Journal of Organometallic Chemistry, 177 (1979) 357-363
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

RINGÖFFNENDE ACETYLIERUNG EINES AN KOBALT KOORDINIERTEN RINGLIGANDEN VOM DIVINYLBORAN-TYP

G.E. HERBERICH * und M. THÖNNESSEN

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Strasse 1, D-5100 Aachen (Bundesrepublik Deutschland) (Eingegangen den 9. April 1979)

Summary

 $(C_5H_5)Co[2-6-\eta-(CH_3)_2Si(CH=CH)_2BC_6H_5]$ (III) is prepared photochemically from $(C_5H_5)Co(CO)_2$ and $(CH_3)_2Si(CH=CH)_2BC_6H_5$ (II). Acetylation of the new complex III with $CH_3COCl/AlCl_3$ and subsequent hydrolysis effect ringopening to give $(C_5H_5)Co[\{1,2-\eta-(cis-CH_3COCH=CH)\}(\eta-CH_2=CH)Si(CH_3)_2]$ (IV) which slowly isomerizes $(\Delta G_{296}^{\neq}\ 100\pm 2\ kJ\ mol^{-1})$ to the corresponding trans-isomer (V).

Pure $(CH_3)_2Si(CH=CH)_2Sn(CH_3)_2$ (I) can be obtained in preparative quantities via the new complex $(CH_3)_2Si(CH=CH)_2Sn(CH_3)_2 \cdot 2$ CuCl.

Zusammenfassung

 $(C_5H_5)Co[2-6-\eta-(CH_3)_2Si(CH=CH)_2BC_6H_5]$ (III) wird photochemisch aus $(C_5H_5)Co(CO)_2$ und $(CH_3)_2Si(CH=CH)_2BC_6H_5$ (II) dargestellt. Acetylierung des neuen Komplexes III mittels $CH_3COCI/AlCl_3$ und nachfolgende Hydrolyse ergeben unter Ringöffnung $(C_5H_5)Co[\{1,2-\eta-(cis-CH_3COCH=CH)\}(\eta-CH_2=CH)-Si(CH_3)_2]$ (IV), welches langsam zum entsprechenden *trans*-Isomer (V) isomerisiert $(\Delta G_{296}^2\ 160 \pm 2\ kJ\ mol^{-1})$.

Reines (CH₃)₂Si(CH=CH)₂Sn(CH₃)₂ (I) kann in präparativen Mengen mithilfe des neuen Komplexes (CH₃)₂Si(CH=CH)₂Sn(CH₃)₂ · 2 CuCl erhalten werden.

Übergangsmetall-Komplexe von Divinylboran-Derivaten sind in jüngster Zeit in grösserer Zahl dargestellt worden [1—5]. Wir berichten hier über ein erstes Beispiel einer Reaktion an einem koordinierten Liganden vom Divinylboran-Typ.

Präparative Ergebnisse

In Anlehnung an eine frühere Arbeit [2] wurden gemäss Gl. 1 die bekannten Heterocyclen (CH₃)₂Si(CH=CH)₂Sn(CH₃)₂ (I) und (CH₃)₂Si(CH=CH)₂BC₆H₅

(II) dargestellt. Photochemische Umsetzung mit (C₅H₅)Co(CO)₂ führte dann weiter zum neuen Kobalt-Komplex III.

$$(CH_3)_2Si(C \equiv CH)_2$$

+ $(CH_3)_2SnH_2$ Si Sn $C_6H_5BCI_2$ (I)

Si
$$B-C_6H_5$$
 $\frac{(C_5H_5)Co(CO)_2}{h\mathcal{P}}$ Co

(II)

(III)

Nebenbei wurde gefunden, dass die Zwischenstufe I, die bisher nur durch präparative Gaschromatographie in Substanz zugänglich war [2], auch in viel grösserem Massstab rein erhalten werden kann. Dazu setzt man das die Zwischenstufe I enthaltende Rohdestillat mit CuCl zum gut kristallisierenden Kupfer(I)-chlorid-Komplex I \cdot 2 CuCl um, aus dem sich reines I durch Spaltung mit $[C_6H_5N(CH_3)_3]$ gewinnen lässt (vgl. hierzu Ref. 6).

Der neue Komplex III unterliegt der Friedel—Crafts-Acetylierung. Bei 0°C und einem Stoffmengenverhältnis III/CH₃COCl/AlCl₃ $\approx 1/2/2$ beobachtet man eine langsame Farbvertiefung. Nach der Hydrolyse bei Raumtemperatur ist die Wasserphase leicht gelb, enthält jedoch keine mit NH₄PF₆ oder mit KI₃ fällbaren Kationen; Co²⁺ (aq) ist nur in Spuren nachweisbar. Die rubinrote organische Phase ergibt bei der Chromatographie nur eine einzige rotbraune Zone, aus der man gemäss Gl. 2 mit 91% Ausbeute ein cis-trans-Isomerengemisch der überraschenderweise borfreien Acetylierungsprodukte IV und V isoliert. Bei schneller Aufarbeitung besteht dieses Gemisch fast nur aus dem cis-Isomer IV (typisch IV/V = 94/6), welches durch Kristallisation leicht rein erhalten werden kann. In Lösung wandelt sich der cis-Komplex IV bei Raumtemperatur im Verlauf einiger Tage vollständig in das trans-Isomer V um. Diese cis-trans-Isomerisierung verläuft nach 1. Ordnung; in C₆D₆ findet man bei 23°C eine molare freie Aktivierungsenthalpie $\Delta G \neq 100 \pm 2$ kJ mol⁻¹.

Wenn die Hydrolyse des Acetylierungsgemisches unter sorgfältiger Kühlung bei 0°C vorgenommen wird, findet man bei der chromatographischen Aufarbeitung am Säulenkopf in Spuren ein weiteres rotbraun kristallisierendes Produkt VI, von dem wegen der sehr geringen Ausbeute nur ein Massenspektrum

III
$$\frac{(1) CH_3COCI | AICI_3, 0°C}{(2) H_2O, 20°C}$$
Co
$$CoCH_3$$
COCH₃

$$(X)$$

erhalten werden konnte. Danach handelt es sich um eine borhaltige Verbindung, der die Formel (C_5H_5) Co $[(CH_3)_2$ Si $(CH=CHCOCH_3)\{CH=CHB(OH)C_6H_5\}]$ zukommen dürfte (vgl. Diskussion).

Konstitution und Spektren

Der Komplex II · Co(C_5H_5) (III) ist ein Analogon der früher beschriebenen Verbindung II · Fe(CO)₃, für die die Röntgenstrukturanalyse eine (η^5 -Divinylboran)eisen-Gruppierung nachgewiesen hatte [2]. Aus der grossen Ähnlichkeit der ¹H-NMR-Spektren beider Komplexe folgt, dass in III ebenfalls eine (η^5 -Divinylboran)metall-Gruppierung vorliegt. Dies wird auch durch die hohe chemische Verschiebung der ¹¹B-Resonanz (δ 52.7 ppm für II [2], δ 20.9 ppm für III; jeweils in C_6D_6 , gemessen gegen externes BF₃ · OEt₂) belegt.

Die 1 H-NMR-Spektren der Isomeren IV und V zeigen neben den Singuletts für den C_5H_5 -Ring und drei CH_3 -Gruppen jeweils fünf Signale für einzelne Protonen. Diese lassen sich mithilfe der jeweils signifikant verschiedenen Kopplungskonstanten eindeutig in ein ABC-Teilspektrum einer komplexierten Vinyle-Gruppe und ein AB-Teilspektrum einer komplexierten Vinylengruppe zerlegen. Die vizinalen Kopplungskonstanten im AB-Teilspektrum (9.9 Hz bei IV, 13.3 Hz bei V) weisen dann IV als cis-Isomer und V als trans-Isomer aus. Die IR-Spektren von IV und V zeigen als jeweils stärkste Absorptionen ketonische $\nu(CO)$ -Banden (1637 cm $^{-1}$ bei IV, 1650 cm $^{-1}$ bei V, jeweils in KBr); die Keto-Gruppen sind nicht an das Metall koordiniert. Insgesamt sind also IV und V als Cyclopentadienylbis(monoolefin)kobalt-Derivate mit Edelgaskonfiguration aufzufassen.

Diskussion

Drei Bereiche im Komplex III können für eine Friedel—Crafts-Acetylierung in Betracht gezogen werden: die Phenyl-Gruppe, der Cyclopentadienyl-Ring und die koordinierte Divinylboran-Gruppierung. Im Experiment erfolgt die Acetylierung ausschliesslich an der koordinierten Divinylboran-Gruppierung, die sich damit als sehr reaktiv erweist.

Wir schlagen einen Reaktionsmechanismus gemäss Schema 1 vor. Im ersten Schritt erfolgt elektrophile Addition von CH_3CO^+ an C(3), dem zum B-Atom α -ständigen C-Atom. Der gleiche elektrophile α -Angriff liegt auch der Friedel—Crafts-Acylierung [7] und der Ringgliedsubstitution unter Friedel—Crafts-Acylierungsbedingungen [8,9] von (Borinato)eisen-Komplexen zugrunde.

SCHEMA 1

1,3-Boryl-Verschiebung [vgl. Ref. 10] liefert ein isomeres Kation mit einem Achtring-Liganden. Nachfolgende Hydrolyse führt dann notwendig zu Produkten mit cis-Stellung der Acetyl-Gruppe, und zwar zunächst zu einem Phenylvinylhydroxyboran-Derivat (Produkt VI könnte nach seinem Massenspektrum damit identisch sein) und nach weiterer Hydrolyse zum beobachteten Komplex IV.

Bemerkenswert ist auch die Leichtigkeit der Isomerisierung IV \rightarrow V. Wir vermuten eine Nachbargruppenbeteiligung der (C_5H_5) Co-Gruppe in der Weise, dass eine zwitterionige 16-Elektronenspezies gemäss Schema 2 die Rotationsbarriere der Butenon-Gruppierung in IV erniedrigt.

Experimentelles

Alle Versuche wurden unter Ausschluss von Luft mit Stickstoff als Schutzgas und mit absolutierten, sauerstofffreien Lösungsmitteln durchgeführt.

- (1) 1,1,4,4-Tetramethyl-1-sila-4-stanna-2,5-cyclohexadien (I)
- (a). 77.4 g (0.60 mmol) (CH₃)₂SiCl₂ wurden nach Ref. 11 mit HC≡CMgCl in THF zu (CH₃)₂Si(C≡CH)₂ umgesetzt. Da bei der folgenden Reaktion THF nicht stört, wurde bei der destillativen Aufarbeitung ein grösserer Siedebereich gewählt; man erhielt 60.8 g Destillat (70−85.5°C/1 bar), welches 39.8 g (369 mmol) (CH₃)₂Si(C≡CH)₂ enthielt (Ausb. 61% (Lit. 42.5% [11]), ¹H-NMR-spektroskopisch bestimmt).
- (b). Das Destillat von a wurde in Anlehnung an Ref. 2 in einem 11-Autoklaven mit 59.7 g (396 mmol) (CH₃)₂SnH₂ in 500 ml Hexan 65 h bei 100°C gerührt. Die bekannte destillative Aufarbeitung [2] ergab 79.0 g Destillat (Badtemperatur 80–260°C/19 mbar), welches 29.3 g (113 mmol) (CH₃)₂Si-(CH=CH)₂Sn(CH₃)₂ (I) (Ausb. 31% (Lit. 16% [2]), gaschromatographisch geschätzt) enthielt.
- (c). Das Destillat von b wurde in 350 ml Pentan mit 90 g (0.9 mol) CuCl 4 Tage bei Raumtemperatur gerührt. Nach Abziehen des Pentans und Aufnehmen in ca. 250 ml CHCl₃ filtrierte man durch eine 5 cm-Schicht von entgaster Aktivkohle unter Nachwaschen mit CHCl₃. Einengen und zweimalige Kristallisation aus CHCl₃/Pentan lieferten 46.1 g (101 mmol, 89%) reines I · 2 CuCl. Gef.: C, 21.20; H, 3.69; Cu, 27.55; Cl, 15.32. C₈H₁₆Cl₂Cu₂SiSn ber.: C, 21.02; H 3.54; Cu, 27.81; Cl, 15.51. Farblose, luftbeständige Kristalle, Zers. >160°C. Löslich in CHCl₃ und CH₂Cl₂, praktisch unlöslich in Pentan. Beim Versuch der Chromatographie in CH₂Cl₂ an Al₂O₃ (4—7% H₂O) wird der Ligand freigesetzt. Vgl. Ref. 6.

¹H-NMR (CDCl₃, 270 MHz, 20°C): τ 4.38 d (3- + 5-H), ²J(^{117,119}Sn—H) 81.0, 84.2 Hz; 4.62 d (2- + 6-H), ³J(^{117,119}Sn—H) 115.6, 120.2, J₂₃ 16.6 Hz; Zuordnung aufgrund der chemischen Verschiebung relativ zueinander, ferner mit gleichem Ergebnis aufgrund der Annahme |²J(Sn—H)| < |³J(Sn—H)|, vgl. Sn-(CH=CH₂)₄ [12]; 9.35 s (endo-CH₃Sn), ²J(^{117,119}Sn—H) 64.4, 66.3 Hz, 9.49 s (endo-CH₃Si), 9.77 s (exo-CH₃Sn), ²J(^{117,119}Sn—H) 54.0, 56.3 Hz, 9.85 s (exo-CH₃Si).

(a). 46.1 g (101 mmol) I · 2 CuCl wurden mit 132 g (0.5 mol) [C₆H₅N(CH₃)₃]I in 400 ml CH₂Cl₂ 3 h bei Raumtemperatur gerührt. Abziehen des Solvens, Aufnehmen in Pentan, Abfiltrieren des Unlöslichen und erneutes Abziehen des

Solvens vom Filtrat lieferte 23.2 g (89.7 mmol, 89%) reines, farbloses I [2]. Schmp. $\approx -10^{\circ}$ C.

(2) 1,1-Dimethyl-4-phenyl-1-sila-4-bora-2,5-cyclohexadien (II)

Die Darstellung von II kann entweder aus dem Rohdestillat von 1.b erfolgen [2] oder mit geringerer Gesamtausbeute, indem reines I mit C₆H₅BCl₂ umgesetzt wird. Man erhielt so aus 23.2 g (89.7 mmol) I und 16.0 g (101 mmol) C₆H₅BCl₂ in Anlehnung an die frühere Vorschrift [2] 16.4 g (83 mmol; 92%, bezogen auf reines I) farbloses, ¹H-NMR-spektroskopisch reines II. Die Ausbeute über 5 Stufen betrug 13.7%, bezogen auf (CH₃)₂SiCl₂.

(3) Cyclopentadienyl $\{2-6-\eta-(1,1-dimethyl-4-phenyl-1-sila-4-bora-2,5-cyclo-hexadien)\}$ kobalt (III)

In einem Schlenckrohr werden 450 mg (2.27 mmol) II und 610 mg (3.39 mmol) (C_5H_5)Co(CO)₂ in 40 ml Diethylether unter Rühren und Kühlung (10°C) mit einer Quecksilberdampflampe (TQ 150, Hanau) bestrahlt. Nach Ende der Gasentwicklung (\approx 110 ml) wird noch 30 min unter Spülen mit N_2 weiterbestrahlt. Abziehen des Flüchtigen und Chromatographie in Pentan an Al_2O_3 (luftfrei, mit 7% H_2O desaktiviert) liefert als erste, rotbraune Zone wenig (C_5H_5)Co(CO)₂ und als zweite, braune Zone ein tiefrotes Eluat von III. Kristallisation aus Pentan, zuletzt bei -78°C liefert 420 mg (1.30 mmol, 57%) III. Gef.: C, 63.30; H, 6.18; Co, 13.16. $C_{17}H_{20}BCoSi$ ber.: C, 63.37; H, 6.25; Co, 18.29. Tiefrote, nicht ganz luftbeständige Kristalle. Schmp. 87°C, Zers. 210–220°C; Sublimation bei 60°C/ 10^{-6} bar.

¹H-NMR (C_6D_6 , 270 MHz, 20°C); τ 1.71 m (2 H₀), 2.53 m (2 H_m + H_p), 4.98 d (3- + 5-H), 5.85 s (C_5H_5), 7.28 d (2- + 6-H), 9.30 s (endo-CH₃Si), 10.25 s (exo-CH₃Si), J_{23} 12.8 Hz. ¹¹B-NMR (C_6D_6 , 19 MHz, 20°C): δ 20.9 ppm, gegen externes BF₃ · O(C_2H_5)₂. ¹³C-NMR (C_6D_6 , 67.88 MHz, 20°C): δ 134.1 (2 C_o), 128.0 (C_6D_6 + 2 C_m + C_p), 93.1 (C(3) + C(5), verbreitert), 81.7 (C_5H_5), 53.1 (C(2) + C(6)), 7.1 (endo-CH₃), 0.6 (exo-CH₃). MS: m/e 322 (74%; M⁺), 307 (100; M — CH₃).

(4) Die Acetylierungsprodukte IV und V

(a). Zu 0.16 g (1.5 mmol) AlCl₃ in 18 ml CH_2Cl_2 gibt man bei Raumtemperatur 120 mg (1.53 mmol) CH₃COCl. Man kühlt auf 0°C und tropft unter Rühren in 10 min eine Lösung von 230 mg (0.71 mmol) III in 15 ml CH_2Cl_2 zu. Die Reaktionslösung wird 6 h bei 0°C gehalten und dann mit 30 ml H_2O hydrolysiert. Chromatographische Aufarbeitung der tiefroten organischen Phase an Al_2O_3 (luftfrei, mit 7% H₂O desaktiviert) mit Pentan/Ether-Gemisch (97/3) liefert nur eine sehr langsam wandernde, rotbraune Zone. Kristallisation aus Pentan bei -78°C ergibt 180 mg (0.65 mmol, 91%) Gemisch von IV und V (typisches Verhältnis IV/V = 94/6), aus dem durch Lösen in Pentan und erneutes Kristallisieren bei -78°C 160 mg (0.57 mmol, 81%) ¹H-NMR-spektroskopisch reines IV erhalten wird. Rötlich schwarze Kristalle. Schmp. $69-70^{\circ}\text{C}$, Zers. $110-115^{\circ}\text{C}$.

¹H-NMR (C_6D_6 , 270 MHz, 20°C): τ 5.80 s (C_5H_5); Vinyl-Gruppe: 6.83 dd (2- H_{syn}), 7.84 dd (1-H), 9.16 dd (2- H_{anti}), $^3J_{cis}$ 11.7, $^3J_{trans}$ 15.2, $^2J_{syn,anti}$ 1.3 Hz; cis-Vinylen-Gruppe: 6.90 d (1-H), 7.87 d (2-H), $^3J_{cis}$ 9.9 Hz; 7.70 s (CH_3CO),

- 9.08 s (endo-CH₃Si), 9.38 s (exo-CH₃Si: bei ungewöhnlich tiefem Fe'd durch Wechselwirkung mit der cis-CH₃CO-Gruppe). MS: m/e 278 (47%; M^+), 198 (100; $M \text{CH}_3, -\text{C}_5\text{H}_5$).
- (b). Wenn man beim gleichen Ansatz das Eluat konzentriert und vor der Kristallisation 6 Tage bei Raumtemperatur stehen lässt, erhält man 180 mg (0.65 mmol, 91%) ¹H-NMR-spektroskopisch reines V. Nebenreaktionen oder Zersetzungen treten bei der Umwandlung von IV in V nicht auf; die Umwandlung erfolgt in gleicher Weise bei Lichtausschluss. Gef.: C, 56.04; H, 6.98. C₁₃H₁₀-CoOSi ber.: C, 56.10; H, 6.88. Rötlich schwarze Kristalle. Schmp. 50—51°C, Zers. 110—115°C.

¹H-NMR (C_6D_6 , 270 MHz, 20°C): τ 5.75 s (C_5H_5); Vinyl-Gruppe; 7.29 d (2-H_{syn}), 8.44 dd(d) (1-H), 8.58 d (2-H_{anti}), ³J_{cis} 11.5, ³J_{trans} 15.0, ²J_{syn,anti} ≈ 0, ⁴J₁₁· 1.2 Hz (Fernkopplung von 1-H mit 1-H der trans-Vinylen-Gruppe); trans-Vinylen-Gruppe: 7.21 d(d) (1-H), 8.26 d (2-H), ³J_{trans} 13.3 Hz; 7.80 s (CH₃CO), 9.29 s (endo-CH₃Si), 10.30 s (exo-CH₃Si). MS: m/e 278 (52%; M^+), 198 (100; M — CH₃ — C_5H_5).

(5) Die Isomerisierung von IV zu V

Eine Probe von IV in C_6D_6 wurde 98 h bei 296 K gehalten. Bei 11 Zeiten $(0 \le t \le 98 \text{ h})$ wurde durch Integration der C_5H_5 -Signale von IV und V das Mengenverhältnis IV/V bestimmt. Die Auswertung ergab k (1.50 ± 0.03) × 10^{-3} s⁻¹ (Mittel aus 10 Werten mit Standardfehler) und mithilfe der Eyring-Gleichung ΔG^{\neq} 100 ± 2 kJ mol⁻¹.

(6) Daten von VI

MS (Peaks mit m/e > 250): $m/e 382 (1\%; M^+)$, 354 (1, M - HBO), 312 (3; $M - 70 \text{ (CH}_3\text{COCH}=\text{CH}_2(?))$), 289 (3; 354 $- \text{C}_5\text{H}_5$), 278 (10; $M - \text{C}_6\text{H}_5\text{BO}$), 276 (11; 354 $- \text{C}_6\text{H}_6$), 263 (7; 278 $- \text{CH}_3$), 261 (43; 276 $- \text{CH}_3$), 58 (100; Si(CH₃)₂⁺). Deutung: $M = (\text{C}_5\text{H}_5\text{Co}[(\text{CH}_3)_2\text{Si}(\text{CH}=\text{CHCOCH}_3)\{\text{CH}=\text{CHB}(\text{OH})-\text{C}_6\text{H}_5\}]$.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für grosszügige Förderung dieser Arbeit.

Literatur

- 1 G.E. Herberich und H. Müller, Angew. Chem., 83 (1971) 1020; Angew. Chem. Int. Ed. Engl., 10 (1971) 937.
- 2 G.E. Herberich, E. Bauer, J. Hengesbach, U. Koelle, G. Huttner und H. Lorenz, Chem. Ber., 110 (1977) 760.
- 3 U. Koelle, W.-D.H. Beiersdorf und G.E. Herberich, J. Organometal. Chem., 152 (1978) 7.
- 4 G.E. Herberich, W. Koch und H. Lueken, J. Organometal. Chem., 160 (1978) 17.
- 5 G.E. Herberich, C. Engelke und W. Pahlmann, Chem. Ber., 112 (1979) 607.
- 6 G.E. Herberich und B. Hessner, Z. Naturforsch. B, 33 (1978) 180.
- 7 A.J. Ashe III, E. Meyers, P. Shu, T. von Lehmann und J. Bastide, J. Amer. Chem. Soc., 97 (1975) 6865.
- 8 K. Carsten, Dissertation, Technische Hochschule Aachen, 1978.
- 9 G.E. Herberich und K. Carsten, J. Organometal. Chem., 144 (1978) C1.
- 10 P. Paetzold und H.-P. Biermann, Chem. Ber., 110 (1977) 3678.
- 11 U. Krüerke, J. Organometal. Chem., 21 (1970) 83.
- 12 P. Krebs und H. Dreeskamp, Spectrochim. Acta A, 25 (1969) 1399.