BEOBACHTUNGEN ZUM MECHANISMUS DER NENITZESCU-REAKTION—III ACYLWANDERUNGEN—I

U. KUCKLÄNDER* Pharmazeutisches Institut der Freien Universität Berlin

(Received in Germany 24 September 1974; Received in the UK for publication 31 January 1975)

Zusammenfassung—Durch Umsetzung von Enaminen mit p-Chinonen in Eisessig werden Acetoxy - hydroxy - indol-3 - carbonsäureester - Derivate dargestellt. Die Struktur, insbesondere die möglichen Wasserstoffbrücken (OH.....O=C) werden mit spektroskopischen und chemischen Methoden untersucht. Die 4 - Hydroxy - 5 - acyloxy - indol - Struktur de Produkte und die Entstehung aus den intermediär gebildeten 4-Acyloxy-5-hydroxy-indol-Der nuter Acylwanderung können nachgewiesen und damit andere Ansichten korrigiert werden. Die Acylwanderung wurde durch Verwendung eines stersch gehinderten Acylrestes unterbunden. So konnte ein Zwischenprodukt isoliert, charakterisiert und umgelagert werden. Der Reaktionsverlauf wird aufgrund der Beobachtungen diskutiert.

Abstract—The reaction of enamines with p-quinones in acetic acid yields acetoxy - hydroxy - indol - 3 - carboxylic acid derivatives. The structure, especially concerning the possible hydrogen-bonds, is examined by spectroscopical and chemical methods. The 4 - hydroxy - 5 - acyloxy - indol - structure and the origin from an intermediate 4-acyloxy-5-hydroxy-indol by acyl migration is demonstrated and thus other mechanisms are corrected. Acyl migration could be prevented by use of a sterically hindered acyl-group. Thus isolation, characterisation and rearrangement of an intermediate was possible. The course of the reaction is discussed.

Bei der Durchführung der Nenitzescu-Reaktion unter bestimmten Reaktions-bedingungen entstehen N - Aryl - 5 - acyloxy - 4 - hydroxy - indol - Derivate. ¹² Analog lassen sich die entsprechenden N-Alkyl-Derivate 1a-c in etwas besserer Ausbeute darstellen.

Aufgrund des Vergleichs mit $1e^2$ ($H_6 = 7\cdot 10$ und $H_7 = 6\cdot 45$ ppm in Pyridin-d₃) kann dieses Signal einem Proton in 6-Stellung zugeordnet werden. Die Methyl-Gruppe befindet sich demnach in 7-Stellung. Dafür spricht auch die chemische Verschiebung des Methyl-Gruppen-Signals

Bei Verwendung von Methyl-p-benzochinon entsteht bei dieser Reaktion das 7 - Methyl - indol - Derivat 1d als Hauptprodukt.

Nach den Erfahrungen von Allen u.a. bei der normalen Nenitzescu-Reaktion mit N-substituierten Enaminen wäre im vorliegenden Fall eine bevorzugte Bildung des 6-Methyl-indols 1f zu erwarten gewesen. Das Signal des zur Methyl-Gruppe ortho-ständigen Protons wird im NMR-Spektrum von 1d (in Pyridin-d₃) bei 6·85 ppm beobachtet.

bei 1.66 ppm in Pyridin, bzw. bei 1.72 ppm in CDCl₃. Die im Vergleich zu Toluol (2.36 ppm) und zu anderen 6- bzw. 7 - Methyl - 5 - hydroxy - indol - Derivaten³ auffällige Hochfeldverschiebung kann bei einer 7-Stellung der Methyl-Gruppe aufgrund der diamagnetischen Abschirmung durch den p-Chlorphenyl-Rest zwanglos erklärt werden. Die Bildung des isomeren 6-Methyl-indols 1f als Nebenprodukt ist im NMR-Spektrum (CDCl₃) des rohen Reaktionsproduktes an dem Auftreten von entsprechen-

1632 U. KUCKLÄNDER

den Signalen geringerer Intensität bei 2·18 ppm (6-CH₃); 6·28 (H₂); 11·5 (4-OH) und 2·45 (CH₃CO) zu erkennen.

Die Substanzklasse 1 ist wegen ihrer im Tierversuch beobachteten⁴ hypotensiven Wirkung, die z.T. stärker ist als die des bekannten⁵ Mecarbinats (Dimekarben), interessant. Struktur² und Bildung⁶ dieser Reaktions produkte sind untersucht worden. Von G. R. Allen, Jr. wurde kürzlich die 5 - Acyloxy - 4 - hydroxy - indol - Struktur sowie deren Entstehung durch Acylwanderung ohne weitere Begründung und ohne dass eigene Untersuchungen vorlagen,⁷ angezweifelt. Die von Allen vorgeschlagene 4 - Acetoxy - 5 - hydroxy - indol - Struktur ist aufgrund der bereits veröffentlichten Untersuchungen² unwahrscheinlich. Ferner ist die postulierte² 5 - Acetoxy - 4 - hydroxy - indol - Struktur durch weitere inzwischen durchgeführte⁸ Untersuchungen bewiesen.

Die Struktur der Acetoxy-hydroxy-indol-Derivate

Die IR- und NMR-spektroskopische Untersuchung von 19 Reaktionsprodukten des Typs 1 zeigt eine starke intramolekulare Wasserstoffbrücke an. Es könnte sich demnach grundsätzlich um die Strukturen A oder B handeln.

$$\begin{array}{c}
O \\
R - C - O
\end{array}$$

$$\begin{array}{c}
O \\
O \\
A
\end{array}$$

$$\begin{array}{c}
O \\
C - OR \\
A
\end{array}$$

Beim Vorliegen der o - Acetoxy - phenol - Struktur B ist aufgrund des Vergleichs der Absorptionen im IR-Bereich (KBr) von 3 und 1,2,4, - Triacetoxy - naphthalin (1770 cm⁻¹) infolge der H-Brüke eine Verschiebung der OH-Absorption um etwa 80 cm⁻¹ und der Carbonyl-Absorption um etwa 30 cm⁻¹ zu kleineren Wellenzahlen zu erwarten.

OH(cm ⁻¹)	CO(cm ⁻¹)	R	R,
3410	1736	CH,	Н
3380	1712	C ₄ H ₃	H
_	1748	C ₆ H ₉	CH,

Auch die Untersuchungen von R. Biggins u.a. an Verbindungen des Typs 4 ergaben vergleichbare Eigenschaften für wasserstoffverbrückte o-Acyloxyphenole.

Die IR-spektroskopischen Eigenschaften der Acyloxyhydroxy-indole 1: OH-Bande bei 3000 cm⁻¹ und Acetoxyl-Carbonylbande bei 1760-1770 sind mit der Struktur B demnach unvereinbar. Die im Vergleich zu anderen Indol-carbonestern (z.B. 2c und 2d, siehe Tabelle 1) um 40-60 cm⁻¹ zu kleineren Wellenzahlen verschobene Carbonylabsorption der Estergruppe in 3-Stellung zeigt das Vorliegen der Chelat-Struktur A an.*

Die Acylwanderung

Wie gezeigt werden konnte,⁶ entstehen die Acetoxyindol-Derivate 1 aus dem Carbinolamin 5 und Essigsäure. Zu spektroskopischen Vergleichszwecken und um nähere Hinweise über den Verlauf der Reaktion des Carbinolamins mit organischen Säuren, insbesondere über die postulierte Acylwanderung zu erhalten, wurde versucht, aus 5 ein Indol-Derivat mit der Struktur B darzustellen.

Die Umsetzung von 5 mit Essigsäure in Dioxan führt auch bei Raumtemperatur und Ausfällung des Reaktionsproduktes mit Petroläther ohne weitere Umkristallisation zum 5 - Acetoxy - indol - Derivat 1a, so dass eine Acylwanderung im Verlauf der Umkristallisation ausgeschlossen werden kann. Die Wanderung der Acetyl-

Gruppe erfolgt demnach unmittelbar im Anschluss an die Additions-Reaktion bei Raumtemperatur.

Der Reaktionsverlauf der Umsetzung von 5 mit organischen Carbonsäuren zu den 5-Acyloxy-indolen 1 kann folgendermassen formuliert werden:

Aus dem Chinonimonium-ion 6 bildet sich durch 1,4-Addition des Acetat Anions das α -Ketolacetat-artige Zwischenprodukt 7. Bei α -Ketolacetat Derivaten wurden Acylwanderungen^{10,11} z.T. unter milden Reaktionsbedingungen¹² beschrieben. Ähnlich kann im vorliegenden Fall die Wanderung auf dem Weg a über 8 zu dem stabilen aromatischen System 1 erfolgen.

Die Bildung von 1 ist auch auf dem Weg b möglich. Aus 7 kann unter Aromatisierung das 4-Acyloxy-indol 9 entstehen, das sich in das wegen der Wasserstoffbrücke thermodynamisch stabilere 5-Acyloxy-indol 1 umlagert. Die Acylwanderung auf dem Weg b erscheint aufgrund der Beobachtungen von E. Fischer¹³ und Critchlow¹⁴ möglich. Es wurde eine entsprechende Umlagerung an Monoestern von Polyphenol-Derivaten beobachtet.

Wie aus den Strukturen 7 bzw. 9 ersichtlich, verläuft die Acylwanderung in beiden Fällen unter nukleophilem Angriff an der Acyloxy-Carbonyl-Gruppe in 4-Stellung. Bei Verringerung der Carbonylaktivität der eingesetzten Carbonsäure durch elektronische bzw. sterische Faktoren sollte die Acylwanderung zu verzögern oder zu verhindern und ein 4 - Acyloxy - 5 - hydroxy - indol Der. vom Typ 9 isolierbar sein. Das Carbinolamin 5 wurde zu diesem Zweck mit folgenden Carbonsäuren umgesetzt: Pivalinsäure, Triphenylessigsäure, 2-Methylbenzoesäure, 2,4,6-Trimethyl-benzoesäure, 3,4,5-Trimethyl-benzoesäure, Zu Ver-

^{*}vgl. hierzu die unter2 gemachten Angaben.

Der Reaktionsverlauf der Umsetzung von 5 mit organischen Carbonsäuren zu den 5-Acyloxy-indolen 1 kann folgendermassen formuliert werden:

gleichswecken wurde die Um setzung mit 2,4-Dinitrobenzoesäure, 4-Nitrobenzoesäure und Trichloressigsäure ebenfalls durchgeführt. Bei den isolierten Reaktionsprodukten handelt es sich jeweils wieder um die entsprechenden 5 - Acyloxy - 4 - hydroxy - indol -Derivate 1g bis 1q. Die Chelat-Struktur 1 ergibt sich aus den IR- und NMR-spektroskopischen Eigenschaften und dem Vergleich mit 1a-1e und den entsprechenden Acetyl-Derivaten 2c, 2d und 10a-10e (siehe Tabelle 1).

Die Acylwanderung war wider Erwarten auch im Falle der Mesitylencarbon-säure erfolgt. Unter schonenden Reaktions- und Aufarbeitungsbedingungen gelingt bei der Umsetzung mit 2,4,6-Trimethoxy-benzoesäure die Isolierung des gewünschten 4 - Acyloxy - 5 - hydroxy -

Tabelle 1.

	IR (cm ⁻¹)		N	MR
Verbindung Nr.	3-COOC₂H₅	O 5-O- C-R	4-OH	4-OH	L.M.
la	1640/1620	1755	2800-2900	11.75	CDCI,
1 b	1640/1625	1750	2800-3000	12.35	Pyridin
lc	1650/1630	1770	2900	11.70	DMSO
1 d	1640/1620	1765	2900	12.20	Pyridin
le ²	1645/1630	1770	3000	12.10	Pyridin
lg	1640/1620	1745	2900	_	· _
1b	1645/1630	1755	2900	11.67	CDCl ₃
1i	1645/1625	1735	2900	12.17	Pyridin
1k	1640/1630	1740	2900	_	· _
11	1645/1630	1750	2900	11.62	CDCl ₃
1m	1650/1630	1735	2900	11.72	CDCl ₃
1n	1640/1625	1760	2800-3100	12.03	DMFA
lo	1650/1630	1740	2800-3100	12.00	DMFA
lp	1640/1630	1770	3000	_	_
1q	1645/1625	1780	2900	11.83	CDCI ₃
			P		
			4-O-C-CH ₃		
2c	1700	1765	1765	_	_
2d	1700	1765	1765		_
10a	1690	1720	1770	_	_
10b	1700	1750	1765	_	_
10c	1700	1755	1770	_	_
10d	1700	1780	1780	_	_
10e	1695	1755	1770	_	_
		5-OH	4-OH		
2a	1620	3480	2900	12.55	Pyridin
2b	1640/1615	3480	3000	12.00	Pyridin

indol - Derivats 9a neben dem entsprechenden 5 - Acyloxy - 4 - hydroxy - indol - Derivat 11. Die IR- und NMRspektroskopischen Eigenschaften der Substanz 9a stehen in voller Übereinstimmung mit den erwarteten Daten. Im IR-Spektrum von 9a beobachtet man die Absorption einer freien Hydroxyl-Gruppe bei 3480 cm⁻¹ als scharfe Bande. Bei den 4,5-Dihydroxy-indolen 2a und 2b wird die entsprechende Absorption bei gleicher Wellenzahl beobachtet. Das Signal der Hydroxyl-Gruppe tritt im NMR-Spektrum von 9a (CDCl₃) bei 7·22 ppm auf. Die Carbonylbande einer nicht chelatisierten Ester-Gruppe wird im IR-Spektrum von 9a bei 1695 cm⁻¹ (3-COOR) beobachtet. Da die Carbonylabsorption der 4-Acyloxy-Gruppe bei 1750 cm⁻¹ im Vergleich zu 11 ebenso wie die OH-Absorption im Vergleich zu 2a und 2b nicht nach kleineren Wellenzahlen verschoben ist, liegt 9a im kristallinen Zustand offenbar nicht in der Struktur B vor.

Das 4-Acyloxy-indol 9a lagert sich beim trocknen Erhitzen auf 200-250° unter Acylwanderung auf dem Weg b in das entsprechende 5-Acyloxy-indol 11 um. Das ist am Schmelzverhalten erkennbar und ergibt sich aus der IR-spektroskdünnschichtehromatographischen und opischen Untersuchung des so behandelten Produktes. Erwärmen einer Nach 30-minütigem olischen Lösung von 9a kann die Bildung von 11 dünnschichtchromatographisch nicht nachgewiesen werden, das Ausgangsprodukt lässt sich in guter Ausbeute rein zurückgewinnen. Nach 7h unter gleichen Bedingungen oder nach 3-stündigem Erhitzen in Dioxan kann die Umlagerung dünnschichtchromatographisch und durch Isolierung von 11 nachgewiesen werden. Bei kürzerem Erhitzen von 9a in Essigsäure findet Acetolyse zu 2a statt. Die Entstehung von 2a kann durch Farbreaktion mit Ag₂O und dünnschichtchromatographisch durch Vergleich mit authentischem Material, das nach der bekannten² Methode aus 1a hergestellt wurde, nachgewiesen werden.

Aufgrund des Stattfindens der Acylwanderung im Falle der sterisch stark gehinderten Acylreste erscheint eine intermolekulare Transacylierungs-reaktion äusserst unwahrscheinlich. Für den intramolekularen Charakter de Acylwanderung spricht ferner folgende Beobachtung: Nach 3-stündigem Erhitzen einer Lösung von 9a und 2b lässt sich dünnschichtchromatographisch nur 11, 9a und 2b nachweisen. 11 kann in guter Ausbeute isoliert werden. Das Dünnschichtchromatogramm gibt keinen Hinweis für die Bildung des N-Benzyl-Analogons von 11, das auch im Massenspektrum des Reaktionsansatzes nicht nachgewiesen werden kann.

Der nucleophile Angriff am Carbonyl-C-Atom wird bei 2,6 - Dimethylbenzoesäure - Derivaten aufgrund sterischer Hinderung blockiert, so dass eine normale Veresterung bzw. Hydrolyse nicht möglich ist. ¹⁵ Nach Sykes ¹⁵ liegt hier ein Fall totaler sterischer Hinderung vor. Dass gilt offerbar nur für intermolekulare Reaktionen. Wie die Bildung von 1k und die Umlagerung von 9a zu 11 zeigt, ist eine entsprechende intramolekulare Carbonyl-Reaktion bei diesen sterisch gehinderten Carbonsäure-Derivaten möglich.

Bei der vorsichtigen Umsetzung von 5 mit 2,4,6-Trimethoxy-benzoesäure wird neben 9a auch 11 isoliert. Da sich 9a unter den gleichen Reaktionsbedingungen in 11 umlagern lässt, kann angenommen werden, dass 11 auf dem Weg b aus 5 über 7 gebildet wurde.

Die durchgeführten Untersuchungen sprechen dafür, dass sich die Reaktions-produkte der Umsetzung von p-Chinon-Derivaten mit Enamin-Abkömmlingen (siehe Schema 1) über die im Schema 2 (Weg b) formulierten Reaktions-stufen bilden. Durch die Isolierung und Umlagerung des 4 - Acyloxy - indol - Derivats 9a konnte die 5 - Acyloxy - indol - Struktur 1 dieser Reaktionsprodukte der Nenitzescu-Reaktion wahrscheinlich gemacht werden. Der endgültige Strukturbeweis wurde durch die

Röntgenstrukturanalyse¹⁶ eines derartigen Reaktionsproduktes erbracht. Auch die aufgrund der spektroskopischen Untersuchung postulierte Chelat-Struktur A konnte eindeutig bestätigt werden.

BESCHREIBUNG DER VERSUCHE

Schmp.: Mettler Fp 1; IR-Spektren: Photometer 237 (Perkin-Elmer), in KBr; NMR-Spektren: A 60 A (Varian); Tetramethylsilan als innerer Standard, Angabe der chemischen Verschiebung: in ppm nach der δ-Skala; Massenspektren: Varian MATCH 7; Abkürzungen: DMFA = Dimethylformamid; dc = Jung angabe high transporter between Lösungsmittel für die DC: = Jung angabe high transporter between 10:5; DC auf DC-Folien, Woelm, Kieselgel F 254/366.

					A	nalysen (%)	
Nr.	Bruttoformel Mol. Gew.	C-1	IIb. ' A	Ber.			
NI.	. Moi. Gew.	Schmp.	Umkrist.	Gef.	C	Н	N
1b	C ₂₁ H ₂₁ NO ₅ 367·4	169°	Toluol		68·65 68·46	5·76 5·98	3·81 3·85
1c	C ₂₀ H ₂₅ NO ₅ 359·4	145°	Isopropa- nol		66-83 66-57	7·01 6·50	3-90 3-98
1d	C ₂₁ H ₂₀ CINO ₃ 401.8	258°	Toluol		62.76	5.02	3.49
	401.0				62·93 Cl: _{8·81}	5.08	3.39
1g	C18H23NO5	212°	Acatom		0.01		4.20
ıŖ	333.4	212	Aceton		64·84 64·63	6·95 7·23	4·20 4·09
lh	C33H29NO3 519·6	223°	Toluol		76·29 76·59	5·63 5·82	2·69 2·66
1i	C21H21NO5	189°	Toluol		68-65	5.76	3.81
	367-4				68.83	5.83	3.61
ik	C23H25NO5	233°	Aceton		69.85	6.37	3.54
11	395.5 C ₂₃ H ₂₅ NO ₈	255°	Dioxan		69.80	5.90	3.53
11	443.4	233	Dioxan		62·30 62·35	5·68 5·75	3·16 3·14
1m	· · · ·	237°	Toluol		62.33	5·68	3·14 3·16
	443.5	23,	10,00		62.22	5.76	3-10
1n	C20H17N3O9	242°	Dioxan		54.17	3.87	9.47
	443.9				54.27	3.83	9.43
lo	$C_{20}H_{18}N_2O_7$	235°	Dioxan		60.29	4.55	7.03
	398.7				60-31	4.63	7.40
1 p	C ₂₀ H ₁₇ N ₃ O ₉ 443·4	310°	DMFA		54-17	3.87	9.47
1q	C ₁₅ H ₁₄ Cl ₅ NO ₅	Zers. 213°	Toluol		54·34 45·65	3·60	9.43
14	394.7	213	1 Oluoi		43·63 46-07	3·58 4·04	3·55 3·48
	.,,					6·96; Gef. 2	
2a	C13H15NO4	186°	Toloul		62.63	6.06	5·62
	249-3				62.56	5.61	5.61
2b	C19H19NO4	164°	Toluol		70.13	5.89	4.31
	325.4				70-34	5.76	4-16
2c	C ₂₂ H ₂₇ NO ₆	108°	Isopropanol		65.80	6.78	3.49
2d	401·5 C ₂₃ H ₂₃ NO ₆	1670	1 (66-04	6.43	3.56
20	409·4	156°	Ligroin		67·46 67·32	5.66	3.42
9a	C23H25NO8	120°	Methanol		62.30	5·46 5·68	3·61 3·16
-	443-4	(250°)	Methanor		62.08	5.32	3.41
10a	C25H27NO9 485:5	191°	Toluoi/Hexan	1	61.85	5.60	2.89
10b	C ₂₅ H ₂₇ NO ₆	207°	Toluol/Hexan		61·57 68·64	5·64 6·22	3·04 3·20
	437.5	207	Totalifican	,	68-60	6.33	3.24
10c	$C_{22}H_{20}N_2O_8$	218°	Toluol		59.99	4.58	6.36
	440-4				60.01	4.60	6.53
10d	C22H9N3O10	242°	Toluol		54-44	4.13	9-10
	485.4				54.88	4.13	9.10
10e	C ₂₅ H ₂₇ NO ₉	219°	Toluoi		61.85	5.60	2.89
	485.5				61-90	5.48	2.85

Ę
2
×
Ř.
2
Σ
_

CH,-CH,-CH; 535 235 1235 - 692 - CH,-CH,-CH; 15-20m 280 1-40 445 227 1170 720 699 - 4-CL-CH, 15-20m 280 1-40 445 227 1170 720 690 - 4-CL-CH, 3-8s 2-45 1-25 4-35 2-25 1200 685 CH;-16s - CH,-CH,-CH; 3-48s 2-49 1-25 4-30 2-30 1-20 6-89 - CH,-CH,-CH; 3-46s 2-50 1-24 4-40 - 5511155 6-88 6-88 - CH,-CH,-CH; 3-46s 2-50 1-24 4-40 - 5511155 6-88 6-88 - CH,-CH,-CH; 3-46s 2-50 1-34 4-30 2-30 - - - - - - - - - - - - - - - -	Nr. Lösungsm.	×	X-X	2-CH ₃ (s)	CH,-C-O(t)	2-CH ₃ (s) CH ₃ -C-O(t) C-CH ₂ -O-(q)	Q CH₃-C-(s)	OH(s)	H ₆ d J = 8-9	H,d (Hz)	Acylrest/Aryl-H	Aryi-H
CH, 1-5-0 m 2-80 1-40 4-45 2.27 11-70 7-20 6-85 CH;1-66 — 4-Cl-Call, 7-39 m 2-35 1-25 1-20 6-85 CH;1-66 — CH, Call, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH	10	-CH2-C.H3-CH3:	5.35	2.55	1.28	4-35	2.35	12.35		6-92		6-8-7-4 m
CH, CH, III 739 m 235 125 435 225 125 643 CH; III	Pyridin-ds	C,H,,	1.5-2.0 m	2.80	1.40	4.45	2.27	11.70	7.20	06.9	I	1
CH, -CH,-CH,-CH,-S 348 s 5.25 2.45 1.25 440 55/11/55 6.88 6.58 CH, -CH,-CH,-CH,-CH,-S 1.52 0m 2.50 1.24 440 1200 690 6.73 CH, -CH,-CH,-CH,-CH,-S 1.52 0m 2.50 1.34 4.30 2.34 6.90 6.73 6.90 6.90	DMSO-4	4-CI-C,H,	7·59 m	2.35	1.25	4.35	2.25	12.20	6.85 s	CH3:1-66 s	•	1
CH, -CH,-CLH,-CH,: 5.48 s 5.58 2.53 s 1.40 14.40 s 4.28 - 5.51/1.55 s 1.200 6.89 s - 6.80 - 6.80 s - 6.80 - 6.90 s - 6.80 - 6.90 s - 6.90 - 6.90 s - 6.90 s - 6.90 - 6.90 s - 6.90 - 6.90 s - 6.90 s - 6.90 - 6.90 s - 6.90	Pyridin-d, Pyridin-d,		3-35 s	2.45	1.25	4.35	1	9.9/12.55	7.30	6.75	a provi	1
C.H., 1:5-2 0m 2-67 1:34 4:36 2:34 7:37 6.95 C.HC.,H. 5:10s 2:30 1:35 4:36 2:34 C.HC.,H. 5:10s 2:30 1:35 4:36 2:37 6:97 6:73	CDCI,	CH, -CH,-C,H,-CH _i :	3.48 s 5.25s	2.53	1.40	4·40 4·28	i 1	5.5/11.55	98.9	6.58	l	7·1 m
CH ₂ -CH ₃ 5:10s 2:50 1:35 4:36 2:25 -<	ryndin-ds	C.H.:	1.5-2.0 m	2.67	134	4:30	2:30	R I	7.37	6.95	•	***
CH, 3:35s 2-47 1:30 4:38 2-31 — 697 673 2-CH;277s CH, 3-40s 2-48 1:22 4-26 — 12:15 683 2-CH;277s CH, 3-62s 2-65 1:42 4-43 — 11:62 7:12 6-73 Aryl-H:73 m CH, 3-50s 2-57 1:38 4-36 — 11:72 6-78 6-65 Aryl-H:73 m CH, 3-50s 2-57 1:38 4-36 — 11:72 6-78 6-65 Aryl-H:75 st (CHs) CH, 3-85s 2-80 1-48 4-55 — 12:03 7:25 st Aryl-H:8-15 st (CHs) CH, 3-64s 2-80 1-48 4-55 — 12:03 7:25 st Aryl-H:8-15 st (CHs) CH, 3-62s 2-60 1-40 4-40 — 12:03 7:25 st Aryl-H:8-15 st (CHs) CH, 3-62s 2-63 1-35 4-30 — 12:06 7:28 st Aryl-H:7-10 st	j 3	-CH ₂ -C ₆ H ₃	5·10 s	2.50	1.35	4.36	វុប៉	ł	ı	Į	•	6-9-7-3 m
CH, 3-40 s 2-48 1-22 4-26 — 12-15 6-83 CH, 3-62 s 2-65 1-42 4-43 — 11-62 7-12 6-73 CH, 3-50 s 2-57 1-38 4-36 — 11-72 6-98 6-65 CH, 3-85 s 2-80 1-48 4-55 — 12-03 7-25 s CH, 3-84 s 2-80 1-48 4-55 — 12-03 7-25 s CH, 3-53 s 2-60 1-40 4-40 — 11-80 6-98 6-67 CH, 3-62 s 1-35 4-30 — 7-28 7-17 s CH, 3-68 s 2-73 1-36 - 7-28 7-107-14 CH, 3-40 s 2-65 1-30 4-40 2-50 - 7-75	: : :::::::::::::::::::::::::::::::::	CH,	3.35 s	2.47	1-30	4:38	16.7	1	16.9	6.75		7.3-8.0
CH, 3.62s 2.65 1.42 4.43 — 11.62 7.12 6.73 CH, 3.50s 2.57 1.38 4.36 — 11.72 6.98 6.65 CH, 3.84s 2.80 1.48 4.55 — 12.03 7.25s CH, 3.84s 2.80 1.48 4.55 — 12.00 7.25s CH, 3.53s 2.60 1.40 4.40 — 11.83 6.98 6.67 CH, 3.62s 2.63 1.35 4.33 2.25 — 7.17s CH, 3.68s 2.73 1.25 4.30 — 7.28 7.10f7·14 CH, 3.40s 2.65 1.30 4.40 2.50 — 7.5 7.2	Pynam-a, 1i Pyridin-d,	сн,	3.40 s	2:48	1.22	4.26	ı	12·15		6.83	2'-CH ₃ : 2·77 s H ₂ : 8·42 m	
CH, 3.50 s 2.57 1.38 4.36 — 11.72 6.98 6.65 CH, 3.65 s 2.80 1.48 4.55 — 12.03 7.25 s CH, 3.64 s 2.80 1.48 4.55 — 12.00 7.25 s CH, 3.53 s 2.60 1.40 4.40 — 11.83 6.98 6.67 CH, 3.62 s 2.63 1.35 4.33 2.25 — 7.17 s CH, 3.68 s 2.73 1.25 4.30 — 7.28 7.10/7·14 CH, 3.40 s 2.65 1.30 4.40 2.50 — 7.5 7.2	11 CDCls	сн,	3.62 s	2-65	1.42	4.43	1	11-62	7.12	6.73	Aryl-H: /-3 m Aryl-H: 6·17 s 4′-OCHs: 3·84 s (IC	(f)
CH ₃ 3.85 2.80 1.48 4.55 - 12.03 7.25 7.25 CH ₃ 3.84 2.80 1.48 4.55 - 12.00 7.25 7.25 CH ₃ 3.53 2.60 1.40 4.40 - 11.83 6.98 6.67 CH ₃ 3.62 2.63 1.35 4.33 2.25 - 7.17 cCH ₃ 3.68 2.73 1.25 4.30 - 7.28 7.10/7.14 CH ₃ 3.40 2.65 1.30 4.40 2.50 - 7.5 7.2	<u>a</u> ;	сн,	3.50 s	2.57	1.38	4.36	1	11.72	86.9	\$9-9	2'-OCHs; 3-90s (2C Aryl-H: 7-55 s OCU - 3 oc -	н,)
CH ₃ 3.84s 2.80 1.48 4.55 — 12.00 7.25s CH ₃ 3.53s 2.60 1.40 4.40 — 11.83 6.98 6.67 CH ₃ 3.62s 2.63 1.35 4.33 2.25 — 7.17s CH ₃ 3.68s 2.73 1.25 4.30 — 7.28 7.10/7.14 CH ₃ 3.40s 2.65 1.30 4.40 2.50 — 7.5 7.2	CLACIS In DMFA d,	СН,	3.85 s	2.80	1-48	4.55	I	12.03		7.25 s	Aryl-H;: 8-15 d (2H Aryl-H;: 8-58 d (8 F) (Z) (3 H2)
CH ₃ 3.53s 2.60 1.40 4.40 — 11.83 6.98 6.67 CH ₃ 3.62s 2.63 1.35 4.33 2.25 — 7.17s CH ₃ 3.40s 2.73 1.25 4.30 — 7.28 7.10/7·14 CH ₃ 3.40s 2.65 1.30 4.40 2.50 — 7.5 7.2	lo Service	CH,	3.84 s	2.80	1.48	4.55	1	12.00		7.25 s	Aryl-H: 8.6 m	; z nz)
CH ₃ 3·62 ₈ 2·63 1·35 4·33 2·25 – 7·17 ₈ CH ₃ 3·68 ₈ 2·73 1·25 4·30 – 7·28 7·10/7·14 CH ₃ 3·40 ₈ 2·65 1·30 4·40 2·50 – 7·5 7·2	DMFAG, 14	CH,	3-53 s	2.60	0 . 1	4.40	ı	11.83	86.9	19.9	ļ	
CH ₃ 3-68 s 2-73 l-25 4-30 — 7-28 7-10/7-14 CH ₃ 3-40 s 2-65 l-30 4-40 2-50 — 7-5 7-2	15 %	СН,	3.62 s	2.63	1-35	4-33	2.25	ı		7·17 s	Aryl-H: 7-50 s	
СН, 3-40 2-65 1-30 4-40 2-50 — 7-5 7-2	in a since	СН,	3.68 s	2.73	1.25	4:30	1	7.28		7.10/7.14		
	10e Pyridin-d,	сн,	3-40 s	2.65	1-30	4.40	2.50	•	7.5	7.2	Aryl-H: 6-43 OCH;: 3-86; 3-82	

-
-
•
=
-
Ü
Ω.
S
£
ens
sens
ssens
sen
sen

Ž.	Temp.	¥	M-C2H,0(H)	+ H M-Acyl	M-Acyl	MAcyl	MC2H3O	202-CO	Acyl-Rest	Acyl-R. + H	Acyl-CO
_ <u>~</u>	\$	333	287	249	248	203	202	174	85		57
rel. Int.(%)		18	6	16	2	100	20	16	6		4
IP 41	300 №	\$19	474	249	248	203	202	174	ı	1	243
rel. Int.(%)		9	7	'n	\$	8	30	8			8
=	210°	367	321	249	248	203	202	174	811	611	16
rei. Int.(%)		=	ν.	'n	7	12	14	=	œ	901	εx
*	1152	395	350	249	248	203	202	174	147	148	119
rel. Int.(%)		00	2	4	7	=	12	13	901	.51	23
=	200°	4	398	249	248	203	202	174	195	ı	ı
rel. Int.(%)		-	_	2	7	S	ý	S	8		
=	<u>\$</u>	443	398	249	248	203	202	174	195	1	I
-cl. Int.(%)		9	m	m		6	01	0	8		
9	200°	443	398	249	248	203	202	174	195	ı	ŀ
rel. Int.(%)		=	m	4	45	4	901	8	4		
9	150	38	352	249	248	203	202	174	150	ı	l
rel. Int.(%)		23	æ	٠	=	22	92	4	=		
1p	210°	443	398	249	248	203	202	174	ł	1	1
el. Int.(%)		ø	7	ጲ	62	86	90	X			
<u>5</u>	150°	393	X	249	248	203	202	174	I	ı	
rel. Int.(%)		Ξ	87	91	9	8	90	2			
7	120°	4	398	249	248	203	202	174	195	1	l
rel. Int.(%)		-		_	٣	9 0	œ	90	<u>8</u>		

*347-CCl₃: 230 (30%)

=
نو
7
-34
Σ.
2
- 53
Š
38
÷

	1									ı	
	Ŗ.	ت	Temp.	×	M-Keten	M-C ₂ H ₃ O(H)	f) M-2x Keten	M-Keten -C ₂ H,O(H)	M-2x Keten -C ₂ H ₃ OH		
	1ភា	12. (80)	35°	249	******	203		MANAGEMENT OF THE PROPERTY OF	deren	ſ	
	2 %	r. 1111. (7	135°	. 4	329	356	317	314	1/2		
		rel. Int. (%)	· _	2	<u>∞</u>	6	*	*	8		
	73		200	\$	367	¥	325	322	23		
	핕	rel. Int. (%)		6	8	90	47	7	901		
	=		\$	359	317	314	I	11.2	1		
	핃	rel. Int. (%)	3	13	22	4		901			
	프		32°	<u>\$</u>	329	356	1	313	-		
				\$	8	8		92			
							M-C ₂ H ₂ OH		M-Keten		
							C,H,)		C,H,OH		
	3P.	•_	130	325	1	87.2	88	1	City		
	<u>ਦ</u>	rel. Int. (%)		72		74	85				
	=	• <u>•</u>	201	367	325	1	1	279	881		
	ıc	rel. Int. (%)		13	23			7.5	S		
	1"	Base p	*Base peak = C,H,.							i	
						Massen	Massenspektren				
			- Chesalitation of the Control of th						-Acyl		
Ŋ.	Temp.	ž	M-Keten	M	M-C2H,O(H)	M-Acyl+H	M-Neten(=H) -C ₂ H ₅ O(H)	M-Acyl + (H) -Keten	M-Neten -C ₂ H,O(H)	Acyl-R.	202-C
- -	300	485	£4 E4		044	291	397/398	249	202/203	195	174
rel. Int. %		4	2		7	2	2/2	9	13/22	8	13
2 61	230°	437	395		392	162	350/348	248	202/203	147	174
rel. Int. %		4	7		2	0.5	0.5/0.5	7	6/91	≅	Ξ
5	150°	94	338		395	Ŕ	352	248	202/203	55	174
rel. Int. %		11	53		9	e	55	8	100/30	33	58
19	150°	482	443		\$	231	338	248/249	202/203	1	174
rel. Int. %		(1	ч		-	∞		8/17	33/100		m
ş	<u>\$</u>	485	******		5	291	396/398	248/249	202/203	<u>8</u>	174
rel. Int. %					m	2	0.5/0.5	3/4	91/91	2	*

2 - Acetoxy - 1,4 - dihydroxy - naphthalin 3. 2 - Acetoxy - 1,4 - naphthochinon wird in Benzol gelöst und nach Zugabe einer Spatelspitze Pd/C in einer Wasserstoffatomosphäre geschüttalt. Nach beendeter Gasaufnahme wird der Reaktionsansatz filtriert und i. Vak. eingeengt. Schmp. 220° (Tol.). C₁₂H₁₀O₄ (218·2). Ber. C, 66·04; H, 4·63; Gef. C, 65·61; H, 5·24. NMR (Pyridin-d₅): 2·32 s (CH₂CO); 7·08 s (H₃); 7·2-8·7 m (Aryl-H); 10·85 (OH) MS (130°): 218 (M⁻); 176 (M-Keten) Basispik.

N - Benzyl - 5 - acetoxy - 4 - hydroxy - 2 - methyl - indol - 3 - carbonsäureäthylester (1b) N - Cyclohexyl - 5 - acetoxy - 4 - hydroxy - 2 - methyl - indol - 3 - carbonsäureäthylester (1c) und N - (4 - Chlorphenyl) - 5 - acetoxy - 4 - hydroxy - 2,7 - dimethyl - indol - 3 - carbon - säureäthylester (1d. 0.2 Mol p-Benzochinon (oder Methyl-p-benzochinon) werden in absol. Eisessig (500 ml) gelöst und zum Sieden erhitzt, dann tropft man langsam eine Lösung des Enamins (0.1 Mol) in Eisessig (250 ml) unter Rühren hinzu. Nach beendeter Zugabe wird noch 1 h unter Erwärmen gerührt. Das Lösungsmittel wird i. Vak. abgezogen und der teerige Rückstand mit Isopropanol und Toluol zur Kristallisation gebracht. Der Niederschlag wird abgenutscht, mit Eisessig gewaschen und umkristallisiert. Ausbeute 20% d.Th.

1,2 - Dimethyl - 4 - hydroxy - 5 - acyloxy - indol - 3 - carbonsäureäthylester 1g-1q. 0.003 Mol 5 werden in einer Lösung von 0.006 Mol Pivalinsäure, Triphenyloder Trichloressigsäure, 2 - Methyl - 2,4,6 - Trimethyl, 3,4,5 - Trimethoxy - 2,4,6 - Trimethoxy -, 2,4-Dinitro-, 4 - Nitro - 2,6 - Dinitrobenzoesäure in Dioxan (250 ml) suspendiert und bis zum Verschwinden der orangeroten Farbe bei Raumtemperatur bzw. gelindem Erwärmen gerührt. Das Lösungsmittel wird abgezogen und der Rückstand umkristallisiert. Ausbeute 80-90% d.Th.

4,5 - Diacetoxy - bzw. 4 - Acetoxy - 5 - acyloxy - 2 - methyl - indol - 3 - carbonsäureäthylester 2c, 2d bzw. 10a-10a. Zur Darstellung werden 1c, 1b bzw. 1m, 1k, 1o, 1n oder 11 bzw. 9a für 3 bzw. 12 h in Acetanhydrid unter Zusatz einiger Tropfen Pyridin zum Sieden erhitzt. Nach dem Abziehen des Lösungsmittels i. Vak. wird der Rückstand umkristallisiert. Ausbeute 80-90%.

1-Methyl- und 1 - Benzyl - 2 - methyl - 4,5 - dihydroxy - indol - 3 - carbonsäureäthylester 2a und 2b. 0-01 Mol 1a bzw. 1b werden in 100 ml heissem Dioxan gelöst, unter N₂ mit einer Lösung von 0-6 g KOH in 100 ml Wasser versetzt und 3 h zum Sieden erhitzt. Anschliessend wird mit Wasser verdünnt und das Dioxan abdestilliert. Nach dem Erkalten und Abnutschen wird aus Toluol umkristallisiert. Ausbeute: 60% d.Th.

1,2 - Dimethyl - 5 - hydroxy - 4 - (2,4,6 - trimethoxybenzoyloxy)-indol - 3 - carbonsäureäthylester 9a. Eine Lösung von 0.003 Mol 5 und 0.006 Mol 2.4,6-Trimethoxybenzoesäure in 500 ml Dioxan wird 8-14 Tage bei Raumtemperatur gerührt. Das Lösungsmittel wird i. Vak. bei 35° abgezogen. Der Rückstand wird mit Toluol behandelt, der Niederschlag nach einiger Zeit abgesaugt, mit Aceton, Toluol und Methanol gewaschen und aus Methanol umkristallisiert, man erhält 9a. Aus den eingeengten Mutterlaugen kann durch Umkristallisation aus Dioxan 11 erhalten werden. Ausbeute: etwa 300 mg 9a und 500 mg 11. Die Substanz 9a schmilzt beim Einbringen in den vorgeheizten Block klar bei 210°. Oberhalb von 120° erstarrt 9a und schmilzt dann bei 250°.

Umlagerungsversuche (9a → 11).

*30 mg 9a werden in ein auf 200° vorgeheiztes Glühröhrchen gegeben und für 5 Min. bis auf 250° erhitzt. Nach dem Erkalten wird mit Dioxan gewaschen und der Rückstand (20 mg) durch ein IR-Spektrum (deckungsgleich mit II) und ein Dünnschichtgromatogramm (Rf = 0.48) als II identifiziert.

⁶25 mg 9a werden für 30 Min. in 10 ml Methanol zum Sieden

erhitzt. Nach dem Erkalten kristallisieren 20 mg unverändertes 9a aus. Die Identifizierung erfolgte durch ein IR-Spektrum (deckungsgleich m. 9a) und ein Dünnschichtchromatogramm (Rf = 0.27). Erhitzt man 9a für 7 h in Methanol zum Sieden, und zieht das Lösungsmittel ab, so hat sich der grösste Teil in Il umgelagert. Das geht aus dem Dünnschichtchromatogramm (Rf-Werte: 11 = 0.48; 9a: 0.28) hervor. Il kann nach dem Waschen des Rückstandes mit Dioxan isoliert und durch ein IR-Spektrum identifiziert werden.

⁵9a wird in Dioxan für 3 h. zum Sieden erhitzt und das Lösungsmittel dann abgezogen. Aus dem DC ergibt sich, dass 9a grösstenteils in 11 umgelagert worden ist (Rf-Wert von 11: 0.48; 9a = 0.27). 11 kann isoliert und durch ein IR-Spektrum identifiziert werden.

 $^{\rm d}20~\rm mg$ 9a und 30 mg 2d werden für 3 h. in Dioxan unter N_2 -Atmosphäre zum Sieden erhitzt, das Lösungsmittel wird abgezogen und ein Dünnschichtchromatogramm angefertigt: Rf-Wert von 11: 0-48; 2d: 0-70. Der Rückstand wird mit Methanol behandelt, der unlösliche Anteil mit Dioxan gewaschen. Das IR-Spektrum des so erhaltenen Produktes ist mit dem von 11 deckungsgleich.

*20 mg 9a und 40 mg 2,4,6-Trimethoxybenzoesäure werden in Dioxan gelöst und 10 Tage lang bei Raumtemperatur gerührt. Das Lösungsmittel wurde *i.Vak.* bei 30-40° abgezogen und vom Rückstand ein DC angefertigt: Rf-Werte: 0.49 (11); 0.27 (9a in geringer Konzentration); 0.08 (2,4,6-Trimethoxy-benzoesäure).

'30 mg 9a werden für 15-30 Min. in 10 ml Eisessig zum Sieden erhitzt, das Lösungsmittel wird abgezogen und der Rückstand chromatographiert: Rf = 0.56 (2a); 0.65. Eine Lösung des Rückstandes in Aceton färbt sich nach Zugabe einer Spatelspitze Silberoxid und Schütteln bei Raumtemperatur dunkelrot.

LITERATUR

'U. Kuckländer, Tetrahedron Letters 157 (1971).

²U. Kuckländer, Arch. Pharmaz. 304, 602 (1971).

³G. R. Allen, C. Piddacks und M. J. Weiss, J. Am. Chem. Soc. 88, 2536(1966).

⁴P. R. Bock, Dr. Thiemann, GmbH, unveröffentlicht.

⁵A. N. Grinev, T. Yu. Il'yucheuok und K. S. Shadurskii, Khim. Farm. Zh. 1, 60 (1967) (Pharm. Chem. J. 362 (1967); C. A. 68, 43170 b (1968).

^oU. Kuckländer, Tetrahedron 28, 5251 (1972).

⁷G. R. Allen, Organic Reactions 20, 385 (1973).

*U. Kuckländer, Habilitations-Schrift (1974).

^oR. Biggins, T. Cairns, G. Eglington, E. Haslam und R. D. Haworth, J. Chem. Soc. 1750 (1963).

¹⁰I. S. Y. Wang und E. W. Warnhoff, Chem. Comm. 1158 (1969).

¹¹J. B. Stothers, I. S. Y. Wang, D. Ouchi und E. W. Warnhoff, J. Am. Chem. Soc. 93, 6702 (1971).

L. F. Fieser und R. Stevenson, *Ibid.* 76, 1728 (1954); H. B. Henbest, D. N. Jones und G. P. Slater, *J. Chem. Soc.* 4472 (1961);
 V. J. Minkin, L. P. Olekhnovich, Yn. A. Zhdanov, Z. N. Budarina und V. P. Mathushenko, *Tetrahedron Letters* 563 (1974).

¹³E. Fischer, M. Bergmann und W. Lipschitz, Ber. dtsch. chem. Gls. 51, 45 (1918).

¹⁴A. Critchlow, R. D. Haworth und P. L. Pauson, J. Chem. Soc. 1318 (1951).

¹⁵P. Sykes, Reaktionsaufklärung, S. 127-129; Verlag Chemie-Physik Verlag (1974): (P. Sykes, The Search for Organic Reaction Pathways, Longman, London, 1972).

16H. J. Hecht und P. Luger, J. Cryst. Mol. Struct. (1974) im Druck.