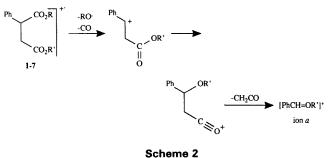
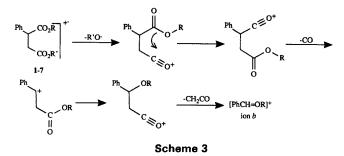

OMS Letters

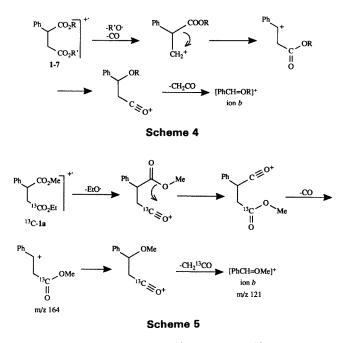

Dear Sir

The Mechanism of Formation of Alkoxybenzylidene [PhCH=OR]⁺ Ions from Mixed Dialkyl Esters of Phenylsuccinic Acid upon Electron Ionization. Methoxy Group Migration between Two Carbonyl Groups

In a recent publication we have shown that mixed dialkyl esters of phenylsuccinic acid (1-6) give rise to two alkoxybenzylidene cations a and b under electron ionization by sequential elimination of an alkoxy radical, carbon monoxide and ketene (Scheme 1).¹ The formation of ion a (R'=CH₃)



was observed a long time ago in the symmetrical dimethyl phenylsuccinate (7) and a mechanism involving migration of the 4-methoxy group to the benzylic position has been suggested (Scheme 2). This mechanism explains formation of ions a from the unsymmetrical esters 1-6.



Scheme 2

Two possible mechanisms proposed for the formation of ions *b* are shown in Scheme 3 and 4. One (Scheme 3) involves a transfer of RO[•] radical from its original site to the other carbonyl group in the $[M - R'O]^+$ ion, followed by elimination of CO (position 1) and ketene. The alternative route (Scheme 4) involves migration of the alkoxycarbonyl group COOR from position 2 to 3 in the $[M - OR' - CO]^+$ ion.

0030-493X/92/040527-02 \$05.00 © 1992 by John Wiley & Sons, Ltd.

1-Methyl-4-ethyl-2-phenyl-4-¹³C-succinate (13 C-1a) and 1ethyl-4-methyl-2-phenyl-4-¹³C-succinate (13 C-1b) were synthesized² in order to distinguish between the above two proposed mechanisms. The EI mass spectrum of 13 C-1a is shown in Fig. 1. The presence of a m/z 164 ion and practical absence of a m/z 163 ion (taking into account natural abundance of 13 C isotope ion of m/z 162 [M – EtOH – 13 CO]⁺⁺) clearly indicates that the loss of C₂H₅O' radical from position 4 is followed by elimination of the unlabelled CO (position 1). This sequence of events suggests migration of the MeO group from the 1-carbonyl group to the other (position 4) prior to the decarbonylation step (Scheme 5).

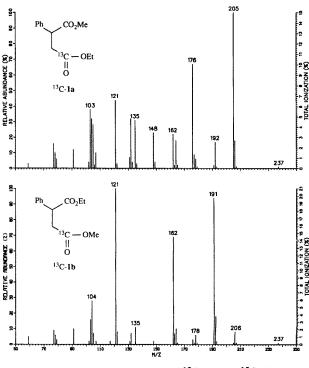


Figure 1. El mass spectra of ¹³C-1a and ¹³C-1b.

Received 11 February 1992 Accepted 11 February 1992

Similar results were obtained with 13 C-1b. The m/z 178 ion is formed by the loss of CH₃O' from C-1 followed by elimination of 12 CO from C-4 which must be preceded by a migration of the MeO' radical from the latter position.

The above results disprove the mechanism shown in Scheme 4 and are in keeping with the pathway suggested in Scheme 3.

Migration of an alkoxyl from an ester group to a carbocation site has been previously reported as a key step in the fragmentation of certain substituted esters.³ We are aware of one recent report of a migration of an alkoxyl between two carbonyl groups.⁴ The use of mixed esters and/or specific labelling of one of the carbonyls enables observation of such migrations which may play a role in the fragmentation of organic gas-phase cations containing several esters groups.

Acknowledgements. This work was supported by the Fund for Promotion of Research at the Technion. We thank Mr Jacob Katzir for technical assistance.

Yours

I. VIDAVSKY and A. MANDELBAUM* Department of Chemistry, Technion—Israel Institute of Technology, Haifa, Israel

References

- 1. I. Vidavsky, A. Mandelbaum, T. Tamiri and S. Zitrin, Org. Mass Spectrom. 26, 287 (1991).
- ¹³C-1a was prepared by the Wittig reaction of ethoxy-1-¹³Ccarbonylmethylidenetriphenylphosphorane [obtained from ethyl bromo-1-¹³C-acetate (Cambridge Isotope Laboratories)] and methyl benzoylformate followed by catalytic hydrogenation. ¹³C-1b was obtained (in mixture with ¹³C-1a and the dimethyl and diethyl esters) by trans-esterification of ¹³C-1a with ethanol-methanol mixture. For technical details see Ref. 1.
- R. G. Cooks and D. H. Williams, *Chem. Commun.* **1967**, 51;
 R. G. Cooks, J. Ronayne and D. H. Williams, *J. Chem. Soc.* [C] **1967**, 2601.
- M. Corval, A. Harrata and J-P. Morizur, Org. Mass Spectrom. 24, 977 (1989).