Preliminary communication

Addition des zinciques issus d' α -bromonitriles sur les cétones et aldéhydes α -éthyléniques et sur les alcoylidènes malonates

NICOLE GOASDOUE et MARCEL GAUDEMAR

Université de Paris VI, Laboratoire de Synthèse Organométallique, 9, Quai Saint-Bernard, Paris Sème (France)

(Reçu le 10 février 1971)

La condensation des zinciques issus d' α -bromonitriles avec les cétones ou les aldéhydes saturés conduit aux β -hydroxynitriles correspondants¹.

Par ailleurs, les zinciques de Reformatsky opposés aux cétones α -éthyléniques conduisent aux produits d'addition 1,4 dans le cas de l' α -bromoisobutyrate d'éthyle², alors qu'avec les bromoesters mono ou non substitués en α , c'est le produit d'addition 1,2 qui est observé³. Nous retrouvons avec les α -bromoesters avec les α -bromoesters.

En effet, l'addition de la benzalacétophénone I sur les zinciques d' α -bromonitriles conduit, soit au β -hydroxynitrile γ -éthylénique II, soit au δ -cétonitrile III, suivant la nature du bromonitrile de départ.

$$R = C - C = N + C_6 H_5 - C H = C H - C - C_6 H_5$$

$$R = H$$

$$(R = R' = CH_3, rdt. 66\%, p.f. 104°;$$

 $R = CH_3, R' = H, rdt. 50\%, p.f. 121°)$

Signalons que le crotonaldéhyde IV opposé à ces organozinciques conduit exclusivement au produit V (addition 1,2 même avec l'a-bromoisobutyronitrile).

$$CH_3-CH=CH-CHO+ R C-C=N \rightarrow CH_3-CH=CH-CH-C+C-C=N$$

$$ZnBr OH R'$$

$$(R = R' = CH_3, rdt. 83\%, \acute{e}b. 116°/12mm;$$

 $R = C_2H_5, R' = H, rdt. 67\%, \acute{e}b. 127°/12 mm;$
 $R = (CH_3)_2 CH, R' = H, rdt. 83\%, \acute{e}b. 132°/10 mm)$

Les alcoylidènes malonates VI opposés aux réactifs de Reformatsky donnent régulièrement le produit d'addition conjuguée^{4,5}.

Les zinciques issus d'a-bromonitriles se comportent de même manière et nous avons obtenu avec de bons rendements le produit d'addition 1,4.

R	R'	R"	Rdt. (%)	Eb. (°C/mm)
Н	CH ₃	CH ₃	70	92/0.02
H	C_2H_5	CH ₃	67	115/0.10
H	$CH(CH_3)_2$	CH ₃	55	110/0.05
CH ₃	CH ₃	CH ₃	77	103/0.03
Н	CH ₃	C_2H_5	58	110/0.07
CH_3	CH ₃	C_2H_5	67	113/0.04

Nous étendons actuellement ces résultats à divers composés α-insaturés.

BIBLIOGRAPHIE

- 1 N. Goasdoue et M. Gaudemar, C.R. Acad. Sci. Paris, Ser. C, 269 (1969) 861.
- 2 J.C. Dubois, J.P. Guette et H.B. Kagan, Bull. Soc. Chim. Fr., (1966) 3008.
- 3 J. Cure et M. Gaudemar, Bull. Soc. Chim. Fr., (1969) 2471.
- 4 J.L. Moreau, Y. Frangin et M. Gaudemar, Bull. Soc. Chim. Fr., (1970) 4511.
- 5 G. Daviaud, M. Massy et Ph. Miginiac, Tetrahedron Lett., (1970) 5169.
- J. Organometal Chem., 28 (1971) C9-C10