassium in ethylamine for several weeks in a sealed tube⁽³⁾. Liquid ammonia is an unsuitable medium, because it does not dissolve AlK₆Ge₂ compounds.

We wish to report that trialkylgermyl alkali metal derivatives may be conveniently prepared according to (1) in hexamethylphosphortriamide (ELPT) which is a good solvent both for alkali metals⁽⁴⁾ and for hexaalkyldigermanes.

^{*} Part VI in the series "Investigations on Organogermanium Compounds"; Part V: E.J.Bulten and J.G.Noltes, Tetrahedron Letters, in the press.

Upon stirring R_6Ge_2 (R = alkyl) with potassium in dry HMPT at room temperature reaction is complete in 3-5 hours. R_3GeK is formed in quantitative yield as appeared from hydrolysis of the clear reddish--brown reaction mixture and subsequent determination by g.l.c. of the

amount of R.GeH formed.

Solutions of R_3 GeK in HMPT are stable, <u>e.g.</u> the strength of a 0.7 N solution of Et_3 GeK in HMPT remained unchanged on storage for 3 weeks at 0°C.

An alternative procedure involves the reaction of R_3 GeCl with two equivalents of potassium in HMPT according to (2). The reddish-brown color of R_3 GeK is observed only after complete conversion of the chloride into the digermane (3), the latter being subsequently cleaved according to (1):

	R_{3} GeCl	+	2 K	>	R3GeK	+	KCl	(2)
	R3GeCl	÷	R ₃ GeK	>	₽ ₆ Ge₂	+	KCI	(3)
2	R ₃ GeCl	+	2 K	>	R ₆ Ge ₂	+	2 KC1	(4)

Symmetrically substituted digermanes can be prepared according to (4), e.g. Et_6Ge_2 (b.p. 130-132°C/16mm Hg, $n_D^{20} = 1,4973$) and Bu_6Ge_2 (b.p. 131°C/0.2 mm Hg, $n_D^{20} = 1,4858$) were obtained in 75-80% yield*.

Trialkylgermyl alkali metal derivatives are reactive nucleophilic compounds. According to (5) the hitherto rather inaccessible asymmetric digermanes R_3 GeGeR¹₃ (R, R' = alkyl) can be readily prepared in 60~70% yield (see Table I), the reaction being completed within a few seconds

^{*} With Li instead of K the same results were obtained. The digermanes were isolated by extraction with a non-polar solvent after the addition of water.

even at $-60^{\circ}C^{*}$.

$$R_{3}GeK + R_{3}GeC1 \longrightarrow R_{3}GeGeR_{3} + KC1$$
 (5)

Halogen-metal exchange and subsequent coupling leading to symmetrically substituted digermanes can be suppressed to a great extent by carrying out the reaction at low temperatures.

by reacting R_3 GeK derivatives with trialkylmetal chlorides of other IV B group elements compounds of the type R_3 GeMR's may be obtained in about 60% yield (see Table I).

TABLE I

	Some	coupling reactions	of R ₃ GeK	
Re	eactants	Product*	B.p. (°C/mm Hg) n _D ²⁰
Et 3Ge	K Mezsicl	Et3GeSiMe3	⁸⁹⁻⁹¹ /30	1,4670
Et 3 Ge	eK Me ₃ GeCl	Et3 ^{GeGeMe} 3	80-82/14	1,4804
Bu 3 Ge	K Me ₃ GeCl	Bu3 Ge GeMe 3	⁷⁸⁻⁸⁰ /0,07	1,4800
Et 3 Ge	K Me ₃ SnCl	Et3 GeSnMe3	⁹⁰⁻⁹³ /14	1,5040

* Satisfactory analyses, I.R. and N.M.R. data have been obtained for all compounds reported.

<u>Acknowledgement</u>: The authors gratefully thank the "Germanium Research Committee" for supporting this work and for permission to publish. They wish to thank Professor G.J.M.van der Kerk for his stimulating interest.

* Reactions performed below -20°C require dilution of the reaction mixture, <u>e.g.</u> with THF, in order to prevent RMPT from freezing.

REFERENCES

- 1. H.Gilman and C.W.Gerow, J.Am.Chem.Soc. 77, 5009 (1950).
- 2. M.B.Hughes, Dissertation Abstr. 19, 1921 (1909).
- 3. C.A.Kraus and E.A.Flood, J.Am.Chem.Soc. 24, 1035 (1932).
- 4. H.Normant, Th.Cuvigny, J.Normant and B.Angolo, Bull.Soc.Chim.France, 3441 (1965); 3446 (1965).