and of N. oleander,3 seeds of N. oleander,4 and on cyclitols of roots.5

Present work. Acetophenones were obtained from the ether extracts of the root-bark or heartwood on silica gel column chromatography with benzene-acetone as eluting solvent. 2,4-Dihydroxyacetophenone: m.p. 148-149° (0.0013% of dried bark and 0.0001% of heartwood freed from bark; m.m.p., IR, TLC). 4-Hydroxyacetophenone: m.p. 108-110° (0.0005% of dried bark; m.m.p., IR, TLC).

⁴ H. JÄGER, O. SCHINDLER and T. REICHSTEIN, Helv. Chim. Acta 42, 977 (1959).

Key Word Index-Nerium odorum; Apocynaceae; 4-hydroxy-acetophenone; 2,4-dihydroxyacetophenone.

Phytochemistry, 1972, Vol. 11, pp. 1853 to 1854. Pergamon Press. Printed in England.

BUXACEAE

ALKALOIDS OF BUXUS WALLICHIANA

R. H. BURNELL and M. SOUCY

Département de Chimie, Université Laval, Québec 10, Canada

(Received 6 July 1971, in revised form 19 October 1971)

Plant. Buxus wallichiana Baill¹ from India. Previous extraction. None but species of Buxus are normally sources of steroidal alkaloids.²

Extraction and isolation. Ground dried leaves (4.2 kg) of B. wallichiana were extracted by percolation with MeOH at room temp. Evaporation left a black gum which was taken up in 2% aqu. HCl and the neutral materials (19 g) removed by continuous CHCl₃ extraction.

CH₃ NHCH₃

$$CH_3 \cap H \cap H$$

$$CH_3 \cap H \cap H$$

¹ We thank Dr. W. I. TAYLOR (International Flavors and Fragrances, N.J.) for the plant material and the Bronx Botanical Gardens, N.Y. for the identification.

² V. CERNY and F. SORM, Steroid Alkaloids in the Alkaloids (edited by R. H. F. MANSKE), Vol. IV, p. 305, Academic Press, New York (1967).

³ R. TSCHESCHE, P. K. CHARDHURI and G. SNATZKE, Naturwissenschaften 51, 139 (1964), and preceding reports; W. NEUMANN, Chem. Ber. 70, 1547 (1937); B. GÖRLICH, Plant Med. 9, 442 (1961).

⁵ S. NISHIBE, S. HISADA and I. INAGAKI, Phytochem. 10, 896 (1971).

The aqueous sol. was basified (NH₄OH) and the crude base (41 g) obtained by further CHCl₃ extraction. Distribution of the crude base between CHCl₃ and aqueous acetate buffer (pH 5·6) gave three fractions: Stronger bases (advanced with acetate) 9·01 g; Intermediate bases 6·72 g; and Weaker bases (left behind in CHCl₃) 18·66 g. The stronger bases (8·0 g) were chromatographed over Al₂O₃ (Woelm Act. III) affording the three bases: cyclovirobuxine-D (I, 360 mg), cyclobuxine-D (II, 510 mg), and cycloprotobuxine-C (III, 104 mg). Similar treatment of the intermediate bases afforded buxtauine (IV, 456 mg) but the weaker bases gave no tractable material.

Identification. The combination of elemental analysis, interpretation of IR, NMR and MS data³ and the preparation of suitable (previously described) derivatives was found to be effective in positively identifying the alkaloids.

Cyclovirobuxine-D (I). From acetone, m.p. 219–220° (Lit.⁴ 221–224°). (Found: C, 77·6; H, 11·4; N, 7·0; O, 4·1. Calc. for $C_{26}H_{46}N_2O$: C, 77·6; H, 11·5; N, 7·0; O, 4·0%.) Eschweiler–Clarke N-methylation afforded cyclovirobuxine-A, m.p. 228–230°. Mixed with an authentic sample (from Dr. S. M. Kupchan) our cyclovirobuxine-D showed no depression in the m.p. TLC and IR results were identical. Cyclobuxine-D (II). From benzene, m.p. 239–240° (decomp. Lit.⁵ 245–247°). (Found: C, 77·8; H, 10·9; N, 7·3; O, 4·0 Calc. for $C_{25}H_{42}N_2O$: C, 77·7; H, 10·9; N, 7·3; O, 4·1%.) The dimethiodide, m.p. 225–228° (lit.⁶ 234° decomp.) was prepared by refluxing the base in acetone with excess CH₃I. Cycloprotobuxine-C (III). From acetone, m.p. 191–192° (Lit.⁷ 200–202°). Eschweiler–Clarke methylation afforded cycloprotobuxine-A, m.p. 205–206° (Lit.⁷ 206–207°). (Found: C, 87·0; H, 12·0; N, 6·8. Calc. for $C_{28}H_{50}N_2$: C, 87·1; H, 12·1; N, 6·8%.) Buxtauine (IV). From acetone m.p. 179–180° (Lit.⁸ 181–183°). (Found: C, 77·6; H, 10·2; N, 3·8; O, 8·6. Calc. for $C_{24}H_{37}NO_2$: C, 77·6; H, 10·0; N, 3·8; O, 8·6%.) Acetylation afforded the O,N-diacetyl derivative, m.p. 208–210° (Lit.⁸ 211–213°).

Acknowledgement—We thank the National Research Council of Canada for operating grants and for a graduate bursary (to M.S.).

Key Word Index—Buxus wallichiana; Buxaceae; steroidal alkaloids; cyclovirobuxine D; cyclobuxine D; cycloprotobuxine C.

³ L. Doleis, V. Hanus, Z. Voticky and J. Tomko, Coll. Czech. Chem. Commun. 30, 2869 (1965).

⁴ K. S. Brown and S. M. Kupchan, Tetrahedron Letters 2895 (1964).

⁵ K. S. Brown and S. M. Kupchan, J. Am. Chem. Soc. 86, 4414 (1964).

⁶ K. Heusler and F. Schlittler, Helv. Chem. Acta 32, 2226 (1949).

⁷ T. NAKANO and M. HASEGAWA, Tetrahedron Letters 3679 (1964).

⁸ S. M. Kupchan and E. Abushanab, J. Org. Chem. 30, 3931 (1965).