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Abstract: a-Alkmpinyl Oorates derivedfrom reuction of 5-lithio-23-dihydroJurnn with rrialkylborancu rrcrrrange by 

two different mechanisms depending on the reaction conditions. 

In 1976 Levy and Schwartz’ suggested that the borate 2 generated at -80”C’by reaction of 

a-methoxyvinyl-lithium (1) and tri-isobutylborane underwent a 1,2-alkyl shift on warming to room 

temperature to produce the alkenyl borate 3 (Scheme 1). The putative intermediate 3 was invoked to explain the 
formation of ketone 4 and tertiary alcohol 6. Whilst oxidation of alkenyl boranes was well precedented, the 

ease and efficiency with which weak electrophiles such as alkyl halides induced a second 1,2-alkyl shift (3 to 

4) was not and these results suggested electron density at the alkene terminus of 3 comparable to enamines. 
More recently Soderquist and Rivera have shown that a-methoxyvinyl berates akin to 2 are stable at room 

temperature but that a 1,2-alkyl shift can be provoked by trimethylsilyl chloride. In this case, the silane 
co-ordinates to the methoxyl group in 2, thus enhancing its nucleofugacity, and only then does rearrangement 

take place by 1,2-alkyl migration with concomitant loss of methoxytrimethylsilane. We now report independent 
evidence bearing on the stability and reactivity of alkoxyvinyl borates derived from 5-lithio~2,3~dihydrofuran 

which shows that 1,2-alkyl shifts can take place by two different mechanisms depending on the reaction 

conditions, 
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Addition of various trialkylboranes to a solution of 5-lithio-2,3_dihydrofuran 7 gave the berates Sa-d 
which were then warmed to 2OT whereupon oxidative workup (Scheme 2) gave the hydroxyketones lb-d. 
Similarly, heating the borates 8a with methyl iodide followed by HOAc and oxidative workup provided the 

tertiary alcohol 13. We presumed that the borates Xa-d rearranged on warming to give the alkenylborates 9 in 

accord with Levy’s postulate and that these then underwent the observed transformations. However, all 

attempts to perform other reactions characteristic of alkenyl boranes (vide infra) using the putative intermediate 
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In an attempt to extend the scope of the borate rearrangements, we briefly examined the chemistry of the 
a-carbamoyloxy borate 24 (Scheme 5) which was readily prepared from the lithiated enol carbamate 236*7. 
Unlike the corresponding a-alkoxy borates, HOAc did not provoke rearrangment of 24; instead protonolysis 

occurred to give the borane 25 as a stable entity isolated by column chromatography8. However, rearrangment 

did occur in the absence of TMSCl on heating 24 to 50°C for 3 h whereupon the alkenyl borane 26 was 
generated which displayed typical rcacrions (Scheme 5). 
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In conclusion WC have shown that cyclic Cr-alkoxyvinyl borates have remarkable thermal stability but they 

are very susceptible to electrophilic attack at the alkene terminus resulting in an easy 1,2-alkyl shift. On the 
other hand, the oxyphilic Lewis acid TMSCl induces a l&alkyl shift by a different mechanism to give an 
alkenyl borane. Both modes of reactivity have counterparts in analogous metallate complexes of copper9 and 

aluminiuml* with the borates being at the low end of the scale of reactivity. In fact the reactions described 

herein are much slower and less efficient with the corresponding dihydropyranyl borates. 
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