J. Chem. Soc. (C), 1970

# **Reaction of Picryl Azide with** *N***-Methylindoles: the Crystal Structure of 1-Methyl-2-picryliminoindoline**

By A. S. Bailey\* and (Mrs.) W. A. Warr, Dyson Perrins Laboratory, South Parks Road, Oxford G. B. Allison and C. K. Prout, Chemical Crystallography Laboratory, South Parks Road, Oxford

Picryl azide reacts with *N*-methylindoles to form 2-*N*-picryl derivatives of 2-aminoindole. These compounds exist in the amino-form (I) in solution, but the three-dimensional crystal structure determination for the 1-methyl-2-*N*picryl derivative shows it to be in the iminoindoline form (II). The structure was determined from diffractometer data by direct methods and refined by least squares to R 0.053. The carbon-carbon bonds at C(3) are both of length 1.52 Å, and the positions of the two hydrogen atoms were clearly established from difference Fourier syntheses.

2-ALKYLINDOLES react with picryl azide forming 3,3'-azoindoles and with toluene-p-sulphonyl azide to form a mixture of the azo-compound and the 3-p-tolyl-

<sup>1</sup> A. S. Bailey and J. J. Merer, *J. Chem. Soc.* (C), 1966, 1345. <sup>2</sup> A. S. Bailey, M. C. Churn, and J. J. Wedgwood, *Tetrahedron Letters*, 1968, 5953. sulphonylaminoindole.<sup>1</sup> Simple indoles unsubstituted in the 2-position form 2-p-tolylsulphonylaminoindoles [(I), (II);  $\mathbb{R}^3 = \text{tosyl}$ ] when warmed with toluenep-sulphonyl azide.<sup>2,3</sup> We now report the reaction of <sup>3</sup> A. S. Bailey and (Mrs.) W. A. Warr, unpublished observations. picryl azide with N-substituted indoles, together with the crystal and molecular structure of one of the adducts, in order to check the spectral assignment.



## **RESULTS AND DISCUSSION**

Chemistry.—N-Methylindole, 1,3-dimethylindole, and indole-N-acetic acid react smoothly with picryl azide at room temperature. The products are sparingly soluble crystalline materials having similar u.v. spectra (Figure 1; the values of  $\varepsilon$  for curve A are probably too small, since the compound is very insoluble).



FIGURE 1 U.v. spectra of A, (I;  $R^1 = Me$ ,  $R^2 = H$ ,  $R^3 = picryl$ ); B, (I;  $R^1 = R^2 = Me$ ,  $R^3 = picryl$ ); and C, (I;  $= CH_2 \cdot CO_2H$ ,  $R^2 = H$ ,  $R^3 = picryl$ ), all in solution in ethanol

The mass spectra of these compounds gave little structural information. The base peak in the spectrum of (I;  $R^1 = Me$ ,  $R^2 = H$ ,  $R^3 = picryl$ ) appeared at m/e339  $(M - H_2O)$ . The molecular ion signal m/e 357 (14%) was small. Main peaks in the higher mass region arise from loss of NO or NO<sub>2</sub>: 309 (13%, 339 - NO), 293 (14%, 339 - NO<sub>2</sub>), and 247 (30%, 293 - NO<sub>2</sub>). The second most intense peak in the spectrum [m/e 224](42%) (C<sub>7</sub>H<sub>4</sub>N<sub>4</sub>O<sub>5</sub>) probably arises by cleavage of the indole ring. There were no strong signals in the region of m/e 144, suggesting that picryl cleavage is unimportant and no peaks at 227-229 or 131, suggesting that  $C \neq N$ -picryl cleavage is not occurring. A small signal at m/e 328 (M - 29) corresponds to loss of H and CO (less likely is 2H + HCN). This may indicate oxygen transfer to C(3) of the indole structure followed by loss of carbon monoxide (cf. 1-nitronaphthalene 4). The third strongest signal, m/e 105 (30%, PhCO<sup>+</sup>), may be formed in this manner.

The mass spectrum of (I;  $R^1 = R^2 = Me$ ,  $R^3 = picryl$ ) contains a weak molecular ion m/e 371 (4%), 356 (10%),  $M - CH_3$ ), 355 (40%, M - O), 341 (10%, M - NO), and 340 (34%, M - H - NO). The base peak is at m/e 337 (100%,  $M - H - CH_3 - H_3O$ ) and the second most intense peak at m/e 312 (54%, 355 - CH<sub>3</sub> - CO). Other intense signals were formed by loss of NO or NO<sub>2</sub>; 323 (23%,  $M - H_2O - NO$ ), 307 (31%,  $M - H_2O NO_2$  293 (22%, 323 – NO), 291 (18%, 337 –  $NO_2$ ), 245  $(22\%, 337 - 2NO_2), 266 (8\%, 312 - NO_2), and 220 (13\%)$  $266 - NO_2$ ). There were no strong peaks below m/e 220. The following transformations were indicated by metastable peaks: 338 --> 337 (336.0), 355 --> 340 (325.6), 355 → 312 (274·5), 320 → 290 (262·8), 312 → 266 (226.6), and 266 → 220 (181.9).

The n.m.r. spectra ( $[{}^{2}H_{6}]$  dimethyl sulphoxide) of the three products all show the signals of the 'picryl' protons split into a pair of doublets with separations varying from 42 to 62 Hz and coupling constants of 2 Hz. The compound formed from 1-methylindole is rather insoluble in dimethyl sulphoxide and gives a poor spectrum; the spectra of the compound formed from 1,3-dimethylindole is shown (Figure 3). The splitting persists in trifluoracetic acid and, for the indole-Nacetic acid adduct, in deuterium oxide-sodium carbonate. The n.m.r. spectrum of N-phenylpicramide shows a sharp singlet [ $\tau$  (Me<sub>2</sub>SO) 1·1;  $\tau$  (CHCl<sub>3</sub>) 0·92] for the picryl protons.

The n.m.r. spectrum of 1,1-diphenyl-2-(2,4,6-trinitrophenyl)hydrazine showed the picryl signals as a broad band at 36° (methylene chloride) which had split into an AB system at  $-60^{\circ}$ ;<sup>5</sup> the signal from N-methylpicramide consisted of a sharp singlet at  $+38^{\circ}$  and an AB system at  $-60^{\circ}$ . The difference in chemical shifts for the hydrazine derivative varied with solvent, being smaller in acetone than in methylene chloride. A sample of (I;  $R^1 = R^2 = Me$ ,  $R^3 = picryl$ ) was heated in a variable-temperature probe; the AB spectrum of the picryl protons persisted up to 160°; the compound then decomposed.

The spectral information suggested two structural possibilities for these compounds.

(i) That the adducts were oxidation-reduction products-alkylindoles are readily oxidised at the 3-position, and aromatic nitro-compounds oxidise enamines.<sup>6</sup>

(ii) That the adducts were as predicted [either (I) or (II)], with severe restriction of free rotation of the o-nitro-groups.

This latter effect has been observed before.<sup>5</sup> The restriction in rotation is presumably due to hydrogen bonding between an o-nitro-group and a hydrogen atom attached to the nitrogen. This hypothesis requires that in solution the adduct is present in the indole (I) rather

<sup>&</sup>lt;sup>4</sup> H. Budzikiewicz, C. Djerassi, and D. H. Williams, 'Mass Spectrometry of Organic Compounds,' Holden Day, London, 1967, 518.

J. Heidberg, J. A. Weil, G. A. Janusonis, and J. K. Ander-J. Chem. Phys., 1964, 41, 1033. S. Danishefsky and R. Cavanaugh, Chem. and Ind., 1967, son, 6

<sup>2171.</sup> 

1-216(4)

1.384(5

118.0(3) 124.4 (3)

19 Ń.

0 1.220 (4)

1-475 (4) 1-383(5)

1-376(5

1.219(4

 $\cap$ 

117-7(3) 113-6(3) 117-8 (3) 118-9(3) 122-5(3) 12

117-1(3)

 $\alpha$ 

117-9(3)(117-1(3)

117-6(3) 116-5(3)

125-9(3)

than the indoline (II) form. Strong hydrogen bonding has been observed in the crystal structure of 2,3,4,6tetranitroaniline <sup>7</sup> (O · · · H contacts of 1.92 and 2.04 Å). An accurate crystal structure analysis (R = 0.053) of the *N*-methylindole adduct showed that it is of type (II) and is in the indoline form (Figure 2).

1.212(5)

σ

285(5

18/1/211 (5)

1.475 (4)

.377 (4)

N 11

0

118-6(3) 124-1(4)

 $\hat{\mathbf{\Omega}}$ 

113-6(3) 124-4(3) 129-6(3) (108-4(3) 109-2(3) 122-3(4)

125.0(3) 121.6(3) 121.9(3) 122.1(3) 111.7(3) 128.6(4)

116.3(3) 117.2(3)

124-0(3) 119-6(3)

416 (5)

.407 (4)

1-479 (4)

20 1.223(4)

О

1-387 (4)

1-411 (6)

-388(7)

119-9(4)

121.5(4)

117.4(4)

388(6)

1374(6)

-395(5)

406 (5)

1-467 (6)

102 . 4 (3)

125-4(3) 122-9(3)

131-8(4)

108-4(3)(119-8(4)

1388(6)

119-1(4)

1-516 (5)

522(5)

·360(5)



The n.m.r. spectra (Figure 3) can be explained if, in solution (Me<sub>2</sub>SO), the compound exists as the indole



FIGURE 3 N.m.r. spectra of (I;  $R^1 = R^2 = Me$ ,  $R^3 = picryl)$ in solution in A, trifluoroacetic acid and B, dimethyl sulphoxide

(I;  $R^1 = Me$ ,  $R^2 = H$ ,  $R^3 = picryl$ ), as there is no sign of the signal to be expected from the methylene group in (II;  $R^1 = Me$ ,  $R^2 = H$ ,  $R^3 = picryl$ ), although the corresponding tolylsulphonyl derivative ( $R^1 = Me$ ,  $R^2 =$ 

<sup>7</sup> C. Dickinson, J. M. Stewart, and J. R. Holden, Acta Cryst., 1966, **21**, 663.

<sup>8</sup> T. Takigawa, T. Ashida, Y. Sasada, and M. Kakudo, *Bull. Chem. Soc. Japan*, 1966, **39**, 2369.

## J. Chem. Soc. (C), 1970

H,  $R^3 = \text{tosyl}$ ) is mainly (80%) in the imino-form (II).<sup>3</sup> The proton at C(3) in the picryl compound is deshielded by the picryl group and its signal is moved into the aromatic region. This contrasts with the signal from H-C(3) in (I;  $R^1 = Me$ ,  $R^2 = H$ ,  $R^3 = tosyl$ ), which appears at  $\tau$  4.1.<sup>3</sup> A similar effect is seen in the 3-methyl-substituted compounds. In (I;  $R^1 = R^2 =$ Me,  $R^3 = tosyl$ ) this signal (Me) appears at  $\tau 8.38$ ; when  $R^3 = picryl$  the signal is moved down to  $\tau$  7.48. The acid  $(R^1 = CH_2 CO_2H, R^2 = H, R^3 = picryl)$  is entirely in form (I) in both dimethyl sulphoxide and deuterium oxide-sodium carbonate, and the signal from H-C(3) is in the aromatic region. The 1-methyl compound and the 1,3-dimethyl compound ( $R^3 = picryl$ ) exist in the indole form (I) in trifluoracetic acid (see Figure 3), whereas the corresponding tosyl derivatives exist in form (II;  $R^3 = tosyl$ ).

Crystal Structure of the N-Methylindole Adduct.—The atom numbering, interatomic distances, and interbond angles, together with their estimated standard deviations, are shown in Figure 2.

The compound is formulated as an indoline adduct on the basis of the following evidence. (i) On a difference Fourier map at the convergence of isotropic refinement  $(R \ 0.128)$ , two clearly resolved peaks of *ca*. 0.7e at *ca*. 1 Å from C(3), completed a tetrahedron about this atom, and must correspond to hydrogen atom positions. The other nine hydrogen atom positions were equally well defined, but no maxima were observed about N(11). (ii) Table 1 gives a comparison of bond lengths reported

TABLE 1

Comparison of the dimensions (Å) of indole compounds

|             |                                     |                   |       | Calc.  |
|-------------|-------------------------------------|-------------------|-------|--------|
|             | L-Tryptophan                        | Indole-3-acetic   | This  | for    |
| Bond        | hydrochloride a                     | acid b            | work  | indole |
| N(1)-C(2)   | 1.377                               | 1.401             | 1.360 | 1.36   |
| C(2) - C(3) | 1.344                               | 1.342             | 1.522 | 1.36   |
| C(3) - C(4) | 1.451                               | 1.470             | 1.516 | 1.42   |
| C(4) - C(5) | 1.412                               | 1.434             | 1.374 | 1.41   |
| C(5) - C(6) | 1.397                               | 1.409             | 1.411 | 1.38   |
| C(6) - C(7) | 1.386                               | 1.396             | 1.388 | 1.40   |
| C(7) - C(8) | 1.399                               | 1.409             | 1.388 | 1.38   |
| C(8) - C(9) | 1.400                               | 1.422             | 1.388 | 1.40   |
| C(4) - C(9) | 1.382                               | 1.407             | 1.395 | 1.41   |
| N(1) - C(9) | 1.391                               | 1.385             | 1.406 | 1.37   |
| σ (mean)    | 0.015                               | 0.018             | 0.005 |        |
|             | <sup>a</sup> Ref. 8. <sup>b</sup> ] | Ref. 9. • Ref. 10 |       |        |
|             |                                     |                   |       |        |

for indole compounds with those obtained in this work. Of especial interest is the bond C(2)-C(3). In the known indole structures the length of this bond agrees well with the calculated value (1.34 Å):<sup>10</sup> the  $\pi$ -bond order is 0.5. Our bond length (1.522 Å) corresponds to that of a carbon-carbon (C-C=C) single  $\sigma$ -bond (1.510 Å),<sup>11</sup> as required by the indoline formulation. Other bond lengths in the heterocycle show the expected deviations from the indole values. (iii) On the basis of a semi-empirical

<sup>&</sup>lt;sup>9</sup> I. L. Karle, K. Butts, and P. Gum, Acta Cryst., 1964, **17**, 496.

<sup>&</sup>lt;sup>10</sup> H. C. Longuet-Higgins and C. A. Coulson, *Trans. Faraday* Soc., 1947, **43**, 87.

<sup>&</sup>lt;sup>11</sup> Chem. Soc. Special Publ., No. 18, 1965.

## Org.

bond-order-bond-length relationship,<sup>12</sup> the  $\pi$ -bond order of C(2)-N(11)(1.285 Å) is very nearly one. N(11)-C(12)is longer (1.377 Å), although not as long as expected for a single  $\sigma$ -bond, e.g. in a picryl azide molecular complex the corresponding bond length is 1.46 Å.13 The indoline formulation requires double and single bonds in these respective positions. (iv) The indoline structure requires that N(11) should be  $sp^2$  hybridised and that the hybrid orbitals should be coplanar with the indoline ring. C(12) is coplanar and N(11) is only slightly out of plane

## TABLE 2

### Least-squares planes

(a) Distances (Å) of atoms from planes (parentheses indicate atoms not in calculation)

|       | Indoline  | Picryl nucleus |
|-------|-----------|----------------|
| N(1)  | -0.002    | •              |
| C(2)  | 0.007     |                |
| C(3)  | -0.011    |                |
| C(4)  | 0.009     |                |
| C(5)  | 0.008     |                |
| C(6)  | -0.005    |                |
| C(7)  | -0.011    |                |
| C(8)  | -0.002    |                |
| C(9)  | -0.003    |                |
| C(10) | 0.009     |                |
| C(11) | (0.055)   |                |
| C(12) | (-0.0002) | -0.002         |
| C(13) |           | 0.016          |
| C(14) |           | -0.014         |
| C(15) |           | -0.001         |
| C(16) |           | 0.014          |
| C(17) |           | -0.013         |

(b) Equations of planes: ax + by + cz = 1 where x, y, and z are fractional co-ordinates

| Plane                | a      | b     | С      |
|----------------------|--------|-------|--------|
| Indoline             | -1.788 | 21.25 | -37.46 |
| Picryl nucleus       | 1.098  | 0.926 | -0.381 |
| Nitro-group on C(13) | -1.340 | 0.800 | 1.250  |
| Nitro-group on C(15) | 1.012  | 0.917 | -0.340 |
| Nitro-group on C(17) | 0.186  | 1.101 | -0.185 |

(0.05 Å) as can be seen from Table 2, which shows the equations of some least-squares planes through the molecule, together with deviations of atoms from the planes. For the indoline ring, no atom deviates by  $>2\sigma$ from the plane, but the picryl ring is significantly nonplanar (deviations  $> 3\sigma$ ). This effect is believed to be a real one, having been noticed before for polysubstituted benzene nuclei,<sup>7</sup> and is possibly due to a steric effect.

The angle between the least-squares planes through the indoline and picryl nuclei is 96°. The o-nitro-groups are twisted out of the plane of the picryl nucleus by 137 and 125°, while the p-nitro-group is almost coplanar with it. The direction of rotation is that suggested in ref. 14, *i.e.* right-handed about the direction of numbering.

The crystal lattice consists of isolated molecules held together by van der Waals forces. The picryl rings stack on top of each other but to minimise interactions between the noncoplanar nitro-groups at C(13) and C(17) and the corresponding nitro-groups in neigh-12 C. A. Coulson and A. Golebiewski, Proc. Phys. Soc., 1961, 78, 1310.
 <sup>13</sup> A. S. Bailey and C. K. Prout, J. Chem. Soc., 1965, 4867.

bouring molecules, the rings are staggered with respect to their neighbours. The stacks of rings are parallel to the a axis, with the ring nuclei almost parallel to c



FIGURE 4 The crystal structure of 1-methyl-2-picryliminoindoline projected down c

(Figure 4). The indoline rings are packed parallel to each other up c, but are not overlapping as are the picryl rings.

The carbon-carbon bond lengths of the picryl nucleus are similar to those reported for 2,3,4,6-tetranitroaniline,<sup>7</sup> where the carbon-carbon bonds attached to the amine nitrogen are significantly larger than the normal (1.397 Å) reported for benzene,<sup>15</sup> and average 1.412 Å. The remaining four average 1.381 Å, which is significantly shorter than the benzene value. Also, in common with other polynitro-compounds,<sup>7,13</sup> the ring has internal angles significantly  $>120^{\circ}$  at the carbon atoms attached to nitro-groups. This effect now appears to be general in such compounds.

The root-mean-square displacements along the principal axes of the thermal ellipsoids (Table 3) show definite evidence for considerable rigid-body motion of the indoline ring about N(11), since the magnitude of the principal displacement increases in the indoline ring with distance from this atom. The almost isotropic displacements in the picryl nucleus show that this unit remains essentially stationary during movement of the indoline ring. The nitro-groups show the expected rotational movement about the C-N vectors.

*Conclusion*.—Although the nature of these compounds is as expected (*i.e.* they are not oxidation-reduction

<sup>14</sup> J. T. Edsall, P. J. Flory, J. C. Kendew, A. M. Liquori, G. Nemethy, G. M. Ramachandran, and H. A. Scherago, J. Mol. Biol., 1966, 15, 399.

<sup>&</sup>lt;sup>15</sup> A. Langseth and B. P. Stoicheff, Canad. J. Phys., 1956, 34, 350.

products), the crystal structure with the compound in the indoline form does not indicate whether one (or both) of the *o*-nitro-groups is locked in position by hydrogen bonding when in the indole form.

## TABLE 3

The root-mean-square magnitudes and direction cosines of the principal axes of the thermal ellipsoids (the direction cosines are with respect to the crystallographic axes)

| 0             |                | ,         |        |        |        |
|---------------|----------------|-----------|--------|--------|--------|
| Atom          | Axis $i$       | $U_i$ (A) | $l_i$  | mi     | $n_i$  |
| O(1)          | 1              | 0.348     | 0.723  | 0.577  | -0.460 |
| - (-)         | $\tilde{2}$    | 0.271     | -0.662 | 0.815  | 0.212  |
|               | 3              | 0.188     | -0.199 | -0.053 | -0.862 |
| O(2)          | ĩ              | 0.356     | 0.409  | 0.861  | -0.187 |
| • /           | <b>2</b>       | 0.288     | 0.729  | -0.414 | 0.376  |
|               | 3              | 0.177     | -0.549 | 0.297  | 0.908  |
| O(3)          | ī              | 0.322     | -0.102 | 0.957  | 0.231  |
| • /           | <b>2</b>       | 0.267     | 0.864  | 0.132  | -0.705 |
|               | 3              | 0.185     | 0.494  | -0.260 | 0.671  |
| O(4)          | 1              | 0.311     | 0.827  | 0.333  | 0.063  |
| • /           | <b>2</b>       | 0.244     | -0.463 | 0.202  | 0.957  |
|               | 3              | 0.188     | -0.319 | 0.921  | -0.284 |
| O(5)          | 1              | 0.297     | 0.743  | 0.576  | -0.360 |
|               | <b>2</b>       | 0.242     | 0.487  | -0.497 | 0.604  |
|               | 3              | 0.178     | -0.460 | 0.649  | 0.711  |
| O(6)          | 1              | 0.308     | 0.836  | 0.450  | -0.325 |
|               | <b>2</b>       | 0.242     | -0.047 | 0.133  | 0.945  |
|               | 3              | 0.182     | -0.547 | 0.883  | -0.029 |
| N(1)          | 1              | 0.254     | 0.250  | -0.144 | 0.848  |
|               | 2              | 0.230     | -0.643 | -0.686 | 0.326  |
| <b>a</b> (a)  | 3              | 0.162     | -0.724 | 0.714  | 0.419  |
| C(2)          | 1              | 0.239     | 0.702  | 0.560  | 0.030  |
|               | 2              | 0.196     | 0.134  | -0.555 | 0.791  |
| C (0)         | 3              | 0.171     | -0.700 | 0.615  | 0.611  |
| U( <b>3</b> ) | 1              | 0.244     | 0.104  | -0.175 | 0.914  |
|               | 2              | 0.219     | 0.723  | 0.604  | -0.236 |
| 0(1)          | 3              | 0.178     | -0.683 | 0.778  | 0.330  |
| U(4)          | 1              | 0.270     | 0.327  | -0.175 | 0.802  |
|               | z              | 0.230     | 0.939  | 0.052  | -0.584 |
| C ( 5 )       | 3              | 0.221     | 0.100  | -0.983 | 0.120  |
| C(0)          | 1              | 0.280     | 0.971  | -0.274 | 0.009  |
|               | 2              | 0.273     | 0.194  | 0.156  | 0.026  |
| C (6)         | 1              | 0.212     | 0.070  | 0.115  |        |
|               | 9              | 0.239     | 0.047  | 0.189  | 0.069  |
|               | ã              | 0.186     | -0.238 | 0.977  | 0.158  |
| C(7)          | ĩ              | 0.263     | 0.872  | 0.370  |        |
| <b>(()</b>    | $\overline{2}$ | 0.246     | -0.043 | -0.197 | 0.959  |
|               | 3              | 0.186     | -0.488 | 0.908  | 0.227  |
| C(8)          | ĭ              | 0.239     | 0.763  | 0.247  | 0.269  |
| -(-)          | $\hat{2}$      | 0.214     | -0.403 | -0.375 | 0.927  |
|               | 3              | 0.185     | -0.505 | 0.894  | 0.262  |
| C(9)          | i              | 0.238     | 0.712  | 0.271  | 0.334  |
| ,             | 2              | 0.215     | -0.390 | -0.472 | 0.882  |
|               | 3              | 0.189     | -0.584 | 0.839  | 0.333  |
| C(10)         | 1              | 0.338     | 0.241  | -0.299 | 0.835  |
|               | 2              | 0.262     | -0.501 | -0.795 | 0.104  |
|               | 3              | 0.181     | -0.831 | 0.528  | 0.541  |
| N(11)         | 1              | 0.233     | 0.549  | -0.008 | 0.623  |
|               | <b>2</b>       | 0.220     | -0.452 | -0.764 | 0.536  |
|               | 3              | 0.120     | -0.703 | 0.645  | 0.570  |
| C(12)         | 1              | 0.204     | 0.192  | -0.568 | 0.759  |
|               | 2              | 0.189     | 0.498  | 0.708  | 0.171  |
| 0/10)         | 3              | 0.169     | -0.846 | 0.420  | 0.628  |
| C(13)         | 1              | 0.209     | 0.331  | 0.802  | 0.233  |
|               | 2              | 0.187     | -0.816 | 0.123  | 0.792  |
| C(14)         | 3<br>1         | 0.180     | 0.475  |        | 0.262  |
| U(14)         | 1              | 0.214     | 0.205  | -0.812 | 0.046  |
|               | 2              | 0.191     | 0.224  | 0.490  | 0.314  |
| C(15)         | 0<br>1         | 0.202     | 0.774  | 0.311  | 0.210  |
| 0(10)         | 2              | 0.190     | 0.850  | 0.590  | 0.100  |
|               | 3              | 0.165     | -0.752 | 0.624  | 0.538  |
| C(16)         | ĩ              | 0.196     | -0.150 | -0.963 | 0.197  |
| ()            | $\overline{2}$ | 0.193     | 0.328  | -0.014 | 0.797  |
|               | 3              | 0-181     | 0.933  | -0.271 | -0.571 |

|       |          | Table     | 3 (contin | uued)  |        |
|-------|----------|-----------|-----------|--------|--------|
| Atom  | Axis $i$ | $U_i$ (Å) | li        | mi     | ni     |
| C(17) | 1        | 0.203     | 0.232     | -0.928 | 0.336  |
|       | 2        | 0.197     | 0.924     | 0.213  | -0.101 |
|       | 3        | 0.164     | 0.305     | -0.306 | -0.937 |
| N(18) | 1        | 0.263     | 0.974     | 0.077  | -0.187 |
| • •   | 2        | 0.208     | -0.132    | 0.935  | -0.370 |
|       | 3        | 0.177     | 0.184     | -0.345 | -0.910 |
| N(19) | 1        | 0.227     | -0.129    | -0.463 | 0.902  |
| • •   | 2        | 0.208     | 0.703     | 0.490  | 0.143  |
|       | 3        | 0.178     | 0.699     | 0.739  | 0.407  |
| N(20) | 1        | 0.276     | 0.531     | 0.704  | 0.117  |
|       | <b>2</b> | 0.193     | 0.279     | -0.584 | 0.705  |
|       | 3        | 0.177     | -0.800    | 0.404  | 0.699  |

## EXPERIMENTAL

N.m.r. spectra were measured with a Perkin-Elmer R14 (100MHz) instrument and mass spectra with an AEI MS 9 instrument.

1-Methyl-2-picrylaminoindole (I;  $R^1 = Me$ ,  $R^2 = H$ ,  $R^3 = picryl).-1-Methylindole$ (2 g.; distilled from sodium) 16 and picryl azide (3 g.) were dissolved in ethyl acetate (30 ml.) and the resulting red solution was kept for 6 days. Nitrogen was evolved and solid started to separate after 6 hr. The solid was collected, washed with ethyl acetate, and dried (3.28 g., 78%). (With dimethyl sulphoxide as solvent the reaction appeared to be complete in 4 hr.). Crystallisation from dioxan gave material which softened and slowly decomposed without melting above 170°. From dimethylformamide the compound crystallised with solvent (n.m.r.); it softened at 180° and decomposed at 210° (Found: C, 50.4; H, 3.5; N, 18.8, 19.2 C<sub>15</sub>H<sub>11</sub>N<sub>5</sub>O<sub>6</sub> requires C, 50.4; H, 3.1; N, 19.5%). N.m.r. spectra: τ (CF<sub>3</sub>·CO<sub>2</sub>H) 0.95 (1H, d, J 2 Hz), 1.08 (1H, d, J 2 Hz), 1.8—2.5 (5H, m), and 5.67 (3H, s, NMe);  $\tau$  [(CD<sub>3</sub>)<sub>2</sub>SO] -0.2 (NH), 1.3 (1H, d, J 2 Hz), 1.82 (1H, d, J 2 Hz), 1.8-2.6 (5H, m), and 6.4 (3H, s, NMe).

1,3-Dimethyl-2-picrylaminoindole (I:  $R^1 = R^2 = Me$ ,  $R^3 = picryl$ ) was prepared from 1,3-dimethylindole (4 g.; obtained by methylation of skatole<sup>16</sup>) and picryl azide (6 g.) in ethyl acetate (45 ml.) (yield 67% after 6 days). The compound formed yellow needles from n-propanol, darkening at 229°, m.p. 240-241° (decomp.) (Found: C, 51·5; H, 3·5; N, 19·0.  $C_{16}H_{13}N_5O_6$  requires C, 51·8; H, 3·5; N, 18·9%),  $\tau$  (CF<sub>3</sub>·CO<sub>2</sub>H) 0·80 (1H, d, J 2 Hz), 1·24 (1H, d, J 2Hzh, 1·58 (1H, split d, J 7 and 2 Hz), 1·8-2·4 (3H, m), 6·01 (3H, s, NMe), and 7·12 (3H, s, CMe);  $\tau$  [(CD<sub>3</sub>)<sub>2</sub>SO] -1·75 (NH), 1·30 (1H, d, J 2 Hz), 1·92 (1H, d J 2 Hz), 1·9-2·5 (4H, m), 6·38 (3H, s, NMe), and 7·5 (3H, s, CMe).

The reaction between indole-N-acetic acid (2·1 g.) and picryl azide (3·0 g.) in ethyl acetate (70 ml.) was slow. After 11 days the solid (36% yield) was collected. Recrystallisation from acetic acid gave the *compound* (I;  $R^1 = CH_2 \cdot CO_2 H$ ,  $R^2 = H$ ,  $R^3 = picryl$ ) as yellow needles which contained acetic acid (n.m.r., and i.r. band at 1705 cm.<sup>-1</sup>) and which darkened at 210° and decomposed between 254 and 290° (Found: C, 47·8; H, 3·0; N, 16·8. ( $C_{18}H_{11}N_5O_8$ )<sub>2</sub>,  $C_2H_4O_2$  requires C, 47·4; H, 3·0; N, 16·8. ( $C_{18}H_{11}N_5O_8$ )<sub>2</sub>,  $C_2H_4O_2$  requires C, 47·4; H, 3·0; N, 16·2%),  $\tau$  [( $CD_3$ )<sub>2</sub>SO] -0·23 (NH), 1·27 (1H, d, J 2 Hz), 1·79 (1H, d, J 2 Hz), 1·9—2·8 (5H, m), 5·12 (2H, s, N· $CH_2$ · $CO_2H$ ), and 8·09 (acetic acid of crystallisation);  $\tau$  (D<sub>2</sub>O–Na<sub>2</sub>CO<sub>3</sub>) 1·26 (1H, d, J 2·5 Hz), 1·68 (1H, d, J 2·5 Hz), 2·0—2·8 (5H, m), and 5·03 (2H, s). The compound decomposed in the mass spectrometer inlet (270°).

<sup>16</sup> K. T. Potts and J. E. Saxton, Org. Synth., 1960, 40, 68.

| Observed structure amplitudes and calculated structure factors |                                                                                                    |              |                                                                                                     |                              |                                                                                                                        |                       |                                                                                                             |                                          |                                                                                                             |                     |                                                                                                                           |                 |                                                                                                 |               |                                                                                                                                                                                                           |                                        |                                                                                   |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|
| 1                                                              | Fol Fc                                                                                             | 1            | $ F_0  = F_c$                                                                                       | 1                            | $ F_0  F_c$                                                                                                            |                       | $ F_0  = F_c$                                                                                               | 1                                        | F <sub>0</sub>   F <sub>c</sub>                                                                             | ı                   | F <sub>0</sub>   F <sub>c</sub>                                                                                           | 1               | $ F_0 $ $F_0$                                                                                   | ı             | F <sub>0</sub>   F <sub>c</sub>                                                                                                                                                                           | 2                                      | Fo  Fc                                                                            |
| • 0 • 2 • 4 • 6 •                                              | 1755 -1733<br>3185 -3116<br>577 - 590<br>2.13 - 145<br>2.13 - 145<br>241 - 254                     |              | 153 160<br>210 217<br>429 442<br>466 410<br>275 256<br>112 -150<br>1079 1098<br>801 -810<br>324 310 | -7694 3210                   | 169 141<br>334 - 320<br>113 105<br>583 - 500<br>583 - 550<br>207 194<br>512 562<br>95 - 78<br>503 466                  |                       | 359 379<br>1 92 216<br>355 -350<br>1494 1403<br>668 715<br>2273 2275<br>2633 2765<br>505 -537<br>1055 -1331 | - 2429422-02                             | 189 -104<br>559 500<br>253 243<br>135 -108<br>731 732<br>272 277<br>126 96<br>1019 -1045<br>181 -146        | *******             | -3<br>358<br>287<br>281<br>287<br>281<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287               |                 | 162 191<br>166 -196<br>743 730<br>131 63<br>272 266<br>960 -906<br>127 139<br>3675 4350         | ********      | 10<br>171 -171<br>229 273<br>279 279<br>163 272<br>360 -107<br>215<br>279 360 -107<br>215<br>207<br>215<br>207<br>215<br>207<br>215<br>207<br>215<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -7<br>357 -355<br>244 255<br>276 253<br>352 -376<br>136 327<br>271 255<br>740 753 |
|                                                                |                                                                                                    | 0454741016   | 11<br>197 197<br>345 361<br>3661 -702<br>137 -131<br>200 1/2<br>523 523<br>164 137                  | - 234740 - 9764              | 277 - 230<br>952 - 883<br>956 395<br>219 219<br>159 157<br>159 157<br>159 134<br>-7<br>155 179<br>326 - 314<br>159 179 | • • • • • • • • • • • | 277 271<br>1334 -1273<br>552 596<br>527 545<br>1 305 305<br>672 403<br>4077 4207<br>1457 1485<br>2254 -2230 | -7532-1025                               | 613 612<br>10<br>309 -293<br>201 -20<br>179 -190<br>548 -568<br>328 -359<br>574 -550<br>670 -631<br>123 -85 | Andre andre         | 300 -337<br>398 -403<br>398 -403<br>399 -336<br>126 -125<br>-7<br>345 -1158<br>-1158<br>505 -1158<br>505 -517<br>271 -237 | - www water     | 2<br>791<br>791<br>791<br>791<br>791<br>791<br>791<br>791                                       | مەنىلىلەك-مەن | 100 -005<br>137 385<br>1166 -312<br>1255 -212<br>1565 -212<br>1565 -212<br>1565 -212<br>1565 -212<br>157 -212<br>157 -212<br>157 -212                                                                     | owerman or weith                       |                                                                                   |
|                                                                | 100 198<br>200 - 286<br>200 - 286<br>200 - 280<br>200 - 200<br>200 - 200<br>200 - 200<br>200 - 200 | 0791126      | 12<br>152 148<br>531 -553<br>748 500<br>609 -605<br>144 138<br>154 134                              | -2<br>-1<br>2<br>4<br>6<br>0 | 750 688<br>1365 -1237<br>535 486<br>226 -214<br>177 -198<br>191 160                                                    | 01243679              | 744 802<br>1101 1071 *<br>509 465<br>182 -147<br>229 252<br>432 445<br>238 -238<br>231 214                  |                                          | 11<br>161 190<br>140 115<br>363 403<br>474 403<br>474 403<br>354 353<br>880 364<br>150 127                  | -1013467            | 497 498<br>592 -598<br>359 -285<br>1292 1292<br>411 -407<br>133 -166<br>202 210<br>179 187                                | 14-0 - 0 m-4 50 | 632 -665<br>4627 5088<br>3398 -3471<br>1086 1024<br>931 904<br>552 -550<br>571 -546<br>169 -135 | ant addud     | 126 168<br>880 -015<br>495 491<br>12<br>215 -236<br>159 -159<br>236 242<br>393 389                                                                                                                        |                                        | 2000                                                                              |
| 0                                                              | 1996 1988<br>1989 1988<br>1989 1988<br>1983 1988<br>1983 1958<br>1958 1958<br>1958 1958            | eu-clèba     | 13<br>679 672<br>669 -664<br>147 129<br>327 -326<br>154 157<br>252 262                              | 1.4 <b>1.44</b> 4 - 01       | 215 -210<br>165 163<br>251 -218<br>307 -315<br>424 -375<br>1953 -1822<br>2321 2270<br>417 427<br>125 -124<br>126 -56   |                       | 2<br>251 -227<br>253 -258 -<br>1035 1000<br>595 -536<br>214 -175<br>105 97<br>1775 1719                     | 5 1799                                   | 135 -62<br>12<br>255 248<br>153 148<br>163 -164<br>639 -630<br>208 209                                      | 2705479470          | -6<br>157<br>158<br>175<br>158<br>175<br>158<br>175<br>158<br>175<br>158<br>150<br>150<br>150<br>132<br>-149              | 74 20047        | 249 284<br>185 157<br>3 175 164<br>615 -603<br>275 293<br>520 534                               | - umu niçin   | 1477 -140<br>306 -303<br>346 -328 -<br>173 153<br>13<br>2064 -243<br>295 304                                                                                                                              | سما لط شاط 4                           | 10 -179<br>10 -179<br>107 -169<br>107 -169<br>100 -190<br>100 -190                |
| 6440                                                           | 2<br>500 - 255<br>500 - 255<br>500 - 255<br>5100 - 255<br>5100 - 255                               | 054084       | 14<br>224 205<br>179 -185<br>138 -155<br>195 175<br>160 -155                                        | nahirii 1-80                 | 145 - 165<br>166 - 165<br>320 - 330<br>151 - 178<br>292 - 317                                                          | • •                   | 221 -190<br>152 -141                                                                                        | 102                                      | 390 407<br>276 -254<br>123 119<br>13<br>241 -233                                                            |                     | 569 -495<br>971 -955<br>237 266<br>224 197<br>-5                                                                          | 4 T 0 T 0 MA    | 869 -773<br>3634 3612<br>665 645<br>293 -301<br>543 -542<br>1039 -1007<br>312 276               | 3912          | 566                                                                                                                                                                                                       | 0.00                                   | 170 500<br>170 500<br>171 236<br>231 213                                          |
| -3-P<br>-1 3                                                   | 1000 -100<br>100 -2077<br>1005 -1074<br>1714 -1019                                                 | -3<br>2      | 15<br>139 127<br>192 -206                                                                           | -7-6-9-4                     | 158 -215<br>414 420<br>234 -203<br>1427 -1428                                                                          | 4444                  | 555 -515<br>575 -607<br>1625 -1646<br>455 -560<br>1851 1945                                                 | لشامه                                    | 247 262<br>729 -726<br>241 242<br>256 202                                                                   |                     | 167 -166<br>139 173<br>485 -485<br>564 -579 -<br>934 889 -                                                                | 2               | 322 259<br>137 135                                                                              | စ္စားမူစာ     | 179 -204 •<br>452 -419<br>343 324<br>200 -180<br>144 161                                                                                                                                                  | and the second                         |                                                                                   |
| - 9 ( <b>-</b> 9 ( <b>-</b> 9                                  | 688 - 545<br>559 555<br>201 - 101<br>559 614                                                       | oyo          | 16<br>147 126<br>156 -149                                                                           | 194101                       | 520 -556<br>1577 1475<br>1181 -1105<br>1362 -1340<br>290 374                                                           | 01234                 | 670 645<br>479 518 •<br>542 542<br>1941 1950<br>714 -682                                                    | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 14<br>367 - 344<br>210 195                                                                                  |                     | 514 -547<br>256 335<br>1003 -992<br>449 -426<br>428 -429                                                                  | 97654           | 190 -175<br>339 375<br>932 -964<br>214 -229<br>317 294                                          | -4            | 15<br>187 <b>201</b><br>227 <b>-225</b>                                                                                                                                                                   | 17170                                  | 209 -259<br>498 435<br>2731 -2815<br>136 136<br>205 207                           |
| • •                                                            | 135 -623 .<br>37: 37#                                                                              | -10          | -16<br>195 -155<br>130 -120<br>210 185                                                              | 23578                        | 2085 2012<br>775 -680<br>309 -283<br>513 -548<br>170 -146                                                              | 6<br>• 1<br>•9        | 190 -212<br>166 183 •                                                                                       | 1                                        | 179 - 199<br>166 - 169                                                                                      | 5.8                 | 205 -274<br>247 -236<br>231 268                                                                                           | -10127          | 635 673<br>256 314<br>761 704<br>769 682                                                        | -1<br>-1      | -16<br>137 -104<br>185 142                                                                                                                                                                                | 19346                                  | 950 153<br>1374 -5386<br>173 801<br>171 156<br>305 -513                           |
| ****                                                           | 658 -679<br>117 98<br>798 763 •<br>232 24<br>.979 771                                              |              | -15<br>226 -186<br>342 -310                                                                         | -8                           | -4<br>142 163<br>268 -290<br>180 -200                                                                                  | 1-16-16               | 1698 -700<br>7899 -700<br>7894 -675<br>697 -675                                                             | î <sup>1</sup><br>1                      | 131 -119<br>319 -292<br>16                                                                                  | 76547               | 364 -377<br>131 -163<br>1085 1070<br>663 -628 *<br>904 -669                                                               | ¥<br>-8         | 145 -164<br>339 -330                                                                            |               | -15<br>252 253<br>122 22                                                                                                                                                                                  | 776                                    | -3<br>210 296<br>257 -996<br>231 195                                              |
| 491 X.                                                         | 100<br>101<br>101<br>101<br>101<br>100                                                             | 1            | -14                                                                                                 | 거가?                          | 251 -287<br>269 -275<br>1934 -1957<br>457 -461<br>951 -959                                                             | 1410-0                | 1479 -1491<br>845 -840<br>871 855 -<br>401 366                                                              | -1<br>2<br>0                             | 138 -139<br>-16<br>138 156                                                                                  | 21012               | 92 -151<br>1522 1509<br>750 -738<br>899 -914<br>1021 -972                                                                 | 76 74 1         | 429 424<br>731 -749<br>173 -196<br>398 394 9<br>539 -597                                        | 2             | 304 -305<br>-14<br>353 -332                                                                                                                                                                               | 1440-                                  | 117 205<br>486 -508<br>501 -892<br>432 467                                        |
| 5<br>3                                                         | 124 125<br>2-21 - 215<br>                                                                          | una la nu    | 319 -312<br>159 149<br>104 -93<br>256 -231<br>210 217                                               | - 234 56                     | 752 742<br>2013 1963<br>831 -723<br>212 192<br>639 -554<br>655 -698                                                    | 5567                  | 1482 1483<br>395 -390 -<br>317 -358<br>268 302                                                              | 2510                                     | -14<br>185 -189<br>232 -212<br>197 -121                                                                     | 3457                | 365 342<br>481 465<br>601 -593<br>165 135                                                                                 | -103            | 319 -306<br>806 -783<br>1235 1205<br>220 -265                                                   | 34            | 127 -152<br>259 -261<br>146 135                                                                                                                                                                           | 0 mat 6%0                              | 1575 -1456<br>275 -216<br>405 -130<br>403 -417                                    |
| 944.244                                                        |                                                                                                    |              | -13<br>175 159<br>210 -213                                                                          | , 1                          | 267 315<br>148 -167                                                                                                    | 1876                  | 5<br>334 317<br>360 -352<br>428 453<br>254 -245                                                             | 145                                      | 148 153 •<br>403 -401<br>171 157                                                                            | 2<br>-9<br>-7<br>-5 | -3<br>312 -300<br>181 167<br>208 -130<br>1122 1076                                                                        | 28765           | 6<br>261 -268<br>370 380<br>170 -177<br>173 -195                                                | 54091         | 252 -235<br>329 -345 -<br>185 -214<br>272 315<br>288 -354                                                                                                                                                 |                                        | -2<br>298 -345<br>592 555<br>217 265                                              |
|                                                                |                                                                                                    | 17 anna      | 257 263<br>128 -119<br>149 -170<br>149 -170<br>150 -117                                             | ,<br>,<br>,<br>,<br>,<br>,   | 166 148<br>410 -449<br>368 419<br>761 -770<br>683 -656                                                                 | 40420                 | 711 -699<br>294 -317<br>1660 -1638<br>1157 -1129<br>90 -50                                                  | 27210                                    | -13<br>144 -124<br>257 -261<br>248 -258<br>331 359                                                          | 01 1034             | 1919 -1903<br>955 -909<br>303 296<br>185 186<br>239 -269                                                                  | 47410           | 431 -824<br>218 -217<br>244 203<br>830 -863<br>702 -625                                         | 2<br>5<br>3   | 231 227<br>168 -172<br>-12                                                                                                                                                                                | 4 14 0 1                               | 111 53<br>348: 41271<br>340 115<br>349 048<br>625 038                             |
| ÷ 5<br>-7                                                      | 155 -103<br>6<br>105 -105                                                                          | - •          | -12<br>203 -197<br>217 230                                                                          | -10127                       | 335 301<br>175 -127<br>240 192<br>727 694<br>2068 -2017                                                                | -2740                 | 343 347<br>303 259<br>532 -553<br>321 334<br>577 -604                                                       | 234                                      | 430 -440<br>160 -151<br>132 112                                                                             | 2                   | -2<br>165 -135                                                                                                            | 2357            | 208 179<br>229 -230<br>309 319<br>402 -409                                                      | 1441-0        | 167 -176<br>452 -507<br>775 -852<br>415 417<br>280 -936                                                                                                                                                   | 2345                                   |                                                                                   |
| وكلحدو                                                         |                                                                                                    | 47-22        | 188 -139<br>189 155<br>488 -513<br>695 725<br>226 -217                                              | 1                            | 531 -526<br>1426 1442<br>604 -597                                                                                      | -6                    | 6<br>164 151<br>692 -638                                                                                    | 26-3-1 0                                 | -12<br>175 161<br>155 -137<br>287 284<br>460 -476                                                           | 75439               | 126 -122<br>564 -541<br>960 557<br>937 900<br>1265 -1202                                                                  | 265             | 7<br>169 -168<br>340 339<br>322 310                                                             | 5             | 141 -111 •<br>-11<br>246 268                                                                                                                                                                              |                                        | -1<br>152 - 581<br>252 - 586<br>253 - 572<br>253 - 572                            |
| 1926 27                                                        |                                                                                                    |              | -11<br>-11<br>-11<br>-11<br>-11<br>-11<br>-11<br>-11<br>-11<br>-11                                  |                              | -2<br>186 155<br>511 567<br>452 -534<br>280 -274                                                                       | لشأمعه                | 518 466<br>1269 -1199<br>231 201<br>1401 -1371<br>250 -265                                                  | 1234                                     | 462 -463<br>597 626<br>358 -362<br>150 158                                                                  | 10234               | 2729 -2781<br>461 458<br>1411 1391<br>157 -203<br>270 -269                                                                | 79701           | 299 -261<br>1213 -1171<br>216 -250<br>652 -716<br>127 -86                                       | 104-0         | 316 313<br>614 -663<br>217 -208<br>306 293<br>173 -179                                                                                                                                                    | 184                                    | 519                                                                               |
| • •                                                            | 379 - C2<br>197 - STA                                                                              | 10127        | 688 -693<br>316 293<br>194 161<br>151 170<br>470 -505                                               | 14444                        | 339 365<br>1270 1144<br>1396 -1360<br>132 -136<br>1797 1871                                                            | 570                   | 442 -457 +<br>140 -81<br>163 200<br>138 135<br>151 -137                                                     | 2.54 10                                  | -11<br>290 281<br>166 215<br>225 205<br>499 614                                                             | 5675                | 935 941<br>889 -897<br>156 -163<br>248 -229                                                                               | 56              | 632 631<br>160 164<br>308 -319<br>299 -305                                                      | 6<br>- 15     | 221 -207<br>-10<br>175 159                                                                                                                                                                                | 01234                                  | 1165 - 1109<br>7-1 - 625<br>655 - 613<br>4-13 - 613<br>2-2 - 611                  |
| 1000                                                           |                                                                                                    | 6<br>1<br>-6 | 333 325<br>-10<br>229 -208                                                                          |                              | 4742 -4832<br>2526 -2471 -<br>2131 2138<br>354 352<br>130 108                                                          | - 34                  | 7<br>191 -172<br>648 -532                                                                                   | -027                                     | 530 547 •<br>286 311<br>981 969<br>151 -164                                                                 | 2984                | 160 -167<br>262 254<br>983 977                                                                                            | 2876            | 8<br>193 -187<br>128 -90<br>599 584                                                             | -19-101       | 157 166<br>h24 -389<br>206 213<br>219 219<br>275 291 •                                                                                                                                                    | 5                                      | 920 <b>-977</b><br>27 <b>1</b> - 222                                              |
|                                                                | 118                                                                                                | 64444        | 205 273<br>214 213<br>360 -357<br>224 232<br>658 671                                                | 6<br>7<br>9                  | 567 -563<br>444 227<br>151 -139                                                                                        | 101                   | 1499 1452<br>510 509<br>857 -833 *<br>1150 -1123<br>122 47                                                  | 27-1-1                                   | -10<br>172 117<br>276 298<br>311 -358                                                                       | -12-0-0             | 422 -436<br>2453 -2444<br>768 774<br>618 625                                                                              | للمناهدة        | 414 -417<br>357 -356<br>301 -323<br>153 131                                                     | 235           | 148 -149                                                                                                                                                                                                  | 9954 m                                 |                                                                                   |
| 103656                                                         | 1997 - 1997<br>1992 - 1965<br>1992 - 1965<br>1992 - 1967<br>1993 - 1967<br>1997 - 1967             | 34           | 199 -200<br>212 -200<br>460 477                                                                     |                              | -1<br>330 324<br>149 118<br>1540 1478<br>266 -999                                                                      | 17450                 | 303 -287<br>269 249<br>138 134<br>336 -350                                                                  | -32-112                                  | 490 478<br>329 321<br>180 -119<br>740 -712<br>874 848                                                       | 14 500 1-           | 901 900<br>117 101<br>1147 1155<br>901 -819<br>295 -271                                                                   | 345.            | 269 249<br>169 -173<br>181 -194<br>195 221                                                      | 144           | 196 201<br>175 -191<br>423 428<br>121 132<br>238 251                                                                                                                                                      | 4-0-00                                 |                                                                                   |
| • • • • • • • • • • • • • • • • • • • •                        | ,<br>                                                                                              | -4797        | -9<br>123 105<br>362 403<br>435 423<br>723 756                                                      | -1012                        | 2592 2671<br>1395 -1380 4<br>1957 -1992<br>744 696<br>712 -711                                                         | -8                    | 8<br>188 -157<br>192 201 •<br>125 143                                                                       | 3                                        | 248 243<br>-9<br>151 -84                                                                                    | 2754                | 0<br>273 244<br>245 275<br>1296 1251                                                                                      |                 | 9<br>179 168<br>121 58<br>230 179                                                               | 291012        | 333 322<br>264 287<br>263 -306<br>501 523<br>507 -403                                                                                                                                                     |                                        |                                                                                   |
| 12370.                                                         | 570 -157<br>222 -155<br>639 565<br>416 \$57<br>460 \$55<br>657 65                                  | 01270        | 244 262<br>467 -196<br>227 -264<br>344 364<br>297 332                                               | 3579                         | 966 -919<br>252 263<br>461 443<br>151 -131                                                                             | -12-10-1              | 518 539<br>612 571<br>223 200<br>1714 -1629<br>964 946                                                      | 76 32                                    | 253 279<br>532 -532<br>1060 1099<br>257 -269<br>237 -213<br>184 10                                          | -3                  | 1721 -1677<br>637 -458<br>1345 1299<br>1074 -1020<br>248 252                                                              | 10174           | 569 562<br>522 -496<br>571 -600<br>300 304<br>313 319                                           | 5<br>3        | 141 150 •<br>-8<br>197 -296                                                                                                                                                                               | 1717T                                  |                                                                                   |
| 57                                                             | 1164 -1175<br>658 -54<br>146 -144                                                                  | 7            | 167 161<br>174 140                                                                                  |                              |                                                                                                                        | 2240                  | 509 -524<br>665 -655<br>375 <b>373</b>                                                                      | -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | 271 274<br>237 206<br>599 604<br>150 -143<br>229 -294<br>747 800<br>170 -181                                | 2345679             | 444 801<br>379 412<br>296 253<br>600 619<br>202 -245<br>110 -100<br>193 175                                               | 5               | 264 -246                                                                                        | 4797 245      | 525 561<br>497 505<br>457 441<br>176 131<br>329 361<br>137 -191<br>403 427                                                                                                                                |                                        |                                                                                   |

TABLE 4

Published on 01 January 1970. Downloaded by University of Pittsburgh on 28/10/2014 11:26:00.

|              |                                              |                                              |                                                          |                                          |                                                     |                | Table                                            | 4         | (Conti                                       | nued                  | )                               |                             |                   |                                                        |                                       |                          |                             |                   |                          |                             |
|--------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------------|----------------|--------------------------------------------------|-----------|----------------------------------------------|-----------------------|---------------------------------|-----------------------------|-------------------|--------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------|-------------------|--------------------------|-----------------------------|
|              | $ F_0  F_c$                                  | l<br>• 4                                     | $ F_0  = F_0$                                            |                                          | $ F_0  F_0$                                         | 1              |                                                  | 1<br>5    | $F_0   F_c$                                  | ,                     | F <sub>0</sub>                  | F <sub>c</sub>              | 1<br>6            | $ F_0  F_c$                                            | 1<br>• 7                              | F <sub>0</sub>           | F <sub>c</sub>              | 1<br>-            | $ F_0 $                  | Fc                          |
| 9<br>76      | 195 199<br>325 -313<br>611 -630<br>697 661   | -12-10                                       | 176 +181<br>128 B3<br>284 290<br>198 _28                 | -654                                     | 268 279<br>241 243<br>1622 1598<br>253 220          | -1             | 145 103<br>200 -196                              | 004N      | 205 -221<br>464 -46 <sup>4</sup><br>740 -737 |                       | 206<br>135<br>246<br>141        | 189<br>-91<br>-250<br>163   |                   | 140 153<br>h79 h54<br>731 -723<br>344 -361             |                                       | 210<br>360<br>134        | 235.96                      |                   | 204<br>223<br>166<br>370 | -210<br>177<br>-153<br>-379 |
| 41%1         | 961 960<br>140 128<br>595 -559<br>395 367    | 3                                            | 258 -253                                                 | 7910                                     | 1366 -1244 •<br>309 -336<br>1330 1246<br>1302 -1207 |                | -14<br>302 -291<br>155 166<br>167 -149           | -034      | 309 -330<br>781 773<br>343 -339<br>344 -347  | -21-01                | 157<br>191<br>200<br>257        | 175<br>-199<br>-213<br>256  | -01-3             | 340 22                                                 | 2                                     | 3.2                      | 297                         | •"                | 141                      | 115                         |
| 1 2 3        | 269 -245<br>336 274<br>132 -163<br>227 276   | -6                                           | 234 -226<br>233 244<br>310 289                           | 5                                        | 776 -751                                            | 1              | -13. 96                                          | 5         | 132 -129                                     | 3                     | 345<br>141                      | -153                        | -                 | 1 262 267                                              | -7                                    | 212<br>229<br>196        | 1 AB<br>220<br>204          |                   | 215                      | 206                         |
| 45           | 632 653                                      | 245                                          | 151 -135<br>228 205<br>209 -218                          | 7654                                     | 377 393<br>441 450<br>359 315<br>319 -250           | -1<br>1<br>3   | 234 -246<br>206 -214<br>125 93                   | 76        | 276 243<br>146 -162<br>159 -153<br>193 203   | -4<br>-2<br>-1        | 150<br>152<br>208<br>437        | 156<br>158<br>307<br>434    | 1.1               | 323 306<br>696 -713<br>615 650<br>533 -514             | -2 -1 -2                              | 513<br>301<br>396 -      | 520<br>297<br>366           | ů<br>a            | 347                      | -341                        |
|              | 117 -123<br>245 314<br>600 570<br>481 -461   |                                              | -11<br>405 -410<br>263 250                               | -32-10                                   | 1043 992<br>766 -656 -<br>163 116<br>452 408        | 565            | -12<br>442 -402<br>211 192                       | 1910      | 346 -344<br>327 -317<br>643 627<br>411 414   | 134                   | 390<br>214<br>350               | -419<br>230<br>-344         | ~i<br>6           | 327 320                                                | • 7                                   | 195<br>1                 | -192                        | -4<br>0<br>1<br>3 | 157<br>229<br>117<br>137 | 12052                       |
| -1 0 1       | 844 799<br>501 -408<br>1042 -954<br>107 -126 | -1<br>1<br>3                                 | 155 -157<br>223 -221<br>373 399<br>176 -208              | 1234                                     | 249 212<br>253 242<br>373 391<br>357 369            | -3             | 152 155 •<br>219 217<br>246 •267<br>213 •125     | 1254      | 219 -155<br>242 -227<br>227 -223<br>342 -342 | • 6<br>•7             | -9<br>147<br>154                | -140<br>199                 | 555               | 226 -749<br>152 177<br>179 165<br>255 239              | -7                                    | 189<br>149<br>245<br>273 | -116<br>+162<br>252<br>-255 | -9<br>-3          | 146                      | 136                         |
| 3            | 467 462<br>610 604<br>334 345                | • • 7                                        | -10<br>323 293                                           | 5<br>به                                  | 924 -925                                            | 3              | 151 171<br>-11                                   | 56        | 353 336                                      | 5321                  | 143<br>523<br>213<br>322        | -126<br>551<br>-217<br>-312 |                   | 189 216<br>1114 -1149<br>211, 236<br>277 260           |                                       | 587<br>149<br>(03<br>195 | 6°7<br>177<br>-615<br>199   | ů<br>e            | 213                      | -219                        |
| • 3          | 175 -146<br>311 - 135                        | 0.000                                        | 1/9 -177<br>165 -145<br>284 -295<br>265 -303<br>621 -643 |                                          | 970 828<br>690 -690<br>636 634                      | 24.72          | 132 134<br>228 259<br>520 -551                   | 76        | 155 112<br>134 105<br>393 381                | 0<br>1<br>2           | 691<br>166<br>393               | -193<br>-379 •              | 6<br>7            | 6<br>143 153                                           | 6                                     | 276                      | -252                        | 6402              | 189<br>175<br>195        | 146<br>-169<br>185          |
| 297.01       | 306 -290<br>967 -953<br>287 -270<br>211 162  | 256                                          | 613 -651<br>159 151<br>166 -153                          | -1                                       | 17P3 -1693<br>1197 1166<br>1291 1254<br>116 -103    | 0121           | 152 149<br>214 224<br>253 -254<br>188 -188       | 4740      | 460 465<br>486 516<br>131 162<br>204 172     | • • • • •             | 196<br>271<br>300               | -208<br>250<br>-188         |                   | 192 - 206<br>194 - 205<br>652 - 693                    | 1 2 2                                 | 174<br>299<br>189        | 170<br>318 •                | -6                | 194                      | -205                        |
| 12134        | 706: 678<br>625 -648<br>235: 270             | -8<br>-7                                     | -9<br>138 109<br>158 152                                 | 56                                       | 593 621<br>252 -246<br>150 -161 •                   | -5             | -10                                              | 1 234     | 134 -133<br>123 -112<br>296 273<br>275 -307  | ldo-v                 | 564<br>321<br>596               | 580<br>320<br>-605<br>395   | -1<br>-1<br>1     | 322 353<br>374 395<br>265 -234                         | • 7                                   | 3                        | -126 ·                      | -6-5              | 141<br>174               | -148<br>159                 |
| • • •        | 5<br>217 -243<br>412 405                     | 6 <b>7 4</b> 9                               | 352 335<br>202 -197 4<br>165 160<br>339 358              | -9                                       | 3<br>202 -224<br>198 222                            | -4-3-1-1       | 422 -445<br>360 409<br>525 525 •<br>330 -351     | 56        | 3<br>318 324                                 | 3<br>• 6              | 206<br>-7                       | -201                        | 59.5              | 7<br>236 -251<br>177 169                               | -7                                    | 166<br>113<br>367<br>164 | -176<br>69<br>-371<br>-190  | -3<br>-2          | 414<br>389               | _445<br>400                 |
| 4444         | 269 -28<br>339 299<br>980 -830<br>291 -268   | 023                                          | 1094 -1112<br>352 -346<br>296 310                        | \$2.24                                   | 411 -420<br>325 354<br>729 -698<br>1485 1483        | 235            | 171 -164<br>302 310<br>294 -290                  | 421       | 432 431<br>440 442<br>325 -332               | 1001                  | 171<br>444<br>292<br>437        | 169<br>-447<br>-293<br>430  | -3                | 217 -202<br>211 205<br>212 -251                        | -2                                    | 329<br>462<br>130        | 324<br>467<br>-99           | -32 U             | 7<br>405<br>377<br>143   | -435<br>399<br>-114         |
| -1           | 412 417<br>585 -547 •<br>496 469             | -8                                           | -8<br>297 299<br>130 -141                                | 10121                                    | 990 987 •<br>182 171<br>462 494<br>165 187          | 54 <b>3</b>    | -9<br>304 -316<br>242 223<br>317 -312            | 124       | 453 440<br>201 -212<br>281 276               | -3<br>-2<br>-1        | 757<br>463<br>1498              | -794<br>-464<br>1499        | 6<br>7<br>5       | 269 240<br>166 -152                                    | • 7                                   | 4<br>347<br>160          | - 368 •<br>120              | 8<br>-4           | 190<br>190               | 189                         |
| 9 <b>6</b> 6 | 201 -213                                     |                                              | 359 377<br>665 699<br>284 275<br>558 620                 | 567                                      | 143 156<br>153 -144<br>164 158                      | 1204           | 422 450<br>526 528 *<br>344 -353<br>182 -225     | 586       | 4<br>248 -250<br>160 168                     | 3                     | 273                             | 257<br>237                  | -1                | 171 -176                                               | • .7                                  | 147                      | -107 *                      | -,<br>9           | -9<br>144                | -1 12                       |
|              | 6<br>446 -418<br>691 679<br>138 -175         | 1012                                         | 172 154<br>717 -729 •<br>1016 1023<br>163 •153           | 454                                      | 4<br>360 -362 •<br>320 -317                         | 50             | -8<br>145 167                                    | 5-1-1-2   | 142 152<br>213 190<br>219 -197<br>601 607    | * -8<br>-76           | -6<br>227<br>131<br>502         | -230<br>-123<br>494         | -5<br>6           | 169 -150<br>11                                         | • _7                                  | 6<br>160                 | 187                         | 9                 | -8<br>218                | -231                        |
| 2424         | 505 -505<br>162 -193<br>573 529              | 5                                            | 193 -224                                                 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 - | 1677 -1712<br>1118 1099<br>330 319                  |                | 872 -859<br>180 -178<br>768 768                  | 10181     | 267 304<br>364 -380<br>285 -260<br>423 413   | -1 0 2                | 641<br>B27<br>1064<br>160       | 649<br>830<br>1069<br>-135  | +2<br>7           | 159 -170                                               | -5-3-2                                | 175<br>226<br>232        | -146<br>247<br>-193         | 0<br>9            | 175<br>-7                | -146                        |
| -1           | 223 -224<br>209 -178<br>498 516<br>195 -228  | 8543                                         | 217 195<br>664 663<br>401 -429<br>365 39                 | 356                                      | 216 235<br>254 237<br>195 202                       | 1235           | 694 -711<br>172 174<br>135 144 •<br>156 -149     | 2         | 120 147<br>5<br>154 -151                     | • ģ                   | 487                             | 511                         | -1                | 163 167<br>326 -290<br>138 108                         | 7                                     | 7<br>239<br>352          | 235<br>-320                 | 3                 | 198                      | 202                         |
| 5<br>7       | 368 -357<br>230 -222<br>196 -205             | 2101                                         | 636 623<br>247 267 •<br>766 •726<br>149 153              | -8<br>-7                                 | 270 279 •<br>473 - 175                              | 5              | 237 210                                          | 7547      | 272 -263<br>227 275<br>177 132<br>119 113    |                       | 339<br>748<br>131               | -376<br>-779<br>120<br>161  | -7                | -12<br>196 -189                                        | 2                                     | 196<br>B                 | 195                         | .A<br>0           | 195                      | -185.<br>151                |
| -57          | 7<br>162 -181<br>317 321                     | 2345                                         | 707 720<br>206 -232<br>423 460<br>125 -144               | 4797-                                    | 366 -367<br>391 -360<br>1410 1429<br>619 -587       | -6<br>-5<br>-3 | 204 194<br>214 -211<br>327 -332<br>298 324       | -1012     | 383 -398<br>240 267<br>152 -180<br>149 -138  | 3                     | 216<br>290<br>455               | 228<br>305<br>475           | δ.                | -11<br>192 -179                                        | -2                                    | 282<br>196<br>191        | -269 •<br>220<br>-198       | 0.000             | 148<br>156<br>130        | -174<br>133<br>-93          |
| لمشطشنا      | 146 -195<br>177 144 •<br>774 -764            | -9                                           | -6<br>159 -99<br>153 148                                 | 1246                                     | 363 411<br>560 -574<br>149 169<br>172 183           | 2740           | 608 595<br>503 -548<br>227 282<br>167 -182       | 35        | 650 603<br>135 -122                          | • 6<br>-9             | -4<br>171<br>298                | 156<br>-260                 | -6mon             | -10<br>248 213<br>241 -258<br>283 -281<br>229 -236     | .2                                    | 127                      | 57                          | • •               | 130<br>-4                | 110                         |
| 134          | 96 65<br>291 259<br>196 208<br>389 -396      | 7679                                         | 295 -276<br>951 -967<br>443 403 •<br>469 -453            | 4<br>-8                                  | 2<br>277 279                                        | 565            | -6<br>151 -189<br>928 915                        | 975       | 185 -197<br>143 -142<br>215 237<br>439 -465  |                       | 317<br>369                      | -1107<br>313<br>-383        | 7                 | -9<br>146 -146                                         | 7<br>5<br>4                           | 10<br>150<br>191         | -194<br>175                 | 3                 | 136<br>142<br>142        | 151<br>117                  |
| • •          | 547 -541<br>275 285                          | 0245                                         | 249 240<br>428 453<br>241 -262                           | 764 2                                    | 447 -423<br>174 -176<br>286 319<br>260 -268         | 4321           | 439 417<br>459 -519<br>184 -222<br>484 469       | -32-10    | 242 -271<br>633 647<br>460 -496<br>487 -449  | 234                   | 187<br>256<br>256<br>271        | 162<br>268<br>265<br>-280   |                   | 159 110<br>243 252<br>364 -357<br>359 -362             | • 8<br>_4<br>-3                       | •11<br>155<br>209        | -152<br>165                 |                   | 178                      | 採                           |
| 444          | 339 341<br>153 -150 •<br>605 -598<br>503 483 | -2                                           | -5<br>210 -205<br>175 -211                               | 23                                       | 521 -502<br>319 -287<br>208 -208                    | 0046           | 426 455<br>263 235<br>198 226<br>238 242         | 12        | 299 -294                                     | • 6                   | -3<br>294                       | 318 •                       | 3                 | 126 95                                                 | • 8                                   | -10<br>192               | !!? .                       | 1                 | 132                      | -137                        |
| شاه و و      | 427 _439<br>128 _142<br>142 148<br>430 433   |                                              | 831 -812<br>1067 1048 •<br>976 -952<br>559 -514          | 4<br>-8<br>-7                            | 7<br>192 176<br>503 - 197                           | -9             | 397 -386                                         |           | 408 421<br>286 -272<br>232 -223<br>248 285   | -76                   | 550<br>728<br>133<br>260        | -544<br>752<br>-118<br>-259 | 4321              | 142 -167<br>242 249<br>216 -205                        | -3                                    | 316<br>124               | -275<br>97                  | -7<br>-6<br>-3    | 204<br>203<br>130        | 216<br>-193<br>90           |
| 2345         | 309 -345<br>219 -216<br>198 197<br>169 -152  | -1 0 2                                       | 675 594<br>691 720<br>713 687<br>201 -210                | 64 72                                    | 251 256<br>305 -282<br>191 172<br>397 -331          | -2             | 256 -300<br>179 143<br>196 -205<br>696 -701      | -2 -1 0 2 | 281 -250<br>203 231<br>232 -233<br>190 -188  | -1                    | 434<br>158                      | 173                         | 7                 | -7<br>194 191                                          | -5                                    | 319<br>179<br>128<br>209 | -340<br>161<br>-107<br>220  | .7                | 269<br>192               | 281<br>-182                 |
| • 1          | 9<br>165 -168<br>537 541                     | -6                                           | _4<br>1024 -1026<br>460 -457                             | 1 2                                      | 424 -425<br>370 -387                                | - 274          | 363 353<br>304 -287<br>285 -302<br>332 349       | 5         | 132 127                                      | • 6<br>•9<br>•8<br>•7 | -2<br>183<br>130<br>153         | -176<br>142<br>-131         | -2 -1 0           | 122 120<br>417 412<br>345 343<br>420 -425              |                                       | -8<br>133                | -98                         | -3<br>-2          | 130<br>168               | -117<br>168                 |
|              | 199 -234<br>358 -374<br>297 296<br>506 -551  | 4797                                         | 295 -282<br>286 -260<br>743 678<br>430 409               | -8                                       | 9<br>177 173<br>173 -165 -<br>185 184               | 5              | -4<br>433 -451                                   | 07647     | 369 -360<br>155 157<br>334 -328              | 65-2                  | 352<br>224<br>411<br>179        | -375<br>203<br>407<br>-158  | ،<br>7            | 242 220                                                | • 3<br>• - 7                          | •7<br>146                | 138                         | 161               | 213<br>194<br>294        | 204<br>-201<br>238          |
| • 3          | 206 205                                      | 23                                           | 102 -96<br>390 -355<br>546 -551<br>439 425               | 4%10                                     | 277 -284<br>325 358<br>161 -209<br>151 -198         | -5-4-2         | 565 -578<br>962 951<br>351 356<br>943 734        | 101       | 226 -239<br>321 -376<br>163 171<br>265 274   |                       | 134<br>336<br>320               | 138<br>-330<br>-339         | 1992 - S          | 572 610<br>572 610<br>123 -106<br>237 226              | -6<br>-4<br>-1<br>0                   | 158<br>201<br>152<br>418 | -132<br>230<br>136<br>-440  | -1                | 133                      | -126                        |
| 4444         | 178 160<br>172 177<br>136 135<br>539 -558    | 7                                            | 256 251                                                  | 5                                        | 158 -151                                            | -1035          | 925 +820<br>291 -263<br>267 244<br>232 249 ₽     | 2         | 235 •196<br>9                                | ية<br>• 6             | 130<br>-1                       | 140                         | 1                 | 229 246<br>312 -295                                    | - 8                                   | -6<br>432<br>285         | 458                         | 977.9             | 122                      | 102<br>-128<br>228          |
| 0<br>1<br>3  | 437 458<br>240 -266<br>222 209               | -4-32                                        | 197 -193<br>634 -609<br>251 228<br>915 947               | 15410                                    | 166 -194<br>252 251 -<br>231 -243<br>141 169        | -2             | -3<br>373 -382                                   | 7654      | 257 -293<br>139 -160<br>494 523<br>472 -465  | 9876                  | 133<br>256<br>237<br>323        | 137<br>-275<br>-237<br>-315 | -7                | 212 -221<br>342 -344<br>264 27                         | -2 -1                                 | 137<br>637<br>624<br>143 | -161<br>677<br>-629<br>166  | -3                | 124                      | 138                         |
|              | 11<br>146 163<br>123 -93<br>435 428          | 10 - 21                                      | 1494 -1429<br>1193 -1169<br>990 994 -<br>100 77          | 4                                        | 10<br>151 152                                       | -6             | 427 -470<br>304 331<br>615 596<br>1239 -1204     | 2012      | 188 167<br>234 293<br>150 -122<br>168 -114   | -4<br>-3<br>-2<br>-1  | 253<br>466<br>202<br>227        | 263<br>473<br>-210<br>224   | -?<br>0<br>1<br>2 | 237 260<br>413 414<br>236 214<br>312 -326              | •                                     | 256                      | 264                         | -8                | 127                      | -143<br>240                 |
| -1           | 219 _244<br>133 -156                         | <b>54</b> (7)()                              | 359 -395<br>376 409<br>157 120                           | -5-1-0                                   | 172 163<br>209 -227<br>391 -378<br>160 161          | -2-10          | 720 669<br>419 414<br>201 189 •<br>241 -230      | 5         | 10 211 -216                                  | 12                    | 746                             | •754<br>•302 •              | -7                | -4<br>101 -224                                         | -1                                    | 747<br>727<br>201        | -708<br>-203                | 04 50             | 179<br>130<br>219        | -168<br>132<br>182          |
|              | 12<br>226 250 •<br>116 -114                  | 40.                                          | -2<br>369 395<br>175 -202                                | 2<br>. h                                 | 155 127                                             | 2<br>3<br>e    | 145 -175<br>276 267                              | 2112      | 119 75<br>136 95<br>142 92<br>129 123        | 6<br>-8<br>76         | 0<br>154<br>315<br>166          | -114<br>-324<br>-133        | 32                | 365 -37<br>127 10<br>164 13<br>66 6                    | -7-                                   | 133<br>323               | 135<br>-315<br>171          | -1<br>1 <u>0</u>  | 189<br>22.               | -157                        |
|              | 14<br>300 -275<br>199 190                    | -4-7-14-14-14-14-14-14-14-14-14-14-14-14-14- | 572 -597<br>146 150<br>600 -534<br>447 -381              | \$m70                                    | 213 165<br>149 -144<br>251 -269<br>306 295          | -9765          | 295 -315<br>317 -331 -<br>214 190<br>214 -258    | 554       | 11<br>145 146<br>133 -116                    | 1 -5                  | 145<br>264<br>309<br>135        | 146<br>-272<br>316<br>168   | -a                | 139 -13                                                | -3<br>-2<br>-1                        | 214<br>249<br>265<br>106 | 216<br>-270<br>233<br>-110  | 10                | -5                       | 108                         |
| • -3         | 15<br>172 -202                               | -10107                                       | 274 -341<br>90 93<br>928 -953<br>514 -494<br>454 -525    | 123                                      | 162 107<br>194 -205<br>267 258                      | -32-1          | 547 -498<br>1283 -1229<br>1210 1136 •<br>244 224 |           | 12<br>212 196                                | -0244                 | 200<br>160<br>233<br>245<br>238 | -225<br>-217<br>-261        | 76 53             | 331 - 34<br>523 55<br>219 - 19<br>202 - 24<br>580 - 52 | 333                                   | 210<br>264<br>166        | 212<br>233<br>-202          | -2<br>10          | 395                      | 355                         |
| • •          | -16<br>256 -237                              | 167                                          | 193 203<br>138 -115                                      | 4 5 2 2                                  | 12<br>124 55<br>200 205<br>256 -289                 | 01232          | 533 -525<br>653 -593<br>903 800<br>161 -166 •    | 0<br>5    | 157 -167                                     | • • •                 | - 10<br>158                     | -175<br>-195                | 21017             | 209 25<br>197 19<br>401 -40<br>342 34                  | • • • • • • • • • • • • • • • • • • • | 420<br>544               | 438<br>-544<br>150          | -1                | 2ú3<br>355               | -317                        |
| • •          | •15<br>354 -351<br>135 122                   | 9<br>7                                       | -1<br>199 193<br>135 122<br>133 177                      | . h                                      | \$26 \$09                                           | 5              | -1<br>350 381 -                                  | -2        | 125 68<br>193 -186                           |                       | 209<br>108<br>131<br>295        | -230<br>113<br>304          |                   |                                                        | 7 0                                   | 146<br>157<br>206        | -112<br>210<br>203<br>-27   | 10                | -2<br>15 9<br>237        | 158                         |
|              | -14<br>207 216                               | 20100                                        | 354 265<br>171 175<br>1552 -1449<br>493 -473<br>965 -965 | -3-2                                     | 142 124<br>192 183<br>260 -265                      | 765            | 210 -223<br>196 -195<br>454 -424<br>401 -415     |           | 157 -172<br>194 -175<br>395 375              | 0-74                  | 5º1<br>442<br>239               | 78<br>-603<br>427<br>-236   | -4-32             | 546 56<br>536 -55<br>311 -31                           | 5 3<br>57<br>9                        | 272                      | 300 -<br>193                | -3                | -1<br>145                | -174                        |
| 3            | 14 139                                       | 2014                                         | 179 -165<br>463 -194<br>679 - 683<br>179 - 195           | -3                                       | 14<br>140 140<br>1                                  |                | 302 -270<br>342 -391 -<br>139 152<br>306 295     | 6         | -13<br>151 -134                              | • 6                   | 2<br>303<br>889                 |                             | -014              | 405 44<br>230 26<br>127 8<br>175 29                    | 085 -                                 | 143                      | -124<br>424<br>-629         | 10                | 152                      | -159                        |
|              |                                              | 4                                            |                                                          |                                          |                                                     | 1245           | 639 650<br>409 405<br>130 -117                   | 641       | -12<br>187 -17<br>126 -12<br>170 14          |                       | 361<br>745<br>180<br>332        | 394<br>-763<br>161<br>360   |                   |                                                        | ć                                     | , 397                    | 190                         | -4<br>-2          | 17<br>177                | -256<br>119                 |
|              |                                              |                                              |                                                          |                                          |                                                     |                |                                                  | ,         |                                              | 2                     | 621<br>344                      | 357                         |                   |                                                        |                                       |                          |                             |                   |                          |                             |

View Article Online

## Crystallographic Data

Large crystals of the N-methylindole adduct were obtained by slow crystallisation from ethyl acetate. Suitable crystals for X-ray investigation were obtained by partially dissolving a large crystal with dioxan. Approximate cell parameters were obtained from Weissenberg and precession photographs and were refined by use of a Hilger and Watts four-circle PDP 8 instrument (Y 290-FA 128), before commencement of data collection.

Crystal Data.— $C_{15}H_{11}N_5O_6$ , M = 357.3, Triclinic a = $8.01 \pm 0.01$ ,  $b = 13.20 \pm 0.01$ ,  $c = 7.79 \pm 0.01$ ,  $\alpha = 13.20 \pm 0.01$  $92.7 \pm 0.2$ ,  $\beta = 107.5 \pm 0.2, \quad \gamma = 96.5 \pm 0.2,$ U =780.2 Å<sup>3</sup>,  $D_{\rm m} = 1.515$  (by flotation), Z = 2,  $D_{\rm c} = 1.520$ . Space group  $P\overline{I}$  ( $C_i^1$ , No. 2). Mo- $K_{\alpha}$  radiation,  $\lambda = 0.7107$ Å,  $\mu(Mo-K_{\alpha}) = 1.31 \text{ cm}.^{-1}$ .

Data were collected from an approximately rod-shaped crystal ( $0.8 \times 0.6$  mm. diam.), mounted about the rod axis (c). An  $\omega$ -2 $\theta$  scan was used to collect 3376 reflections in the range  $\theta = 0-27^{\circ}$ . In the range  $\theta = 0-20^{\circ}$  balanced filters (zirconium oxide-yttrium carbonate) were used; at  $\theta > 20^{\circ}$  a single zirconium oxide filter was employed.

Each reflection was scanned over 0.8°, counting at intervals of 0.02° sec.-1, with background counted for 10 sec. on both sides of the scan. A measurement was discarded if the backgrounds differed by more than 15  $\sigma$  \* of their total count. Of the 3376 reflections counted 2051 had sufficiently equal backgrounds and an intensity  $>3 \sigma$ .

Solution and Refinement of the Structure.--Approximate atomic co-ordinates were generated by a symbolic addition program, developed by Hodder and Prout 17 for the English Electric KDF 9 computer. The computer chooses the origin determining reflections, and then those for which symbols are assigned are chosen one by one as required to continue the phase determination. This programme used all triple products of probability over 0.942 given by the 737 reflections with  $E > 1 \cdot 1$ . To fix the origin of the unit cell  $03\overline{6}$ ,  $22\overline{1}$ , and  $11\overline{3}$  were given positive signs. The signs of  $6\overline{46}$ , 094, and  $21\overline{1}$  were represented by the symbols A, B, and C respectively. 381 signs with a probability >0.9975were determined. The probability was then lowered to 0.880, and a further 180 signs were determined.

Using these 561 phased E values, Fourier syntheses were computed for the most probable signs of A, B, and C. The correct solution, with A and C positive, and B negative was found to be the third most probable (ignoring the solution for all three positive). In the correct solution only three phases (all of low probability) were subsequently shown to be incorrect. In the synthesis using these phases 26 large peaks (corresponding to the positions of all the nonhydrogen atoms) were observed.

In the full-matrix least-squares refinement of the trial structure, the quantity minimised was  $\Sigma w(|F_0| - |F_c|)^2$ . Isotropic temperature factors were assumed for all atoms. Scattering curves used were those given in ref. 18. After four cycles of refinement parameter shifts were considerably less than their estimated standard deviations and R was 0.128. From a difference Fourier map all the hydrogen atom positions were apparent, as well as considerable anisotropic movement in the indole ring. The co-ordinates of all but the N-methyl hydrogen atoms were deduced from the molecular geometry.

All nonhydrogen atoms were then assigned anisotropic temperature factors and a further six cycles of leastsquares refinement were computed with alternating matrix blocking until convergence was achieved; in the two final cycles two matrix blocks were used, one containing all space parameters and the other the  $F_{c}$  value, scale factor, and all temperature factors. Unit weights were used for  $|F_0|$ <2000, otherwise the relation  $\sqrt{\omega} = 2000/|F_0|$  was used.

#### TABLE 5

#### Fractional atomic co-ordinates $(\times 10^5)$ with standard deviations in parentheses

| Atom  | x a        | <b>y</b> /b      | z c       |
|-------|------------|------------------|-----------|
| O(1)  | 06535(42)  | 90023(24)        | 01858(36) |
| O(2)  | 32875(41)  | 86421(26)        | 06845(37) |
| O(3)  | 59838(35)  | 88152(24)        | 87691(36) |
| O(4)  | 40911(39)  | 74606(19)        | 76075(36) |
| O(5)  | 18881(35)  | 115887(20)       | 74822(34) |
| O(6)  | 07491(37)  | 118024(19)       | 46642(36) |
| N(1)  | 39844(37)  | 60669(21)        | 29688(40) |
| C(2)  | 32627(44)  | 68728(25)        | 34656(43) |
| C(3)  | 13524(45)  | 65057(25)        | 33253(49) |
| C(4)  | 11678(46)  | 53798(25)        | 27172(46) |
| C(5)  | -02229(53) | 46100(29)        | 23713(56) |
| C(6)  | 00064(58)  | 36157(29)        | 18048(60) |
| C(7)  | 15994(59)  | <b>34265(28)</b> | 16101(58) |
| C(8)  | 30168(52)  | 41967(27)        | 19599(52) |
| C(9)  | 27705(47)  | 51673(25)        | 25201(47) |
| C(10) | 58179(56)  | 61493(32)        | 29440(66) |
| N(11) | 41584(36)  | 77631(20)        | 39855(37) |
| C(12) | 34007(39)  | 85885(23)        | 44050(41) |
| C(13) | 36876(40)  | 89630(24)        | 62165(41) |
| C(14) | 31625(40)  | 98533(24)        | 67402(41) |
| C(15) | 22145(39)  | 103950(23)       | 53834(41) |
| C(16) | 18272(40)  | 100827(23)       | 35722(41) |
| C(17) | 24546(38)  | 92018(23)        | 31276(37) |
| N(18) | 46647(39)  | 83598(23)        | 76468(38) |
| N(19) | 15798(34)  | 113374(20)       | 58843(38) |
| N(20) | 21094(41)  | 89247(21)        | 11848(36) |

#### TABLE 6

### Anisotropic thermal parameters \*

| Atom     | $U_{11}$   | $U_{22}$ | $U_{33}$          | $2U_{23}$         | $2U_{31}$             | $2U_{12}$          |
|----------|------------|----------|-------------------|-------------------|-----------------------|--------------------|
| O(1)     | 0.08695    | 0.09222  | 0.03889           | -0.01168          | -0.00510              | 0.05620            |
| O(2)     | 0.08997    | 0.11425  | 0.04973           | 0.01018           | 0.07159               | 0.06852            |
| O(3)     | 0.05325    | 0.10128  | 0.04763           | 0.03875           | 0.00148               | 0.03190            |
| O(4)     | 0.09010    | 0.04944  | 0.06206           | 0.03604           | 0.05730               | 0.06056            |
| O(5)     | 0.07440    | 0.05978  | 0.04734           | -0.01666          | 0.03827               | 0.05047            |
| O(6)     | 0.07837    | 0.05235  | 0.05815           | 0.01421           | 0.03102               | 0.06792            |
| N(1)     | 0.04840    | 0.04136  | 0.06191           | -0.00107          | 0.05192               | 0.03207            |
| C(2)     | 0.04931    | 0.04365  | 0.03813           | 0.00923           | 0.03727               | 0.03594            |
| C(3)     | 0.04538    | 0.03961  | 0.05865           | 0.00108           | 0.04151               | 0.02381            |
| C(4)     | 0.06151    | 0.04902  | 0.07067           | 0.00200           | 0.05313               | 0.01271            |
| C(5)     | 0.07440    | 0.04557  | 0.07616           | 0.00210           | 0.04800               | 0.00234            |
| C(6)     | 0.08256    | 0.03748  | 0.07245           | -0.00019          | 0.04796               | 0.02921            |
| C(7)     | 0.06489    | 0.04296  | 0.06005           | 0.00428           | 0.04199               | 0.03786            |
| C(8)     | 0.05417    | 0.03902  | 0.04868           | 0.00889           | 0.04116               | 0.02645            |
| C(9)     | 0.05293    | 0.04128  | 0.04945           | 0.00908           | 0.04172               | 0.02638            |
| C(10)    | 0.06486    | 0.06242  | 0.10376           | -0.01636          | 0.09893               | 0.03053            |
| N(11)    | 0.04731    | 0.04099  | 0.04865           | -0.00117          | 0.04554               | 0.02564            |
| C(12)    | 0.03378    | 0.03628  | 0.03846           | -0.00069          | 0.02952               | 0.01075            |
| C(13)    | 0.03634    | 0.04090  | 0.03511           | 0.03196           | 0.02320               | 0.01878            |
| C(14)    | 0.03550    | 0.04228  | 0.03460           | -0.00420          | 0.02468               | 0.01878            |
| C(15)    | 0.03339    | 0.03438  | 0.03786           | -0.00198          | 0.02669               | 0.01389            |
| C(16)    | 0.03471    | 0.03830  | 0.02686           | 0.00557           | 0.02518               | 0.01177            |
| C(17)    | 0.03876    | 0.03913  | 0.02907           | -0.00260          | 0.02373               | 0.00903            |
| N(18)    | 0.06785    | 0.04235  | 0.03346           | -0.00030          | 0.02990               | 0.02006            |
| N(19)    | 0.04045    | 0.03922  | 0.04867           | -0.00259          | 0.03124               | 0.01913            |
| N(20)    | 0.05399    | 0.06100  | 0.04068           | 0.02608           | 0.04546               | 0.05490            |
| *        | In the for | rm: exp[ | $-2\pi^2 (U_{11}$ | $h^2a^{*2} + U_2$ | $_{2}k^{2}b^{*2} + U$ | $_{33}l^2c^{*2} +$ |
| $2U_{2}$ | klb*c* +   | 2U311hc* | $a* + 2\hat{U}$   | 12lka*b*)].       |                       |                    |

<sup>17</sup> O. J. R. Hodder and C. K. Prout, unpublished work.
<sup>18</sup> 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

<sup>\*</sup> If the difference in backgrounds was  $< 6 \sigma$  they were averaged; from  $6-15 \sigma$  the first background was used. This relatively loose limit was used because of very pronounced streaking induced by the crystal.

The final R was 0.053, at which point a difference Fourier map showed no peaks or holes >0.2e.

In Table 4 are compared the observed structure amplitudes with structure factors calculated from the atom positional parameters (Table 5). Anisotropic temperature parameters are shown in Table 6.

Calculations were carried out on an English Electric KDF 9 computer. Isotropic refinement and Fourier synthesis were calculated using 'Novtape', initially developed

by J. S. Rollett *et al.*, with modifications by O. J. R. Hodder. Anisotropic refinement was programmed by G. C. Ford and J. S. Rollett. Calculation of anisotropic root-mean-square displacements was programmed by J. R. Carruthers.

We thank O. J. R. Hodder for discussions, and the C.S.I.R.O. for a postdoctoral studentship (G. B. A.).

[9/1325 Received, August 4th, 1969]