Synthesis of Some Triazole Derivatives as Potential Fungicides[†]

S. GIRI and Y. SINGH

Chemistry Department, University of Gorakhpur, Gorakhpur, U.P., India Received June 19, 1978

The biological importance of triazole derivatives is amply demonstrated by the fact that various triazoles exhibit anticholinesterase activity,¹⁾ 3-amino-,^{2,3)} and 3-furfurylideneamino-1, 2, 4-triazoles⁴⁾ are herbicidal and wepsyn, a phosphoryl trisamide containing a triazole ring is very effective against powdery mildews.^{9,6)} The fungicidal value of thiolesters of phosphoric acid is evident from the performance of commercially important compounds like Kitazin (Ia)⁷⁾ and Kitazin-P (Ib)⁸⁾ which are especially suitable as rice fungicides.

In view of these facts, it was anticipated that O, Odialkyl S-[3-(p-dialkoxyphosphinyloxy)phenyl-4-aryl-1, 2, 4-triazolyl-5] phosphorothioates (II) containing both a triazole and thiolester moieties might be effective antifungal agents. The synthesis and biological testing of compounds (II) described herein was undertaken with this objective.

 $\begin{array}{c} \text{RO} \\ \text{RO} \\ \text{RO} \\ \text{RO} \\ \text{S-CH}_2 \\ \text{OR} \\ \text{S-CH}_2 \\ \text{OR} \\ \text{RO} \\ \text{OR} \\ \text{RO} \\ \text{OR} \\ \text{Homogeneous of the set of the$

EXPERIMENTAL

O, O-Dimethyl phosphorochloridate was prepared according to the method of Mastin *et al.*⁰ by reacting phosphorusoxychloride (1 M) with methanol (2 M) in presence of pyridine. O, O-Diethyl phosphorochloridate. was prepared by above method⁰ from phosphorus oxychloride (1 M) and ethanol (2 M).

4-Aryl-3-p-hydroxyphenyl-5-mercapto-1, 2, 4-triazoles. were prepared by cyclising a mixture of phydroxybenzoylhydrazide (1 M) and aryl isothiocyanate (1 M) in alkaline medium.¹⁰⁾ These are recorded in Table I.

O, O-Dialkyl S-[3-(p-dialkoxyphosphinyloxy)phenyl-4aryl-1, 2, 4-triazolyl-5 phosphorothioates. A mixture of 4-aryl-3-p-hydroxyphenyl-5-mercapto-1, 2, 4-triazole (0.1 M) and O, O-dialkylphosphorochloridate (0.2 M) was refluxed in acetone for 5~6 hr using pyridine as a catalyst. The reaction mixture was poured into water and product separating was isolated as usual. The compounds thus prepared are recorded in Table II.

Fungicidal test. Six compounds synthesised in the present investigation, were tested against two species of fungi, viz., A. flavus and H. oryzae by agar-growth technique at three different concentrations and average percentage inhibition after three days was recorded. Most of the compounds were moderately toxic to both the fungal species. However, compound Nos. 3 and 4 were more toxic to H. oryzae. The results are recorded in Table III.

Acknowledgement. The authors express their sincere thanks to Prof. R. P. Rastogi, Head, Chemistry Department, University of Gorakhpur, for providing necessary facilities. We are grateful to Sri S. Singh of Botany Department, University of Gorakhpur for

TABLE I.								
\$. No.	R	Molecular formula	mp °C	%N		%S		
				Found	Calcd.	Found	Calcd.	
1	н	C ₁ ,H ₁ N ₈ OS	183~4	15.63	15.61	11.83	11.89	
2	4 CH	C.H.N.OS	185	14.72	14.84	11.21	11.31	
2		C.H.N.O.S	190	14.30	14.04	10.66	10.70	
3 4	4-0CH3 3-Cl	$C_{14}H_{10}N_3OSCl$	184~5	13.85	13.84	10.35	10.54	

* Studies on Organophosphorus Pesticides. Part V.

	IR	C-N	1300	1300 1260		I	1270	I	1260
	lds (cm ⁻¹) in on spectra	P-S- (carbon)	560~620	585 585			580	I	610
	gnificant bar absorpti	P-O-C (phenyl)	1220	1230			1245	l	1240
	Si	P-0	1330	1330	1	ł	1330	+	1330
melting points are uncorrected.	S	Calcd.	6.58 6.41	0.41 6.21	6.16	5.91	5.77	5.60	5.56
	~	Found	6.54 6.37	6.15	6.08	6.00	5.68	5.61	5.62
	% P	Calcd.	12.78	12.04	11.94	11.46	11.17	10.86	10.77
		Found	12.65	11.80	11.86	11.52	11.23	11.00	10.88
	N%	Calcd.	8.66 8.43	8.15	8.08	7.76	7.57	7.35	7.30
		Found	8.58 8.41	8.06	8.00	7.84	7.66	7.38	7.37
	°C		190~1 200	180	194	195	213~4	185	192
	Molecular formula		C ₁₈ H ₂₁ N ₈ P ₂ O ₇ S C ₁₆ H ₂₀ N ₂ P ₂ O ₇ S	C19H23N3P2O9S	$\mathrm{C}_{18}\mathrm{H}_{20}\mathrm{N}_{3}\mathrm{P}_{2}\mathrm{O}_{7}\mathrm{SCI}$	$\mathbf{C}_{22}\mathbf{H}_{20}\mathbf{N}_{3}\mathbf{P}_{2}\mathbf{O}_{7}\mathbf{S}$	$\mathbf{C}_{23}\mathbf{H}_{31}\mathbf{N}_3\mathbf{P}_2\mathbf{O}_7\mathbf{S}$	$\mathbf{C}_{23}\mathbf{H}_{31}\mathbf{N}_3\mathbf{P}_2\mathbf{O}_8\mathbf{S}$	C22H28N3P2O7SCI
	R1		CH ₃ CH ₃	CH3	CH3	C_2H_5	C_2H_5	C_2H_5	C_2H_5
	ĸ		H 4-CH,	4-0CH _s	3-CI	Н	4–CH ₃	4-OCH3	3-CI
A	S. No.		- 0	Э	4	S	9	7	8

TABLE II.

S. GIRI and Y. SINGH

Compound No.	R	R ₁	Average percentage inhibition after three days						
			Organism A. flavus			Organism H. oryzae			
			1:100	1:1000	1:10,000	1:100	1:1000	1:10,000	
1	Н	CH3	52	30	21	73	50	40	
3	4–OCH₃	CH ₃	61	40	38	98	60	50	
4	3Cl	CH_3	57	43	36	98	73	46	
6	4–CH ₃	C_2H_{δ}	53	43	29	73	50	32	
7	4–OCH ₃	C_2H_5	98	40	30	82	68	38	
8	3-Cl	C_2H_5	40	30	20	77	55	36	

TABLE III. ANTIFUNGAL ACTIVITY

assistance in evaluation of antifungal properties. The help received from C.D.R.I. Lucknow in recording IR spectra of some of the samples is gratefully acknowledged. One of us (Y.S.) is thankful to C.S.I.R. New Delhi for award of Senior Research Fellowship.

REFERENCES

- 1) J. B. Polya, Nature, 176, 1175, (1955).
- E. W. Hauser and J. Thompson, J. Agric. Food Chem., 2, 680 (1954).
- B. J. Rogers, Proc. North Central Wood Control Conf., 1955, 3, [C. A., 57, 14026d (1957)].
- W. Schafer, R. Wegler and L. Eve, U. S. Patent, 2,870144 (1959) [C. A., 53, 14125d (1959)].
- 5) H. Scheinpflug and H. F. Jung, Pflanzenschutz-

Nachr. Bayer, 21, 79 (1968).

- M. J. Koopmans, J. Meltzer, H. O. Huisman, B. G. Vanden Bos and Wellinga (N. V. Philips Gloeilampenfabriken), *Neth. P.* 109510 1958/1964 [C. A., 62, 7770C (1965)].
- H. Scheinpflug, H. F. Jung and G. Schrader (Farbenfabriken Bayer A-G), Belg. Patent 655,301 (1965) [C. A., 65, 6231f (1966)].
- M. Kado, Experimental approaches of Pesticide metabolism, degradation and mode of action, U.S.—Japan Seminar—August 1967, Nikko Japan, p. 121 ~ 125, Pflanzenschutzber, Nr. 12 (1968) Ref. 3900.
- T. W. Mastin, R. G. Norman and Weilmuenster, J. Am. Chem. Soc., 67, 1662 (1945).
- V. Ram and H. N. Pandey, Agric. Biol. Chem., 37, 575 (1973).