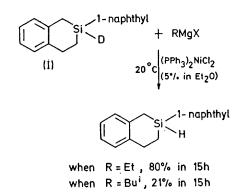
J.C.S. СНЕМ. СОММ., 1973

Homogeneous Catalytic Activation of Grignard Reagents by Nickel Complexes. A New Stereospecific Method for Reduction of Alkoxy-, Chloro-, and Fluoro-silanes


By ROBERT J. P. CORRIU* and BERNARD MEUNIER

(Laboratoire des Organométalliques—Laboratoire associé au CNRS no 82, Université des Sciences et Techniques du Languedoc, 34060 Montpellier-CEDEX France)

Summary A highly stereospecific preparative route to R¹R²R³Si*H is described involving the reaction between R¹R²R³Si*X (X = OMe, F, or Cl) and Grignard reagents possessing β -hydrogens (Et, Prⁿ, Pr^l, Buⁿ, Bu^l) activated by a nickel catalyst.

PREVIOUSLY, we have shown that whereas unsaturated Grignard reagents activated by nickel complexes substitute hydrosilanes, saturated Grignard reagents do not.¹ In the case of carbon compounds, the hydrogenolysis of allylic alcohols by Pr^nMgBr activated by $(PPh_3)_2NiCl_2$ has been demonstrated.³

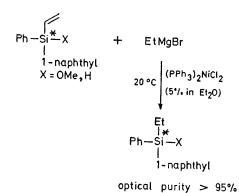
An exchange reaction with the deuteriosilane (I) showed the reductive properties of saturated Grignard reagents in the presence of (PPh₃)₂NiCl₂. This reaction takes place with absolute retention of configuration at silicon. The order of reactivity of the Grignard reagents is: EtMgBr > $Pr^nMgBr \sim Bu^nMgBr > Pr^iMgBr > Bu^iMgBr$. The ratio of silicon hydride to deuteride was quantitatively determined by i.r. spectroscopy.

Application of these reactions to organosilanes of the type $R^{1}R^{2}R^{3}Si^{*}X$ (X = OMe, F, or Cl) provides a novel method for their stereospecific reduction [e.g. reaction (1)]. It is

interesting that LiAlH₄, but not NaBH₄, reduces methylphenyl-l-naphthylmethoxysilane giving the silicon hydride.4 The reaction of various saturated Grignard reagents with (+)-ethylphenyl-1-naphthylmethoxysilane in the presence of $(PPh_3)_2NiCl_2$ gives (+)-ethylphenyl-1-naphthylsilane (see Table), predominantly with retention of configuration based on the relative configurations previously determined.⁵

The order of reactivity of the Grignard reagents is the same as that for the D/H exchange reaction. The reaction was followed by g.l.c.

The reduction of fluoro- and chloro-silanes was studied under the same conditions. The reduction of fluorosilane takes place with 90% retention of configuration at silicon, and that of chlorosilane with inversion of configuration (100% stereospecificity).


It should be noted that the system 'RMgX-nickel' induces different stereochemistry than does LiAlH₄. It has

- ¹ R. J. P. Corriu and J. P. Massé, Chem. Comm., 1970, 213.
- ² R. J. P. Corriu, J. P. Massé, and B. Meunier, J. Organometallic Chem., 1972, in the press.
 ³ H. Felkin and G. Swierczewski, (a) Compt. rend., 1968, 266C, 1611; (b) Tetrahedron Letters, 1972, 1433.
- ⁴ G. A. Parker, Ph.D. Thesis, The Pennsylvania State University, 1963.
- ⁵ R. Corriu and G. Royo, Tetrahedron, 1971, 27, 4289.
- ⁶ L. H. Sommer, C. L. Frye, G. A. Parker, and K. W. Michael, J. Amer. Chem. Soc., 1964, 86, 3271.

^a All the reactions were carried out under standard conditions: nitrogen atmosphere; temp. 20 °C; methoxysilane, 2 mm; Grignard reagent 20 mm; catalyst 0.1 mm. After the methoxysilane had reacted completely, the reduction product was isolated and purified by chromatography on a column of neutral alumina (yield > 80%).

For Pr¹MgBr and Bu¹MgBr the reactions are very N.B.slow. However, 50% of R1R2R3SiH is isolated after 8 days in refluxing Et₂O.

been shown⁶ that the latter reduces methoxy-, fluoro-, and chloro-silanes with, respectively, retention, inversion, and inversion of configuration. However the 'RMgX-nickel' system reduces these same functional groups with, respectively, retention, retention, and inversion.

This new method of reduction can also be applied to vinylsilanes [equation (2)]. The reduction of the Si-X function is much slower than that of the Si-Vinvl. It is therefore possible to isolate R¹R²EtSiX quantitatively.

We thank the 'Délégation Générale à la Recherche Scientifique et Technique' for financial support.

(Received, 20th November 1972; Com. 1925.)

Published on 01 January 1973. Downloaded by University of Prince Edward Island on 22/10/2014 15:19:14.

165