Application of Wittig Reaction to Adenosine Derivatives

Zhang Jun-Dong, Zhang Li-He*

School of Pharmaceutical Sciences, Beijing Medical University, Beijing 100083, People's Republic of China

2',3'-O-Ethoxymethyleneadenosine 5'-aldehyde (3) was reacted with Wittig reagents 4 and 5 to give the corresponding α,β -unsaturated adenosine esters 6 and 7. The dehydrated compounds 9 and 10 were separated from this reaction and inversion of configuration at C-3' in ribofuranoside was observed.

It was reported that 5'-deoxy-5'-adenosineacetic acid (AAA) can replace adenosine 5'-monophosphate (AMP) in oligonucleotides and act as a substrate for enzymes such as AMP aminohydrolase. ¹⁻³ Several derivatives of AAA have been reported. ⁴⁻⁹ We were interested in synthesizing some nucleotide analogues, in which the phosphate group of the natural nucleotide is replaced by a carboxyalkyl group. In order to introduce the carboxyalkyl group at the 5'-position of adenosine, the application of Wittig reaction to adenosine derivatives was investigated.

2',3'-O-Ethoxymethyleneadenosine (2) prepared from adenosine (1) was oxidized by Moffatt reagent (1,3-dicyclohexylcarbodiimide/dimethyl sulfoxide) in the presence of pyridine and trifluoroacetic acid at room temperature to give compound 3, which was condensed directly, without separation, with Wittig reagent 4 followed by hydrolysis with 80% acetic acid to give compounds 6 and 9 in 21 and 3% yields, respectively. Similarly, compounds 7, 8 and 10 were obtained in 41,3 and 2% yields, respectively, from reaction of 3 with Wittig reagent 5 (Table).

Spectroscopic data indicated that in 7, 8 and 10, the 5', 6'-C=C bonds resulting from Wittig reaction are in E form $(J_{5'6'}=15.6-15.9 \, \text{Hz})$. 2-Dimensional ¹H-NMR measurements (NOESY) showed that in 6 and 9, the methylene protons of $\text{CH}_2\text{CO}_2\text{Et}$ interacted with H-4' but not with H-5', it also indicated that the 5',6'-C=C bonds in 6 and 9 also have E-stereochemistry. Compounds 7 and 8 are found to be structural isomers, the hydroxyl groups at C-2',3' being cis in 7 and trans in 8. Accordingly from ¹H- and ¹³C-data 8 is found to be (E)-9(benzyl-5',6'-dideoxy-5'-eno- β -D-xyloheptfuranosyluronate)adenine.

Compound 8 was hydrogenated to 11 in 75% yield. ¹H-NMR data of 11 showed that H-3' is *cis* to H-4' $(J_{3'-4'} = 2.4 \text{ Hz})$ and H-1' is *trans* to H-2' $(J_{1'-2'} = 7.0 \text{ Hz})$. All this data supports compound 11 to be 9-(5',6'-dideoxy- β -D-xyloheptfuranosyluronic acid)adenine.

The formation of dehydrated compounds 9 and 10 resulted from initial abstraction of the 4'-proton followed by elimination of ethyl formate. Considerable literature precedent exists for this pathway. 10,11 It is also reasonable that in the presence of acetic acid, compound 8 could be obtained from diene 10 by the attack of water on the β direction of sugar ring, but corresponding inversion of configuration at C-3' in 6 has not been observed.

The column chromatography was performed on silica gel (100–200 mech, purchased from Qing-Dao Chemical Company, China). ¹H-and ¹³C-NMR spectra were recorded with Fx-90Q and VXR-300

Bn =
$$CH_2Ph$$

NH₂

B = NH_2

A: EtO_2C

PPh₃

CO₂Et

5: H

PPh₃

O PP

EtOH, r.t., 24h

75 %

	\mathbb{R}^1	R ²	ОН	Y H
6	CO ₂ Et	CH ₂ CO ₂ Et		
7	CO_2Bn	Н	OH	Н
8	CO_2Bn	H	H	OH
9	CO_2Et	CH2CO2Et	_	-
10	CO_2Bn	Н	-	_

spectrometers with TMS as internal standard. UV spectra were recorded with DU-7 spectrophotometer. A ZAB-HS was used for mass spectra (glcerol matrix). Evaporations were carried out under reduced pressure with the bath temperature below 40°C.

Ethoxycarbonyl(β -ethoxycarbonyl)ethylenetriphenylphosphorane (4)¹² and benzyloxycarbonylmethylenetriphenylphosphorane (5)¹³ were prepared according to literature.

(E)-9-[Ethyl 5',6'-dideoxy-6'-(ethoxycarbonyl)methyl- β -D-ribohept-5'-enofuranosyluronate]adenine (6) and (5'-E)-9-[Ethyl 3',5',6'-trideoxy-6'-(ethoxycarbonyl)methyl- β -D-glycero-hept-3',5'-dienofuranosyluronate]adenine (9):

2',3'-Ethoxymethyleneadenosine (2;¹⁴ 0.6 g, 1.8 mmol) is stirred with 1,3-dicyclohexylcarbodiimide (1.5 g, 7.3 mmol) in a mixture of DMSO (7 mL), benzene (7 mL), pyridine (1.3 mL), and CF₃CO₂H (0.8 mL) for 36 h at r.t. To the mixture is added the Wittig reagent

4 (1.2 g, 2.8 mmol) and the mixture is stirred for 24 h at 40° C. The mixture is diluted with EtOAc (20 mL) and stirred with oxalic acid (1.5 g). After filtration, the EtOAc layer is washed with water (2 × 10 mL) and evaporated to dryness. The residue is stirred with 80 % AcOH (20 mL) for 24 h at 37 °C and evaporated under reduced pressure. The crude product is purified by column chromatography on silica gel using CHCl₃/MeOH (20:1) as eluent to give 6; yield: 0.27 g (21 %), and 9; yield: 24 mg (3 %) as white powders.

(E)-9-[Benzyl 5',6'-dideoxy- β -D-ribohept-5'-enofuranosyluronate]-adenine (7), (E)-9-[Benzyl 5',6'-dideoxy- β -D-xylohept-5'-enofuranosyluronate]adenine (8) and (5'E)-9-[Benzyl-3',5',6'-trideoxy- β -D-glycero-hept-3',5'-dienofuranosyluronate]adenine (10):

2',3'-O-Ethoxymethyleneadenosine (2,¹⁴ 3.23 g, 10 mmol) is stirred with dicyclohexylcarbodiimide (6.72 g, 30 mmol) in a mixture of DMSO (30 mL), benzene (30 mL), pyridine (0.8 mL) and

Table. Compounds 6 to 11 Prepared

Prod- uct	Yield (%)	Molecular Formula ^a	UV (EtOH) λ_{max} (nm)	1 H-NMR δ , J (Hz)	¹³ C-NMR δ
6	21	C ₁₈ H ₂₃ N ₅ O ₇ (421.4)	259	1.16 (t, 3H, $CH_2CO_2CH_2CH_3$, $J = 7.2$), 1.22 (t, 3H, $CO_2CH_2CH_3$, $J = 7.2$), 3.35 (s, 2H, CH_2CO_2), 4.05 (q, 2H, $CH_2CO_2CH_2CH_3$, $J = 7.2$), 4.13 (q, 2H, $CO_2CH_2CH_3$, $J = 7.2$), 4.26 (m, 1H, H-3'), 4.72 (m, 1H, H-4'), 4.84 (m, 1H, H-2'), 5.57 (d, 1H, $OH_2CH_2CH_3$), 5.64 (d, 1H, $OH_2CH_2CH_3$), 5.94 (d, 1H, $OH_2CH_2CH_3$), 7.11 (d, 1H, $OH_2CH_2CH_3$), 7.15 (s, 2H, $OH_2CH_3CH_3$), 7.15 (s, 2H, $OH_2CH_3CH_3$), 7.17 (d, 1H, $OH_2CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	14.31 (2 × CH ₂ CH ₃), 32.85 (CH ₂ CO ₂), 60.49 (CH ₂ CO ₂ CH ₂ CH ₃), 60.86 (CO ₂ CH ₂ CH ₃), 72.75 (C-2'), 74.76 (C-3'), 80.77 (C-4'), 88.66 (C-1'), 119.40 (C-5'), 127.47 (C-6'), 140.60 (C-5), 141.88 (C-8), 149.22 (C-4), 152.60 (C-2), 156.18 (C-6), 165.93 (CH ₂ CO ₂), 169.97 (CO ₂ CH ₂ CH ₃)
7	41	C ₁₉ H ₁₉ N ₅ O ₅ (397.4)	259	2H, NH ₂), 8.28 (s, 1H, H-2), 8.39 (s, 1H, H-8) 4.30 (m, 1 H, H-3'), 4.57 (m, 1 H, H-4'), 4.77 (m, 1H, H-2'), 5.19 (s, 2H, CH_2Ph), 5.60 (d, 1H, OH-3', $J = 5.4$), 5.65 (d, 1H, OH-2', $J = 5.7$), 5.98 (d, 1H, H-1', $J_{1',2'} = 4.8$), 6.13 (d, 1H, H-6', $J_{5',6'} = 15.6$), 7.15 (dd, 1H, H-5', $J_{5',6'} = 15.6$, $J_{4',5'} = 5.7$), 7.40 (m, 5H, C_6H_5), 8.12	65.84 (CH_2Ph), 72.68 (C-2'), 73.81 (C-3'), 82.66 (C-4'), 88.25 (C-1'), 121.36 (C-5'), 128.55 (C_6H_5), 136.15 (C-6'), 140.26 (C-5), 145.94 (C-8), 149.37 (C-4), 152.66 (C-2), 156.18 (C-6), 165.19 (C=O)
8	2	C ₁₉ H ₁₉ N ₅ O ₅ (397.4)	258.5	(s, 1 H, H-2), 8.39 (s, 1 H, H-8) 3.38 (dd, 1 H, H-3', $J = 2.7$), 5.12 (m, 2 H, H-2', 4'), 5.19 (s, 1 H, CH ₂ Ph), 5.43 (d, 1 H, OH-3', $J = 4.5$), 5.58 (d, 1 H, OH-2', $J = 6.6$), 5.98 (d, 1 H, H-1', $J_{1',2'} = 7.2$), 6.10 (d, 1 H, H-6', $J_{5',6'} = 15.9$), 6.97 (dd, 1 H, H-5', $J_{5',6'} = 15.9$, $J_{4',5'} = 4.2$), 7.39 (m, 5 H, C ₆ H ₅), 8.17 (s, 1 H, H-2), 8.41 (s, 1 H, H-8)	65.50 (CH_2Ph), 72.61 (C-2'), 74.30 (C-3'), 80.67 (C-4'), 87.67 (C-1'), 21.20 (C-5'), 129.90 (C_6H_5), 135.94 (C-6'), 140.30 (C-5), 145.04 (C-8), 149.26 (C-4), 152.39 (C-2), 155.86 (C-6), 164.95 (C=O)
9	3	$C_{18}H_{21}N_5O_6$ (403.4)	258.5	0.94 (t, 3 H, CH ₂ CO ₂ CH ₂ CH ₃ , $J = 7.2$), 1.19 (t, 3 H, CO ₂ CH ₂ CH ₃ , $J = 7.2$), 3.55 (s, 2 H, CH ₂ CO ₂), 3.77 (m, 2 H, CH ₂ CO ₂ CH ₂ CH ₃), 4.14 (q, 2 H, CO ₂ CH ₂ CH ₃), 5.36 (m, 1 H, H-2'), 6.00 (m, 2 H, H-3' + OH-2'), 6.34 (d, 1 H, H-1', $J_{1',2'} = 0.5$), 7.18 (s, 1 H, H-5'), 7.34 (s, 2 H, NH ₂), 8.15 (s, 1 H, H-2), 8.18 (s, 1 H, H-8)	14.03 (CH ₂ CO ₂ CH ₂ CH ₃), 14.11 (CO ₂ CH ₂ CH ₃), 33.14 (CH ₂ CO ₂ CH ₂ CH ₃), 60.05 (CH ₂ CO ₂ CH ₂ CH ₃), 60.98 (CO ₂ CH ₂ CH ₃), 76.23 (C-2'), 91.54 (C-1'), 113.63 (C-3'), 118.57 (C-5'), 127.24 (C-4'), 127.62 (C-6'), 138.74 (C-5), 148.89 (C-8), 152.84 (C-4), 154.16 (C-2), 155.03 (C-6), 166.04
10	3	C ₁₉ H ₁₇ N ₅ O ₄ (379.4)	259	5.17 (s, 2H, CH_2Ph), 5.44 (m, 1H, H-2'), 6.02 (d, 1H, H-2', $J_{1',2'} = 3.6$), 6.07 (d, 1H, H-6', $J_{5',6'} = 15.9$), 6.36 (d, 1H, H-1', $J_{1',2'} = 3.6$), 7.27 (d, 1H, H-5', $J_{5',6'} = 15.9$), 7.35 (m, 5H, C_6H_5), 8.15 (s, 1H, H-2), 8.25 (s, 1H, H-8)	(CH ₂ CO ₂), 169.69 (CO ₂ CH ₂ CH ₃) 66.02 (CH ₂ Ph), 77.25 (C-2'), 91.66 (C-1'), 112.89 (C-3'), 120.76 (C-5'), 128.37 (C ₆ H ₅), 132.26 (C-4'), 136.05 (C-6'), 139.31 (C-5), 149.30 (C-8), 153.06 (C-4), 153.76 (C-2), 156.16 (C-6), 165.24 (C=O)
11	75	$C_{12}H_{15}N_5O_5{}^b$ (309.3)	259	1.84 (m, 2H, H-5'), 2.26 (t, 2H, H-6', $J_{5',6'} = 7$), 4.20 (dd, 1H, H-3', $J_{2',3'} = 4.1$, $J_{3',4'} = 2.4$), 4.49 (m, 1H, H-4', $J_{4',5'} = 5.9$), 4.88 (dd, 1H, H-2', $J_{1',2'} = 7$, $J_{2',3'} = 4.1$), 5.86 (d, 1H, H-1', $J_{1',2'} = 7$), 8.08 (s, 1H, H-2), 8.19 (s, 1H, H-8)	- (C 0), 103.24 (C = 0)

^a Satisfactory HRMS (FAB) obtained for $M^+ + H$: ± 0.0061 .

b HRMS not determined.

911

CF₃CO₂H (0.38 mL) for 24 h at r.t. To this mixture is added the Wittig reagent 5 (5.0 g, 15 mmol) and the solution is stirred for 24 h at 40 °C. The reaction solution is diluted by EtOAc (100 mL) and stirred with oxalic acid (3.6 g). After filtration, the EtOAc layer is washed by water (2×50 mL) and evaporated to dryness. The residue is stirred with 80 % AcOH (80 mL) for 24 h at r.t. and evaporated under reduced pressure. The crude product is purified by column chromatography on silica gel using CHCl₃/MeOH (20:1) as eluent to give 7; yield: 1.64 g (41 %), 10; yield: 0.12 g (3 %), and 8; yield: 83 mg (2 %) as white powders.

9-[5',6'-Dideoxy-β-D-xyloheptfuranosyluronic acid]adenine (11): Compound 8 (24 mg) is hydrogenated in 95 % EtOH (20 mL) in the presence of 10 % Pd/C (100 mg) at 1 bar for 24 h. The crude product is purified by column chromatography on silica gel using CHCl₃/MeOH as eluent to give 11 as white powder; yield: 14 mg (75%).

Received: 10 January 1990; revised: 24 April 1990

(1) Walker, T.E.; Follman, H.; Hogenkamp, H.P.C. Carbohydr. Res. 1973, 27, 225.

- (2) Follman, H. Angew. Chem. 1974, 86, 41; Angew. Chem. Int. Ed. Engl. 1974, 13, 77.
- (3) Meyer, W.; Follman, H. Z. Naturforsch. 1980, 35C, 273.
- (4) Montgomery, J.A.; Laseter, A.G.; Hewson, K.J. J. Hetero-cvcl. Chem. 1974, 11, 211.
- (5) Baker, D.C.; Crew, R.P.; Haskell, T.H.; Putt, S.R.; Arnett, G.; Shannon, W.M.; Reinke, C.M.; Katlama, N.B.; Drach, J.C. J. Med. Chem. 1983, 26, 1530.
- (6) Montgomery, J.A.; Thomas, H.J. J. Org. Chem. 1981, 46, 594.
- (7) Montgomery, J. A.; Thomas, H.J.; Brockman, R. W.; Elliott, R.D. J. Med. Chem. 1984, 27, 680.
- (8) Kurihara, T.; Ota, A.; Hayashi, H.; Urata, H.; Inoue, M.; Ishida, T. Chem. Pharm. Bull. 1983, 31, 2126.
- (9) Kurihara, T.; Ota, A.; Hayashi, H.; Inoue, M.; Ishida, T. J. Heterocycl. Chem. 1984, 21, 259.
- (10) Howgate, P.; Jones, A.S.; Tittenson, J.R. Carbohydr. Res. 1970, 12, 403.
- (11) Lyga, J.W.; Secrit III, J.A. J. Org. Chem. 1983, 48, 1982.
- (12) Hoffmann, H. Chem. Ber. 1961, 94, 1331.
- (13) Chopard, P.A. Helv. Chim. Acta 1967, 50, 1016.
- (14) Eckstein, F.; Cramer, F. Chem. Ber. 1965, 98, 995.