Journal of Organometallic Chemistry, 85 (1975) 141-147 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

ALKOXYLIERUNG VON BIS(TRIMETHYLSILYL)-AMINOFLUOR-SILANEN, SOWIE SILOXANBILDUNG UNTER ÄTHERELIMINIERUNG*

UWE KLINGEBIEL, DIETRICH FISCHER und ANTON MELLER Institut für Anorganische Chemie der Universität Göttingen, Tammanstrasse 4 (Deutschland) (Eingegangen den 1. August 1974)

Summary

The reaction of bis(trimethylsilyl)aminofluorsilanes, $(Me_3Si)_2N$ — SiF_2R ($R = CH_3$ or F), with sodium alcoholates or sodium phenylate yields under elimination of NaF alkoxy- and aryloxy-aminofluorosilanes of the composition $(Me_3Si)_2N$ — $SiF(R)OR'(R' = CH_3, C_2H_5, C_3H_7, C_6H_5)$. A disiloxane is formed by thermal elimination of diethyl ether from bis(trimethylsilyl)aminomethyl-fluoroethoxysilane. The IR, mass, ¹H and ¹⁹F NMR spectra of the above-mentioned compounds are reported.

Zusammenfassung

Die Reaktion von Bis(trimethylsilyl)-aminofluorsilanen des Typs (Me₃Si)₂-N-SiF₂R (R = F, CH₃) mit Natriumalkoholaten und Natriumphenolat führt unter NaF-Abspaltung zu Alkyl- und Aryloxyaminofluorsilanen der Zusammensetzung: (Me₃Si)₂N-SiF(R)-OR' (R' = CH₃, C₂H₅, C₃H₇, C₆H₅). Ein Disiloxan könnte durch die thermische Eliminierung von Diäthyläther aus Bis(trimethylsilyl)-aminomethyl-fluor-äthoxy-silylamin erhalten werden.

Die IR-, Massen-, ¹H- und ¹⁹F-NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.

Einleitung

Die Spaltung der Si-Cl-Bindung durch Alkohole und Alkalimetallalkoholate war in den letzten Jahren Gegenstand zahlreicher Untersuchungen [1, 2, 3, 4] während das Reaktionsverhalten der entsprechenden Siliciumfluoride und das der Aminofluorsilane bisher nicht studiert wurde. Versuche, aus Trichloralkoxysilanen unter Ätherabspaltung Siloxane darzustellen, führten nicht zu dem gewünschten Ergebnis [5].

Im Zusammenhang mit anderen Arbeiten sollte geprüft werden, ob sich die

^{* 2.} Mitteilung über Aminofluorsilane, 1. Mitteilung siehe Ref. 6.

für Siliciumchloride und Hexamethyldisilylaminochlorsilane gefundenen Resultate auf Silicium—Fluor-Verbindungen der allgemeinen Zusammensetzung $(Me_3Si)_2N$ —Si F_2R [6] übertragen lassen.

Ergebnisse und Diskussion

Die Einwirkung von Natriumalkoholaten und Natriumphenolat auf Aminofluorsilane in siedendem Diäthyläther führt gemäss Gl. 1 zu farblosen Produkten, die im Vakuum unzersetzt destillieren.

$$(Me3Si)2N-SiF2R + NaOR' \stackrel{36}{\rightarrow} (Me3Si)2N-Si-OR'$$
R
(1)

$$R = F$$
, CH_3 ; $R' = CH_3$, C_2H_5 , $n-C_3H_7$, iso- C_3H_7 , C_6H_5

Bei grösseren Resten R' (ab C_3H_7) verläuft die Reaktion 1 vermutlich auf Grund sterischer Effekte unter gleichbleibenden Reaktionsbedingungen mit etwas geringeren Ausbeuten.

Die dargestellten Alkoxy- und Aryloxyaminofluorsilane sind bei Raumtemperatur farblose Flüssigkeiten, die in Gegenwart von Luftfeuchtigkeit langsam hydrolisiert werden. Mit organischen Lösungsmitteln sind sie unbegrenzt mischbar. Durch starkes Erhitzen der Methyl-Verbindungen am Rückfluss tritt, wie wir am äthoxy-substituiertem Produkt nachweisen konnten, unter Ätherabspaltung Siloxanbildung gemäss Gl. 2 ein.

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$2(Me_{3}Si)_{2}N - Si - OC_{2}H_{5} \xrightarrow{-(C_{2}H_{5})_{2}O} (Me_{3}Si)_{2}N - Si - O - Si - N(SiMe_{3})_{2}$$

$$F \qquad F \qquad F \qquad (2)$$

Das auf diese Weise erhaltene Siloxan entspricht in seinem chemischen Verhalten den alkoxy-substituierten Produkten. Das thermische Verhalten der Difluoralkoxy-Verbindungen (Me₃Si)₂N—SiF₂OR, ist vergleichbar mit den von Goubeau und Behr [5] gefundenen Ergebnissen. Bei starkem Erhitzen neigen diese Produkte zur Disproportionierung nach Gl. 3:

TABELLE 1

AUSBEUTE UND SIEDEPUNKTE DER VERBINDUNGEN (Me₃Si)₂N-SiFCH₃OR, (Me₃Si)₂N-SiF₂OR

UND [(Me₃Si)₂N-SiFCH₃]₂O

	Verbindung	Ausbeute (%)	Sdp. (°C/mm Hg)
I	(Me ₃ Si) ₂ N-SiFCH ₃ -OCH ₃	84	75/14
П	(Me ₃ Si) ₂ N-SiFCH ₃ -OC ₂ H ₅	82	85/11
ш	(Me ₃ Si) ₂ N-S ₁ FCH ₃ -O-n-C ₃ H ₇	71	68/1.5
IV	(Me ₃ Si) ₂ N-S ₁ FCH ₃ -O- ₁ -C ₃ H ₇	76	50/0.8
V	(Me ₃ S ₁) ₂ N-SiFCH ₃ -OC ₆ H ₅	72	72/1
Vī	(Me ₃ Si) ₂ N-SiF ₂ -OCH ₃	83	71/12
VII	(Me ₃ Si) ₂ N-S ₁ F ₂ -OC ₂ H ₅	76	71/13
VIII	$(Me_3Si)_2N-SiF_2-O-i-C_3H_7$	72	44/0.8
IX	(Me ₃ Si) ₂ N-SiF ₂ -OC ₆ H ₅	74	72/0.01
X	(Me ₃ Si) ₂ N-SiFCH ₃ -O-SiFCH ₃ (SiMe ₃) ₂	53	91/0.01

(3)

Tabelle 1 zeigt Ausbeuten und Siedepunkte der gewonnenen Verbindungen.

Spektroskopische Untersuchungen

Die charakteristischen und intensivsten Absorptionen ausser den C-H-Valenzschwingungen sind in den IR-Spektren im Bereich von 1500–450 cm⁻¹ zu beobachten. Auf Grund ihrer Bandenlage und Intensität sollten die Banden um 1270 cm⁻¹ δ_s (Si-CH₃), 1100 cm⁻¹ ν_{as} (Si-O-C), 1000 cm⁻¹ ν_{as} (Si-O-Si), 980 cm⁻¹ ν_{as} (Si-N-Si) und um 900 cm⁻¹ ν (Si-F) [7] zuzuordnen sein. Die den NMR-Spektren zu entnehmenden Parameter δ (¹H), δ (¹⁹F), sowie J (HF) sind in Tabelle 2 aufgeführt.

Die methyl-substituierten Verbindungen (I-V und X) zeigen infolge einer H-F-Kopplung in den Protonspektren ein Dublett im Bereich von 5.5 Hz, während in den ¹⁹F-NMR-Spektren die zu erwartenden Quartetts auftreten. Die H-F-Kopplung der Alkoxygruppierungen über vier Bindungen beträgt etwa 0.1-0.2 Hz, so dass die Kopplung der Bis(trimethylsilyl)amino-gruppe mit den

TABELLE 2 CHEMISCHE VERSCHIEBUNGEN $\delta(^1$ H), $\delta(^{19}$ F) UND KOPPLUNGSKONSTANTEN J(HF) DER DARGESTELLTEN VERBINDUNGEN a

Verbindung ————	δ(¹ H) (ppm) ^b	δ(¹⁹ F) (ppm) ^c	J(HF) (Hz)
I	-0.21 (SiMe ₃)	-39.8	1.1 (FSiNSiCH ₃)
	-0.21 (CH ₃)		5.6 (FSiCH ₃)
	-3.49 (OCH ₃)		0.2 (FSiOCH ₃)
п	-0.21 (SiMe ₃)	-41.5	1.0 (FSiNSiCH ₃) d
	-0.22 (SiCH ₃)		5.6 (FSiCH ₃)
	-1.23 (CH ₃)		.
	-3.80 (OCH ₂)		
Ш	-0.21 (SiMe ₃)	-41.6	1.0 (FSiNSiCH ₃) ^d
	-0.22 (SiCH ₃)		5.6 (FSiCH ₃)
	-0.93 (CH ₂)		,
	-1.61 (CH ₂), -3.68 (OCH ₂)		
IV	-0.20 (SiMe ₃)	-43.8	1.0 (FSiNSiCH ₃) d
	-0.22 (SiCH ₃)		5.6 (FSICH3)
	-1.22 (CH ₃)		, ,
	-4.23 (OCH)		
v	-0.24 (SiMe ₃)	-45.2	1.0 (FSiNSiCH ₃)
	-0.34 (SiCH ₃)		5.5 (FSiCH ₃)
	-7.08 (OC ₆ H ₅)		0.0 (1 0.0113)
VI	-0.24 (SiMe ₃)	-39.6	0.8 (F2SiNSiCH3)
	-3.61 (OCH ₃)	33.3	0.0 (1 /0.1.0.0.13)
VII	-0.23 (SiMe ₃)	-28.9	0.8 (F2SiNSiCH3) d
• • • •	-1.27 (CH ₃)	20.0	0.0 (1 2521616113)
	-3.92 (OCH ₂)		
/III	-0.23 (SiMe ₃)	-28.8	0.8 (F ₂ S ₁ NS ₁ CH ₃)
	-1.26 (CH ₃)	20.0	0.0 (1 251/15/01/3)
	-4.33 (OCH)		
1X	-0.28 (SiMe ₃)	29.1	0.9 (F2SiNSi(CH3)
	-7.07 (OC ₆ H ₅)		0.0 (1. 202.0.(0113)
x	-0.22 (SiMe ₃)	-46.7	1.1 (FSiNSiCH ₃) e
- -	-0.30 (CH ₃)	20.1	5.8 (FSiCH ₃)

^a Die Verbindungen wurden als 30%ige Lösung in CH_2Cl_2 vermessen. ^b Interner Standard TMS. ^c Interner Standard C₆F₆. ^d ³J(HH) \approx 7 Hz. ^e ²J(HSi) 6.9 Hz.

Fluoratomen über fünf Bindungen als Raumkopplung betrachtet werden kann. [1]. Im Übrigen zeigen die NMR-Spektren dieser Verbindungen die erwarteten Multipletts. Die ²⁹Si-Spektren werden in einer weiteren Arbeit mit einer grösseren Verbindungsklasse diskutiert.

Beschreibung der Versuche

Die Versuche wurden unter Ausschluss von Luftfeuchtigkeit ausgeführt. Das Bis(trimethylsilyl)-methyldifluorsilylamin [6] wurde durch die Reaktion von Lithiumhexamethyldisilazan mit Methylsiliciumtrifluorid dargestellt, während Bis(trimethylsilyl)-trifluorsilylamin analog zur Methode von Wannagat und Bürger [8] gewonnen wurde.

Für die Massenspektren stand ein MAT CHS-Gerät, für die ¹H- und ¹⁹F-NMR-Messungen ein hochauflösendes Bruker 60 E Kernresonanzgerät zur Verfügung.

Die IR-Spektren wurden von kapillaren Filmen zwischen KBr-Platten mit einem Perkin-Elmer-Gitterspektrometer Modell 125 aufgenommen.

Die analytische Daten und Molekular-Gewichte der Verbindungen I-X sind in Tabelle 3 wiedergegeben, die Massen- und Infrarot-spektren in der Tabelle 4.

Darstellung der Alkyl- und Aryloxyaminofluorsilane (I-IX)

Zu 0.1 Moi der Aminofluorsilane in 200 ml Diäthyläther werden unter Rückflusskühlung und Rühren mittels eines Dosiertrichters im Verlauf 1 Std.

(Fortsetnung s. S. 147)

TABELLE 3
ANALYTISCHE DATEN UND MOLEKULAR GEWICHTE DER VERE!NDUNGEN I-X

Verbindung	Brutto Formel	MolGew.	Analytische Daten Gef. (Ber.) (%)			
			С	н	F	N
ı	C ₈ H ₂₄ FNOSi ₃	253.5	37.65	9.61	7.28	5.51
			(37.89)	(9.54)	(7.49)	(5.52)
11	C9H26FNOSi3	267.6	40.55	9.73	7.21	5.34
			(40.40)	(9.79)	(7.10)	(5.24)
111	C ₁₀ H ₂₈ FNOS ₁₃	281.6	42.51	9.98	6.60	4.96
	1020		(42.65)	(10.02)	(6.74)	(4.97)
IV	C ₁₀ H ₂₈ FNOS ₁₃	281.6	42.87	10.10	6.85	4.98
	- 1020		(42.65)	(10.02)	(6.74)	(4.97)
v	C13H26FNOS13	315.6	49.20	8.11	6.04	4.51
-	- 1320		(49.47)	(8.30)	(€.02)	(4.44)
VI	C7H21F2NOSI3	257.5	32.78	8.05	14.55	5.41
	721- 200-3	201.0	(32.65)	(8.22)	(14.75)	(5.44)
VII	C8H23F2NOSt3	271.5	35.28	8.61	13.70	5.22
• • •	08.123. 2.10013	211.0	(35.39)	(8.54)	(13.99)	(5.16)
71 11	C. U. F. NOS:	285.6	• •	•		•
V111	C ₉ H ₂₅ F ₂ NOSi ₃	285.6	37.79 (37.86)	8.61 (8.83)	13.43 (13.31)	4.83 (4.91)
	a					
IX	C ₁₂ H ₂₃ F ₂ NOS ₁₃	319.6	45.01	7.13	11.69	4.27
			(45.10)	(7.25)	(11.89)	(4.38)
x	$C_{14}H_{42}F_2N_2OSi_6$	461.0	36.49	9.15	8.20	5.97
			(36.48)	(9.18)	(8.24)	(6.07)

TABELLE 4
MASSEN- UND INFRAROTSPEKTREN DER VERBINDUNGEN I-X

Massenspektrum		Infrarotspektrum (cm ⁻¹)	
m/e	Zuordnung	(cm /	
Verbindu	ng I		
253	M ⁺	2980 m, 2960 s, 2900 m, 2840 s, 1450 m, 1405 s, 1300 w,	
238	$(M-CH_3)^{\dagger}$	1265 s, 1250 s, 1190 s, 1095 s, 1060 (sb), 950 vs, 915 vs, 880 m	
234	$(M-F)^{t}$	840 s, 825 (sh), 775 s, 765 m, 700 w, 680 s, 640 m, 620 m,	
222	$(M - OCH_3)^*$	460 w, 430 s.	
207	SiFN(SiMe3)2		
192	CH ₃ SiFNSi ₂ Me ₄		
147	CH ₃ S ₁ FNS ₁₂ CH ₃		
130	CH ₃ S ₁ NSiMe ₃		
sowie we	itere Bruchstücke		
Verbindu	ing II		
267	м*	2980 s, 2960 s, 2900 m, 1440 m, 1405 m, 1390 m, 1290 (如),	
252	$(M-CH_3)^{\dagger}$	1265 s, 1250 s, 1165 m, 1105 s, 1080 s, 965 vs, 920 vs, 880 w,	
248	$(M-F)^{t}$	825 (sh), 770 s, 765 (sh), 680 s, 640 m, 620 m, 430 s.	
238	$(M-C_2H_5)$		
222	$(M - OC_2H_5)^{\dagger}$		
207	SiFN(SiMe3)2		
192	CH ₃ S ₁ FNSi ₂ Me ₄		
147	CH ₃ SiFNS ₁₂ CH ₃		
134	SiFNSiMe ₃		
130	CH ₃ SiNSiMe ₃		
sowie we	itere Bruchstücke		
Verbindu	ing III		
281	M1 ⁺	2980 (sh), 2960 s, 2900 m, 2880 m, 1455 m, 1400 m,	
266	$(M-CH_3)^{\dagger}$	1390 w, 1265 s, 1250 s, 1200 w, 1150 m, 1100 (sh), 1090 s,	
262	$(M-F)^{\dagger}$	1020 s, 965 vs, 920 vs, 880 m, 840 s, 825 w, 770 s, 740 w,	
224	HOSiFCH3NSi2Me5	680 s, 640 m, 620 m, 440 w, 420 m.	
208	C ₃ H ₇ OSiFCH ₃ NSiMe ₃		
192	CH3SiFNSi2Me4		
147	CH3SiFNS12Me		
134	SiFNSiMe 3		
130	CH ₃ SiNSiMe ₃		
sowie we	itere Bruchstücke		
Verbindu	ing IV		
281	M ⁺	2980 s, 2960 m, 2900 m, 1450 m, 1400 w, 1380 m, 1370 m,	
266	$(M-CH_3)$	1265 s, 1250 s, 1170 s, 1130 (sh), 1120 s, 1040 s, 960 vs, 920 v	
224	HOSiFCH ₃ NS ₁₂ Me ₅	885 m, 845 s, 825 w, 770 s, 740 w, 680 s, 640 m, 620 m,	
208	C ₃ H ₇ OS ₁ FCH ₃ NS ₁ Me ₃	455 w.	
192	CH ₃ SiFNSi ₂ Me ₄		
134	SiFNSiMe ₃		
130 sowie we	CH ₃ SiNSiMe ₃ itere Bruchstücke		
Verbindu			
315	M*	3060 w, 3040 w, 2980 m, 2960 s, 2900 m, 1600 s, 1490 s,	
300	$(M-CH_3)^*$	1450 w, 1405 m, 1270 s, 1250 s, 1165 m, 1070 m, 1025 m,	
296	$(M-F)^{\dagger}$	1005 w, 970 vs, 940 s, 910 s, 880 w, 845 s, 825 (sh).	
284	$(M - HMe_2)^{\dagger}$	800 w, 775 m, 755 s, 690 s, 680 (sh), 640 m, 620 m,	
212	CH3SiFN(SiMe3)2	495 m, 430 m.	
207	SiFN(SiMe ₃) ₂		
192	CH3SiFNSi2Me4		
134	SiFNSiMe3		
	CH3SiNSiMe3		
130	CD39M9me3		

TABELLE 4 (Fortsetzung)

Massenspektrum		Infrarotspektrum - (cm ⁻¹)		
m/e	Zuordnung	(cm ·)		
Verbindu	ng VI			
257	M ⁺	2980 m, 2955 s, 2900 m, 2850 m, 1455 w, 1405 m, 1265 (
242	$(M-CH_3)^*$	1255 s, 1195 s, 1105 s, 1010 vs, 955 (sh), 930 vs, 900 m,		
238	$(M-F)^{\dagger}$	880 w, 860 w, 840 m, 830 w, 765 s, 745 m, 680 s, 645 w,		
226	$(M - OCH_3)^*$	620 m, 545 w, 510 s, 480 m, 430 s.		
212	$(M - Me_3)^{\dagger}$			
192	CH3SiFNSi2Me4			
147	CH ₃ S ₁ FNS ₁₂ Me			
134	SIFNSIMe 3			
130	CH3SiNSiMe3			
	tere Bruchstücke			
Verbindu	ng VII			
271	M ⁺	2980 s, 2960 s, 2900 m, 1440 m, 1405 m, 1395 m, 1265 (si		
256	(<i>M</i> — СН ₃) [†]	1255 s, 1170 s, 1110 s, 1085 m, 1010 vs, 970 w, 960 m,		
252	$(M-F)^{\dagger}$	930 vs, 910 w, 890 w, 880 w, 850 vs, 765 s, 740 m, 680 s,		
242	$(M - C_2 H_5)^{\dagger}$	645 w, 620 m, 515 s, 490 w, 440 s.		
240	$(M - HMe_2)^{\dagger}$	010 11, 020 12, 010 3, 100 11, 110 3.		
226	$(M - OC_2H_5)^{\dagger}$			
192	CH ₃ SiFNSi ₂ Me ₄			
147				
	CH ₃ SiFNSi ₂ Me			
134	SiFNSiMe ₃			
130 owie weil	CH ₃ SiNSiMe ₃ tere Bruchstücke			
Verbindur				
285	M ⁺	2070 a 2020 a 2000 m 1400 a 1405 m 1275 a 1225 m		
284	(W — H),	2970 s, 2930 s, 2880 m, 1460 s, 1405 m, 1375 s, 1335 m,		
270	The state of the s	1305 s, 1250 m, 1160 s, 1125 s, 1105 w, 1050 w, 975 w,		
	(M — CH ₃)	950 s, 920 w, 840 m, 815 s, 680 s, 620 m, 550 w, 485 m,		
227	C ₃ H ₇ OSiF ₂ NSiMe ₄	420 w.		
226	SiF ₂ N(SiMe ₃) ₂			
212	C ₃ H ₇ OSiF ₂ NS ₁ Me ₃			
134	SiFNSiMe ₃			
130	CH ₃ S ₁ NS ₁ Me ₃			
owie weit	ere Bruchstücke			
Verbindur	g IX			
319	м *	3100 w, 3070 w, 3040 w, 2980 m, 2960 s, 2900 m, 1600 s,		
104	$(M-CH_3)^{\dagger}$	1495 s, 1405 w, 1255 vs, 1165 m, 1070 w, 1020 vs, 970 s,		
300	(M — F)*	935 s, 890 s, 870 s, 845 s, 830 s, 755 s, 735 w, 690 s,		
26	$(M - OC_6H_5)^{\dagger}$	620 w, 540 m, 510 s, 430 m.		
.34	SiFNSiMe ₃			
.30	CH ₃ SiNSiMe ₃			
owie weit	ere Bruchstücke			
/erbindun	g X			
61	M*	2980 (sh), 2960 s, 2900 m, 1440 w, 1405 s, 1270 s, 1255 s,		
46	$(M - CH_3)^*$	1080 vs, 970 vs, 915 vs, 880 m, 845 s, 830 (sh), 785 s,		
42	(M — F)*	760 s, 745 (sh), 720 m, 680 s, 645 w, 620 m, 545 w,		
30	$(M - HMe_2)^*$	460 m, 430 s.		
16	(M — Me₃) [‡]			
	(Me ₃ Si) ₂ NSiFCH ₃			
22	(Me ₃ Si) ₂ NSiF			
07	(MeaSilaNSiCHa			
07 03	(Me ₃ Si) ₂ NSiCH ₃ CH ₂ SiFNSi ₂ Me ₄			
07 03 92	CH3SiFNSi2Me4			
22 307 303 92 47	CH ₃ SiFNSi ₂ Me ₄ CH ₃ SiFNSi ₂ CH ₃			
07 03 92	CH3SiFNSi2Me4			

0.1 Mol NaOR (R = CH₃, C₂H₅, n-C₃H₇, iso-C₃H₇, C₆H₅) hinzugegeben. In einer exothermen Reaktion entstehen unter Bildung von NaF die Oxyaminofluorsilane. Nach Beendigung der NaOR-zugabe wird die Lösung noch 3-6 Std. zum Sieden erhitzt. Anschliessend wird das ausgefallene Natriumfluorid abgetrennt und die Verbindungen über eine Kolonne im Vakuum destilliert. Die Molmassenbestimmungen erfolgten jeweils massenspektroskopisch.

Bis(trimethylsilyl)amino-methyl-fluor-disiloxan(X)

Wird Verbindung II mehrere Std. am Rückflusskühler erhitzt, so ist die Abspaltung von Diäthyläther trotz relativer Beständigkeit der Alkoxyfluorsilane unter Bildung eines Siloxanes zu beobachten. Da bei den Alkoxydifluorsilanen ein ähnliches thermisches Verhalten nicht festgestellt werden konnte, werden diese Verbindungen zur Zeit in Bombenrohrversuchen oberhalb ihres Siedepunktes untersucht.

Dank

Dem Fonds der Chemie und der Deutschen Forschungsgemeinschaft danken wir für finanzielle und apparative Unterstützung.

Literatur

- 1 U. Wannagat und P. Geymayer, Monatsh. Chem., 95 (1964) 1095.
- 2 U. Wannagat und H. Bürger, Z. Anorg. Allg. Chem., 326 (1964) 309.
- 3 H. Bürger und U. Wannagat, Z. Anorg. Allg. Chem., 319 (1963) 244.
- 4 W.E. Weibrecht und E. Rochow, J. Organometal. Chem., 5 (1966) 520.
- 5 J. Goubeau und H. Behr, Z. Anorg. Allg. Chem., 272 (1953) 1.
- 6 U. Klingebiel und A. Meller, Chem. Ber., im Druck.
- 7 U. Wannagat, H. Bürger und F. Höfler, Monatsh. Chem., 99 (1968) 1198.
- 8 U. Wannaget und H. Bürger, Angew. Chem., 76 (1964) 497.