Preliminary communication

THE PREPARATION OF A 1,2-DISILACYCLOBUTANE AND A 1,2-DISILA-CYCLOBUT-3-ENE BY DIMETHYLSILYLENE INSERTION INTO THE SILACYCLO-PROPANE AND SILACYCLOPROPENE RING SYSTEMS. NEW SILACYCLOPROPENES.

Dietmar Seyferth and Steven C. Vick

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 (USA)

(Received November 26, 1976)

Summary

The thermolysis of hexamethylsilacyclopropane in the presence of 1,1-dimethyl-2,3-bis(trimethylsilyl)-1-silacyclopropene resulted in formation of octamethyl-1,2-disilacyclobutane and 1,1,2,2-tetramethyl-3,4-bis(trimethylsilyl)-1,2-disilacyclobutane but-3-ene via Me₂Si insertion into the silacyclopropane and silacyclopropene rings. Thermolysis of hexamethylsilacyclopropane alone in benzene at 70° gave the former compound in 40% yield. Oxidation of these compounds with 0₂ gave the respective 1,3-disila-2-oxa-cyclopentane and 1,3-disila-2-oxa-cyclopent-4-ene compounds. Four new silacyclopropenes (VIIIa-d) have been prepared and characterized.

In 1973, Atwell and Uhlmann¹ reported that vapor phase pyrolysis of 1,2-dimethoxytetramethyldisilane at 400° in the presence of 2-butyne produces 1,1,2,2,3,4-hexamethyl-1,2-disilacyclobut-3-ene. The reasonable suggestion was made that this product was formed by a sequence of dimethylsilylene addition to the acetylene

(s, 18H, Me₃Si) and 0.46 ppm (s, 12H, Me₂Si); 13 C FT NMR (proton-decoupled): $\delta_{\rm C}$ 200.8 (ring C)^{*}. 1.4 (Si(CH₃)₃) and -0.6 ppm (Si(CH₃)₂); 29 Si FT NMR (proton-coupled): $\delta_{\rm Si}$ 12.5 (3 of the expected 7 lines, Me₂Si) and-10.2 ppm (8 of the 10 expected lines, Me₃Si). The mass spectrum of V showed the expected molecular ion and the Me₄Si₂⁺ fragment. Both products are very stable thermally. Both were unaffected by a heating period of 20 hr at 175° and IV was decomposed only to the extent of about 2% after it had been heated at 250° for 20 hr.


The products, IV and V, account for 51% of the hexamethylsilirane charged. It would appear that dimethylsilylene insertion into the very strained and highly reactive silacyclopropane and silacyclopropene rings is a very favorable process. Thermolysis of hexamethylsilirane alone in benzene at 70° for 18 hr gave IV in 40% yield. In another experiment, a mixture of 5.12 mmol of hexamethylsilirane and 2.99 mmol of I (R = Me₃Si) in benzene was heated at 70° as before. After 18 hr, oxygen was bubbled slowly into the reaction mixture at room temperature. An immediate exotherm resulted and a transient blue color was formed which faded to pale green. The oxidation products of IV and V, the cyclic siloxanes VI (a liquid, n²⁵D 1.4526) and VII (a solid, mp 62-64°), could be isolated from the reaction mixture by GLC. Both were

Due to the long relaxation time of the ring carbon atoms. a-

characterized spectroscopically and by combustion analysis and mass spectrometry. The Si-O-Si frequencies in the IR spectra of these compounds (922 cm⁻¹ for VI, 920 cm⁻¹ for VII) are characteristic of the Si-O-Si linkage in a 1,3-disila-2-oxacyclopentene ring.¹

It would appear that the eq. 2,3 route to II (R = $\mathrm{CH_3}$) is an entirely feasible one. 1,2-Disilacyclobut-3-enes are rather rare. In addition to II (R = $\mathrm{CH_2}$), only some 1,1,2,2-tetrafluoro-1,2-disilacyclobut-3-enes, prepared by reaction of acetylenes with the $\mathrm{SiF_4}$ + Si reaction product ($\mathrm{SiF_2}$ or $\mathrm{Si_2F_4}$), are known. 1,2-Disilacyclobutanes are equally rare, and their chemistry is completely unexplored. The reaction of the $\mathrm{SiF_4}$ + Si reaction product with ethylene has been claimed to give 1,1,2,2-tetrafluoro-1,2-disilacyclobutane, and more recently, Brook and Harris described a route to 1,2-disilacyclobutanes highly substituted with bulky groups on silicon and carbon which proceeds via Si=C intermediates. The reactions which we report in this communication should be applicable to other silacyclopropane and silacyclopropene systems and thus should prove to be a useful new synthetic method in organosilicon chemistry.

The 1,1-dimethyl-2,3-bis(trimethylsilyl)-1-silacyclopropene used in this study was prepared by thermolysis of hexamethyl-silirane in the presence of bis(trimethylsilyl)acetylene at 70° for 18 hr. In further work, we have extended this procedure to the synthesis of four new silacyclopropenes, VIIIa-d. Two of

VIII (a) R = R* = Me₂HSi

(b) $R = Me_3Si$; $R^* = Me_3C$

(c) $R = Me_3Si_1 R^* = CH_3$

(d) $R = Me_3C$; $R^* = CH_3$

these, VIIIa and VIIIb, have been isolated by GLC (3 ft. x 0.25

and 125°, respectively) as highly air-sensitive liquids. Both are thermally stable and were characterized by ¹H and ²⁹Si NMR, IR and mass spectroscopy, combustion analysis and reaction with methanol to give the appropriate ring-opened products, IX and a 70/30 mixture of Xa and Xb, respectively. Silacyclopropenes

VIIIc and VIIId also appear to be thermally stable but thus far have been characterized only by their ²⁹Si NMR spectra and VIIIc additionally by its methanolysis reaction which gave XI. Like the

²⁹Si NMR resonance of the ring silicon atom of I (R = Me₃Si) (106.2 ppm upfield from tetramethylsilane, TMS), those of VIIIa-d also are far upfield from TMS: VIIIa,-102.1 ppm; VIIIb,-91.9 ppm; VIIIc,-88.6 ppm; VIIId,-87.0 ppm. A ²⁹Si signal in the range 85-110 ppm upfield from TMS thus may be considered indicative of the presence of a silacyclopropene.

Acknowledgments. The authors are grateful to the U.S. Air force Office of Scientific Research (NC)-AFSC (Grant AF-AFOSR-76-2917) for generous support of this research, to Mara O. Nestle and Joseph S. Merola for obtaining the 13C and 25Si NMR spectra, and

References

- W. H. Atwell and J. G. Uhlmann, J. Organometal. Chem., 52 (1973) C21
- R. T. Conlin and P. P. Gaspar, J. Amer. Chem. Soc., 98 (1976) 868
- R. T. Conlin and P. P. Gaspar, J. Amer. Chem. Soc., 98 (1976) 3715
- 4. D. Seyferth, D. C. Annarelli and S. C. Vick, J. Amer. Chem. Soc., 98 (1976) 6382
- D. Seyferth and D. C. Annarelli, J. Amer. Chem. Soc., 97 (1975) 7162
- M. V. George and R. Balasubramanian, J. Organometal. Chem. Library 2 (1976) 103
- (a) J. L. Margrave and P. W. Wilson, Acct. Chem. Research,
 4 (1971) 145
 - (b) C. S. Liu and J. C. Thompson, Inorg. Chem., 10 (1971) 1100
 - (c) C. S. Liu, J. L. Margrave, J. C. Thompson and P. L. Timms, Can. J. Chem., 50 (1972) 459
 - (d) C. S. Liu, J. L. Margrave and J. C. Thompson, Can. J. Chem., 50 (1972) 465
- 8. R. Damrauer, Organometal. Chem. Rev. A. 8 (1972) 67
- 9. J. C. Thompson, J. L. Margrave and P. L. Timms, Chem. Comm. (1966) 566
- 10. A. G. Brook and J. W. Harris, J. Amer. Chem. Soc., 98 (1976) 3381