SYNTHESIS AND PHARMACOLOGICAL PROPERTIES OF 6-ARYLPIPERAZINO-2-AROYL-CYCLOHEXANONES-1

Ya. Ya. Ozol, S. K. Germane, and A. K. Aren UDC 615.214.22:547.992.15

The reaction of 6-bromo-2-aroylcyclohexanones-1 (I) with N-arylpiperazines in benzene solution at room temperature was studied. A series of 6-arylpiperazino-2-aroylcyclohexanones-1 (II) was obtained as a result. The obtained compounds, white crystalline materials, form stable salts with hydrogen chloride.

The structure of compounds (II) was confirmed by IR spectra. Two absorption maxima of aromatic double bonds appear around 1580-1600 cm⁻¹ in all compounds in the solid state, the carbonyl maximum of the aroyl group appears at 1680-1690 cm⁻¹, and the maximum of the cyclohexanone C=0 is found in the range of 1705-1715 cm⁻¹.

The pharmacological properties of the synthesized compounds (II) and 6-amino-derivatives of 2aroylcyclohexanones-1 (III) were studied. We investigated the effect on the central nervous system of certain arylpiperazino, piperidino, and morpholino-derivatives of 2-aroylcyclohexanones-1. Experiments were carried out on white mice, into which 30 min before the experiment aqueous solutions of hydrochlorides of the studied materials were introduced intraperitoneally. Various methods were used to evaluate the depressing properties of the synthesized materials: disruption of movement coordination and the effect on the tonicity of skeletal muscle was studied by the test of rotating rods [1] and the tube test [2]. Average effective doses, producing a hypothermal effect of 3° and below, were determined to characterize the hypothermal effect of the studies materials. The analgesic effect of the materials was studied using "hot plates" [3]. The effectiveness of the obtained compounds as media, able to intensify the effect of narcotic materials, was studied on white mice, into which the studied compound was introduced interperitoneally 30 min before intravenous introduction of hexenal in a dose of 70 mg/kg, and the index (I) of intensification of hexenal narcosis (ratio of duration of narcosis in test animals to the duration of narcosis in control mice) was determined for each compound. To compare the tranquilizing properties of derivatives (III) the experimental material was subjected to statistical treatment, and the average effective doses (ED_{50}) and average lethal doses (LD_{50}) [4] were calculated in all cases. The results of the pharmacological study are presented in Tables 1 and 2. It follows from the obtained data that compounds (III) possess a definite physiological activity. Results of this investigation make it possible to conclude (see Table 1) that compounds (III) show tranquilizing properties, depending on both the aroyl group and the amine group.

Compounds (II) also show tranquilizing properties, i.e., they produce hypothermia, disrupt movement coordination, intensify hexenal narcosis, and display analgesic properties, characteristic for depressants of the central nervous system. The tranquilizing properties of (II) clearly correlate with the arylpiperazine residue. The tranquilizing activity of the studied compounds increases significantly upon intro-

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 7, No. 6, pp. 12-15, June, 1973. Original article submitted March 6, 1972.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

				-		
Ar	LD50 (mg/kg)	Rotating-rod test	Tube test ED ₅₀ (mg/kg)	Analgesic activity	Decrease in body tem- perature by 3° and below	Index of intensifica- tion of hexenal narcosis (I)
CeHe GeH 4 OCH 3-P CeH 4 CCH 3-P CeH 2 (OCH 3) 3 CeH 4 OCH 3) 3 CeH 4 CCH 3) 3 CeH 4 CCH 3) 3 CeH 4 CCH 3) 3	76 (63 ± 91) 650 (585 ± 715) 700 (555 ± 882) 540 (555 ± 882) 74 (53 ± 67) 74 (53 ± 67) 180 (162 ± 200) 63 (45 ± 88) 86 (78 ± 96)	$\begin{array}{c} 50 \\ 40 \\ 43 \\ 34 \\ 551 \\ 32 \\ 23 \\ 23 \\ 24 \\ 551 \\ 32 \\ 23 \\ 43 \\ 50 \\ 32 \\ 53 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51$	$\begin{array}{c} 33 & (27 + 59) \\ 43 & (34 + 55) \\ 22 & (28 + 43) \\ 27 & (28 + 43) \\ 27 & (25 + 43) \\ 27 & (25 + 43) \\ 27 & (25 + 43) \\ 85 & (25 + 43) \\ 85 & (25 + 43) \\ 85 & (25 + 43) \\ 100 & (49 + 7) \\$	$\begin{array}{c} 32 \left(23 + 43 \right) \\ 230 \left(176 + 327 \right) \\ 150 \left(88 + 255 \right) \\ 200 \left(184 + 258 \right) \\ 200 \left(184 + 238 \right) \\ 200 \left(184 + 238 \right) \\ 320 \left(224 + 46 \right) \\ 77 \left(54 + 91 \right) \\ 56 \left(38 + 81 \right) \\ 58 \left(45 + 75 \right) \end{array}$	23 (18+28) 32 (22+45) 56 (34+72) 56 (34+72) 56 (42+95) 53 (18+29) 25 (16+37) 45 (33+61) 54 (45+65)	8.9.9.9.7.9.9.9 0.7.9.9.6.4.8.8
* TITOTO OL A TOTALO O CON RUE						_

TABLE 1. Pharmacological Activity of Amino Derivatives of 2-Aroylcyclohexanones (111)*

There and in Table 2 confidence intervals are presented in parentheses at P = 0.05. Note. For the first four compounds $R_1 + R_2 = -(CH_2)_2^2 - O - (CH_2)_2^2$; for the remaining compounds $R_1 + R_2^2 - (CH_2)_5^2$.

TABLE 2. Pharmace	ological Ac	ctivity of Certain	Arylpiperazino	Derivatives of	f 2-Aroylcycloh	exanones (II)	:
Ar	<u>د</u>	LD50 (mg/kg)	Rotating-rod test	Tube test	Analgesic activity 2D ₅₀ (mg/kg)	Decrease in temperature by 3° and below	Index of intensifica- tion of hexanal narcosis (I)
Сан, Сан, Сан, Сан, Сан, Сан, Сан, Сан,	CCH ₃ CCH ₃ CC	$\begin{array}{c} 445 \\ 445 \\ 640 \\ (551+7485) \\ 640 \\ (551+742) \\ 740 \\ (538+880) \\ 560 \\ 408+762 \\ 705 \\ (695+841) \\ 706 \\ 695+841 \\ 700 \\ 813+1230 \\ 310 \\ 316+1230 \\ 316+120$	$\begin{array}{c} 80 \ (55 \pm 116) \\ 80 \ (555 \pm 116) \\ 180 \ (130 \pm 250) \\ 50 \ (31 \pm 80) \\ 180 \ (129 \pm 252) \\ 30 \ (129 \pm 252) \\ 30 \ (13 \pm 31) \\ 11 \ (8 \pm 15) \\ 11 \ (8 \pm 15) \\ 11 \ (8 \pm 15) \end{array}$	$\begin{array}{c} 80 & (55 \pm 116) \\ 80 & (55 \pm 116) \\ 180 & (55 \pm 116) \\ 180 & (130 \pm 250) \\ 50 & (31 \pm 80) \\ 180 & (129 \pm 252) \\ 30 & (121 \pm 42) \\ 30 & (121 \pm 42) \\ 30 & (131 \pm 42) \\ 11 & (8 \pm 15) \\ 11 & (8 \pm 15) \\ 13 & (13 \pm 27) \end{array}$	$\begin{array}{c} 240 \ (171\pm 336) \\ 160 \ (114\pm 224) \\ 48 \ (30\pm 77) \\ > 300 \\ 280 \ (500\pm 332) \\ > 600 \\ 360 \\ 37 \pm 40) \\ 31 \ (23\pm 40) \\ 31 \ (23\pm 40) \\ 30 \ (60\pm 122) \end{array}$	$\begin{array}{c} 80 \ (55 \pm 116) \\ 30 \ (19 \pm 48) \\ 200 \ (111 \pm 360) \\ 200 \ (111 \pm 360) \\ 60 \ (41 \pm 95) \\ 64 \ (46 \pm 90) \\ 14 \ (7 \pm 27) \\ 13 \ (9 \pm 19) \\ 3 \ (1,5 \pm 4,5) \end{array}$	00-0-1-1-0 8.0-0-00 8.0-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00-00 8.00-00-00-00 8.00-00-00-00-00 8.00-00-00-00-00 8.00-00-00-00 8.00-00-00-00 8.00-00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00-00 8.00-00 8.00-00-00 8.00-000 8.00-000 8.000-000 8.0000000000

		Yield		Foun	(o/o) p					Calcu	ated (%)	
ж	Ar	(o/a)	Mp (°C)	υ	н	ច	z	Empirical formula	v	н	5	z
J	C _k H _s	34,5	158	1	1	8,74	7,08	C ₃₃ H ₂₅ CIN ₂ O ₂]	8,93	7,06
U	C ₆ H	1	1612	1	l	22,42	6,31	C ₃₃ H ₂₆ CIN ₃ O ₃ ·2HCI	1	1	22,65	5,96
Н	C,H,OCH,-D	41,8	148	[l	1	7,18	C ₃₄ H ₃₈ N ₃ O ₃	[1		7,14
Ĥ	C,H,OCH,-D	1	172-4	1		14,92	6, 22	CatHanNaOa.2HCI	I	1	15,24	6,02
ū	C _k H _a OCH _a -p	44,3	155	1		8,71	6,80	C ₂₄ H ₂₇ CIN ₂ O ₃	!		8,31	6,56
IJ	C ₆ H ₄ OCH ₃ -p		2013	61,90	5,97	14,57	6,36	C34H27CIN303CI · HCI	62,19	6,09	15,30	6,05
Н	C.H.OCH0	52.8	121	[1	1	7,06	C, H, N, O,	1	1		7,14
Н	C,H OCH0	1	179-80	61,02	6,94	15,58	6,57	C ₂₄ H ₂₈ N ₂ O ₃ ·2HCl	61,90	6,50	15,24	6,02
ប	C _a H ACH ₃ -0	42,9	142			8,20	6,66	C ₂₄ H ₂₇ N ₂ O ₃ ·2HCi	1	I	8,31	6,56
c	C ₆ H ₄ OCH ₃ -0	1	181—3	56,93	5,94	19,93	5,13	C24H27CIN2O3CI ·2HCI	57,63	5,85	21,26	5,60
och _s	C ₆ H ₅	31,3	166		1	l	7,04	C24H28N2O3.HCI	1	l	1	7,14
OCH3	C ₆ H ₆		204-6	67,63	6,87	8,55	6,54	C24H28N2O3·HCI	67,20	6,82	8,26	6,53
OCH ₃	CeH AOCH -0	40,4	119	I	1	I	6,69	C26H 20 204	1	ł	1	6,63
OCH ₃	C ₆ H 40CH ₃ -0		1579	59,98	6,76	13,71	5,44	C26H 30N2O4 ·2HCI	60,59	6,51	14,31	5,65
OCH ₃	C,H,OCH,-p	39,5	169		1	1	6,68	C ₃₅ H ₃₀ N ₂ O ₄	1	1	1	6,63
OCH3	C ₆ H ₄ OCH ₃ -p	1	1357	1	ļ	13,39	5,94	C25H 30 N2O 4.2HCI	1	1	14,31	5,65
Note. E	ases were cry	stalli	zed fror	n etha	inol o	r dimet	hylforn	namide; hydrochlorides v	vere cry	rstallize	ed from	
absolute	ethanol with	additi	on of etl	her.								

TABLE 3. Arylpiperazino Derivatives of 2-Aroylcyclohexanones-1 (II)

ducing a methoxy group into the ortho or para positions of the phenyl group of the arylpiperazine. This regularity is expressed particularly in relation to the derivative, containing the omethoxyphenylpiperazine residue. The hypothermal effect is most expressed in compounds containing the o-methoxyphenylpiperazine residue, particularly in the derivative having the p-chlorobenzoyl group as the aroyl substituent. Compounds (II) are of low activity in relation to analgesic effect. The toxicity of the studied compounds is average and changes as a function of the aroyl group.

It is seen from the presented data that compounds containing the o-methoxyphenylpiperazine group have a definite value in investigating tranquilizers; they differ favorably from compounds having a p-methoxyphenylpiperazine or phenylpiperazine group.

EXPERIMENTAL

<u>6-N-Phenylpiperazino-2-benzoylcyclo-</u> <u>hexanone-1 (II, Ar = C₆H₅, R = H).</u> To a solution of 5.62 g of 6-bromo-2-benzoylcyclohexanone-1 (I, R = H) in 50 ml of benzene was added a solution of 6.48 g of N-phenylpiperazine in 30 ml of benzene at room temperature. Phenylpiperazine hydrobromide was separated after 2-3 days, about 50 ml of ether was added to the filtrate, and the salt was precipitated by passing in hydrogen chloride. The residue was filtered and dissolved in a water – ethanol mixture and the base was precipitated with aqueous ammonia, mp 150° (from ethanol or dimethylformamide). Yield 3.1 g (42.8%). Found, %: N7.87. C₂₃H₂₆N₂O₂. Calculated, %: N 7.73.

<u>Hydrochloride Salt.</u> White crystalline material decomposing at 182-184° (from absolute ethanol with addition of ether). Found, %: Cl 16.29; N 5.27. $C_{23}H_{26}N_2O_2 \cdot 2HCl.$ Calculated, %: Cl 16.29; N 6.43.

Data on the preparation of the remaining N-arylpiperazino derivatives of 2-aroylcyclohexanones-1 are presented in Table 3.

LITERATURE CITED

- N. W. Dunham and T. S. Miya, J. Amer. Pharm. Ass., Sci. Ed., <u>46</u>, 208 (1957).
- 2. J. R. Boissier, Encéphale, 50, 340 (1961).
- N. B. Eddy and D. Reinbach, J. Pharmacol. Exp. Ther., <u>98</u>, 385 (1953).
- 4. M. L. Belen'kii, Elements of the Quantitative Evaluation of the Pharmacological Effect [in Russian], Riga (1959).