LETTERS 2007 Vol. 9, No. 14 2625–2628

ORGANIC

Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes

Justin R. Denton, Dinesh Sukumaran, and Huw M. L. Davies*

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000

hdavies@acsu.buffalo.edu

Received March 23, 2007

ABSTRACT

The reaction of 1-aryl-2,2,2-trifluorodiazoethanes with alkenes, catalyzed by the adamantylglycine-derived dirhodium complex $Rh_2(R-PTAD)_4$, generates trifluoromethyl-substituted cyclopropanes with high diastereoselectivity (>94%) and enantioselectivity (88–>98%).

The presence of fluorine functionality in organic compounds can have profound effects on their physical and chemical properties.¹ Fluorinated derivatives of pharmaceutical agents can modulate pharmacokinetic, electronic,² lipophilic,³ and steric properties.⁴ These effects can ultimately lead to improved efficacy of the therapeutic agent.⁵ Consequently, there is considerable interest in developing new methods for the selective introduction of fluorinated groups into organic compounds.

2,2,2-Trifluorodiazoethanes have recently been recognized as attractive reagents for introduction of a trifluoromethyl group. On metal-catalyzed extrusion of nitrogen, the resulting metal carbenoid has been shown to be effective at cyclopropanation,⁶ ylide generation,⁷ and X–H insertion.⁸

(5) Ismail, F. J. Fluorine Chem. 2002, 118, 27.

10.1021/ol070714f CCC: \$37.00 © 2007 American Chemical Society Published on Web 06/07/2007

The development of enantioselective transformations with these trifluoromethyl reagents is an attractive challenge. So far, enantioselective reactions have been limited to two systems. The rhodium(II)-catalyzed cyclopropanations conducted with ethyl 3,3,3-trifluoro-2-diazopropionate (1) generated cyclopropanes 2 in moderate yields (24–72%), diastereoselectivity (0–30% de), and enantioselectivity (0–50% ee) (Scheme 1).^{6a} The generally poor results were

ascribed to the fact that the rhodium carbenoid would be highly electrophilic due to the presence of two electron-

^{(1) (}a) Hiyama, T. Organofluorine Compounds. Chemistry and Applications; Springer: New York, 2000. (b) O'Hagan, D.; Harper, D. B. J. Fluorine Chem. **1999**, 100, 127.

^{(2) (}a) Chambers, R. D. *Fluorine in Organic Chemistry*; Blackwell: Boca Raton, Fl, 2004. (b) Shimizu, M.; Hiyama, T. *Angew. Chem., Int. Ed.* **2005**, *44*, 214.

⁽³⁾ Smart, B. E. J. Fluorine Chem. 2001, 109, 3.

⁽⁴⁾ Park, B. K.; Kitteringham, N. R.; O'Niel, P. M. Ann. Rev. Pharmacol. Toxicol. 2001, 41, 443.

^{(6) (}a) Müller, P.; Grass, S.; Shahi, S. P.; Bernardinelli, G. *Tetrahedron* **2004**, *60*, 4755. (b) Le Maux, P.; Juillard, S.; Simonneaux, G. *Synthesis* **2006**, *10*, 1701. (c) Wang, Y.; Zhu, S.; Zhu, G.; Huang, Q. *Tetrahedron* **2001**, *57*, 7337.

withdrawing substituents. Somewhat better results were obtained with iron and ruthenium porphyrin catalyzed cyclopropanations of 2,2,2-trifluorodiazoethane (3). The cyclopropanes 4 were formed with high diastereoselectivity (up to 98% de) and moderate enantioselectivity (17–75% ee).^{6b} The asymmetric induction is still inferior to the reactions of the more traditional carbenoid source, ethyl diazoacetate.⁹

In recent years, considerable attention has been directed toward the chemistry of donor/acceptor-substituted rhodium carbenoids (5) (Figure 1).¹⁰ These carbenoids are more stable

Figure 1. Carbenoid and catalyst structures.

than the conventional carbenoids, lacking a donor group, and are capable of a range of highly selective reactions. $Rh_2(S-DOSP)_4$ is ideally suited for the reactions of diazo esters **6**, and high enantioselectivity is routinely achieved in substrates with a range of aryl and vinyl functionality as the electrondonating group.¹¹ In contrast, the nature of the electronwithdrawing group dramatically influences the effectiveness of the chiral catalyst. With the diazophosphonates **7**, Rh_2 -(*S*-PTAD)₄ is the most effective catalyst.¹² In this paper, we describe exploratory studies on the cyclopropanation chemistry of the trifluoromethyl derivatives **8**.

The initial screen of the influence of the trifluoromethyl group on the reactions of donor/acceptor carbenoids was conducted on 1-phenyl-2,2,2-trifluorodiazoethane (9).¹³ This

(7) (a) Jiang, B.; Zhang, X.; Luo, Z. Org. Lett. **2002**, *4*, 2453. (b) Zhu, S.; Zhu, S.; Liao, Y. J. Fluorine Chem. **2004**, *125*, 1071. (c) Zhu, S.; Xing, C.; Zhu, S. Tetrahedron **2006**, *62*, 829. (d) Titanyuk, I. D.; Vorob'eva, D. V.; Osipov, S. N.; Beletskaya, I. P. Synlett **2006**, 1355.

- (8) (a) Kale, T. A.; Distefano, M. D. Org. Lett. **2003**, *5*, 609. (b) Brunner, J.; Senn, H.; Richards, F. M. J. Biol. Chem. **1980**, 255, 3313.
- (9) (a) Lou, Y.; Remarchuk, T. P.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 14223.

(10) (a) Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1.
(b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (c) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 2117. (d) Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485.

(11) Davies, H. M. L. Eur. J. Org. Chem. 1999, 9, 2459.

(12) Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437.

(13) (a) Shepard, R. A.; Wentworth, S. E. J. Org. Chem. 1967, 32, 3197.
(b) Shi, G.; Xu, Y. J. Fluorine Chem. 1989, 44, 161. (c) Shi, G.; Xu, Y. J. Fluorine Chem. 1990, 46, 173.

2626

compound was prepared from the corresponding tosylhydrazone in about 40% yield, but due to its high volatility, it was difficult to remove all traces of solvent from 9. The effect of different catalysts (2 mol %) was explored in a standard reaction between 9 and styrene (5 equiv) to generate the trifluoromethyl-substituted cyclopropane 10a (Table 1).

Table 1. Catalyst Optimization Studies						
Ph CF ₃	Rh(II) (2 mol %), rt		Ph 10a Ph			
Rh(II) catalyst	solvent	de (%) ^a	ee (%) ^b	yield (%) ^c		
$Rh_{2}(S-DOSP)_{4}$ $Rh_{2}(S-DOSP)_{4}$ $Rh_{2}(S-PTTL)_{4}$ $Rh_{2}(S-PTTL)_{4}$ $Rh_{2}(S-PTAD)_{4}$	hexanes TFT TFT DCM TFT	94 90 >94 >94 >94	40^{d} 37 ^d 97 86 >98	80 60 95 96 94		

^{*a*} de determined by ¹H NMR of crude material. ^{*b*} ee determined by a chiral HPLC OJ column. ^{*c*} Estimated isolated yields of **10a** after purification by column chromatography because **9** was contaminated with traces of pentane (<5% by ¹H NMR). ^{*d*} Opposite enantiomer preferentially formed. TFT = α, α, α -trifluorotoluene.

Rh₂(*S*-DOSP)₄ was not especially effective in this reaction (60% yield, 90% de, 37% ee), but much better results were achieved with Hashimoto's catalyst Rh₂(*S*-PTTL)₄¹⁴ (95% yield, >94% de, 97% ee). The adamantyl derivative Rh₂(*S*-PTAD)₄ gave even better results (94% yield, >94% de, >98% ee). As previously noted,¹² Rh₂(*S*-DOSP)₄ and Rh₂-(*S*-PTAD)₄ result in opposite asymmetric induction. Lowering the rhodium(II) catalyst loading to 1 mol % had a negative effect on the yield and enantioselectivity (39% yield, 74% ee).

^{*a*} de determined by ¹H NMR of crude material. ^{*b*} Isolated yields after column chromatography purification. ^{*c*} *N'N'N'N*-Tetramethylguanidine.

Further optimization studies were then conducted using a two-step sequence, to avoid isolation of the diazo compound **9**.¹⁵ A summary of the key results is given in Table 2. Reaction of the tosylhydrazone **11**^{13a} with NaH generated the diazo compound **9** *in situ*, which was then exposed to the cyclopropanation conditions to give **10a** in 45–50% combined yield and >94% de. Oxidation of the hydrazone **12** was an alternative process,¹⁶ and when this was conducted with MnO_2^{17} in trifluorotoluene (TFT) followed by a 3 h syringe pump addition of the resulting orange filtrate to Rh₂-(OAc)₄ and styrene, **10a** was isolated in an overall 73% yield and >94% de.

The two-step process is effective with a range of styrene derivatives (Table 3). In the $Rh_2(R-PTAD)_4$ -catalyzed reac-

Table 3.	Cyclopropanation of Various Styrenes with 12				
	$\begin{array}{cc} NNH_2 & 1 \end{pmatrix} MnO_2, MgSO_4 \\ \downarrow & 2 \end{pmatrix} 2 \operatorname{mol} \% Rh_2(R\operatorname{PTAD})_4 \end{array}$				
Ph´	CF ₃	TFT, temp	-	R	Ph
	12	R (5 equ	uiv)	10a-g	I
product	$temp(^{o}C)$	R	de (%) ^a	ee (%) ^b	yield (%) ^c
10a	rt	C_6H_5	>94	>98	71
10b	rt	$p-MeC_6H_4$	>94	90	72
10c	rt	p-MeOC ₆ H ₄	>94	88	76
10d	rt	p-ClC ₆ H ₄	>94	90	64
10e	rt	p-CF ₃ C ₆ H ₄	>94	$>94^{d}$	61
10f	rt	2-naphthyl	>94	89	75
	0	2-naphthyl	>94	90	72
10g	reflux	n-octyl	-	-	20^e

^{*a*} de determined by ¹H NMR of crude material. ^{*b*} ee determined by a chiral HPLC OJ column. ^{*c*} Isolated yield after column chromatography purification. ^{*d*} Due to the broad nature of the peaks, the signal for the minor enantiomer was not observed. ^{*e*} Reaction was conducted with the achiral catalyst Rh₂(OAc)₄.

tions of 12, the cyclopropanes 10a-f were formed in 61–76% yield, >94% de, and 88–>98% ee. The reaction was

Table 4. Cyclopropanation of Styrene with $13a-c$ \bigcap_{R} \bigcap_{CF_3} \bigcap_{ACOH} \bigcap_{R} \bigcap_{CF_3} \bigcap_{R} \bigcap_{R					CF ₃ R
compd	R	13 yield (%) ^a	14 yield $(\%)^a$	de (%) ^b	ee (%) ^c
a b c	$p ext{-MeC}_6 ext{H}_4 \ p ext{-FC}_6 ext{H}_4 \ p ext{-BrC}_6 ext{H}_4$	$91\\90\\91^d$	75 78 77	>94 >94 >94	>98 97 98

^{*a*} Isolated yields after column chromatography purification. ^{*b*} de determined by ¹H NMR of crude material. ^{*c*} ee determined by a chiral HPLC OJ column. ^{*d*} Slight impurities were seen in ¹H NMR of isolated material.

far less effective with unactivated olefins as the $Rh_2(OAc)_4$ catalyzed cyclopropanation of 1-decene (5 equiv) went in only 20% yield, even under refluxing conditions. The reaction could be extended to a range of trifluoromethyl hydrazones (Table 4). The hydrazones 13a-c were

Figure 2. ¹⁹F{¹H} HOESY spectra of 14b.

formed easily from the corresponding trifluoromethyl ketones by condensation of hydrazine in ethanol with a catalytic amount of acetic acid. The two-step process (oxidation/ cyclopropanation) was then performed on 13a-c to form the cyclopropanes 14a-c in 71-78% yield, >94% de and 97->98% ee. The data show that electron-withdrawing substituents on the phenyl ring increase the yield of the cyclopropane but slightly lower the enantioselectivity.

Table 5. $Rh_2(R-PTA)$ p-BrC ₆ H ₄ CF ₃ 13c (1 equiv)		D) ₄ -Catalyzed Cyclop 1) MnO ₂ , MgSO ₄ 2) Rh ₂ (<i>R</i> -PTAD) ₄ (2 mol %) R ₂ (5 equiv) R ₄		ropanation by 13c $R_2 \xrightarrow{CF_3} CF_3$ $R_1 \xrightarrow{C_6H_4(p-Br)}$ 15a-d	
product	R_1	R_2	yield (%) ^a	de (%) ^b	ee (%) ^c
15a 15b 15c 15d	p-BrC ₆ H ₄ p-NO ₂ C ₆ H ₄ 2-naphthyl Ph	H H H Ph	78 75 80 75	>94 >94 >94 _	>98 >98 98 >98

^{*a*} Isolated yields after column chromatography purification. ^{*b*} de determined by ¹H NMR of crude material. ^{*c*} ee determined by a chiral HPLC OJ column.

A ¹⁹F{¹H} HOESY NMR experiment¹⁸ on cyclopropane **14b** was performed to determine its relative stereochemistry

⁽¹⁴⁾ Watanabe, N.; Ogawa, T.; Ohtake, Y.; Ikegami, S.; Hashimoto, S.-I. Synlett 1996, 85.

⁽¹⁵⁾ Diazo compounds should always be handled with care. In this case, we did not observe any instability problems with 9, but it was difficult to obtain in a pure form because it was relatively volatile.

^{(16) (}a) Walker, J. W.; Reid, G. P.; McCray, J. A.; Trentham, D. R. J. Am. Chem. Soc. **1988**, 110, 7170. (b) Holton, T. L.; Shechter, H. J. Org. Chem. **1995**, 60, 4725.

⁽¹⁷⁾ Nagai, W.; Hirata, Y. J. Org. Chem. 1989, 54, 635.

(Figure 2). The spectrum shows direct correlations of the trifluoromethyl group at -69.8 ppm with two cyclopropane protons at 2.84 and 1.88 ppm. No correlation was observed for the cyclopropane proton at 1.65 ppm. It was concluded that the relative stereochemistry of **14b** was the expected (*Z*)-diarylcyclopropane. Thus, as is typical for donor/acceptor carbenoids, the major cyclopropane formed has the donor group cis to the alkene substituent.

To verify the absolute configuration of the cyclopropane, the bromophenyl hydrazone **13c** was reacted with a variety of alkenes with the goal of generating a crystalline product suitable for X-ray analysis (Table 5). None of the products gave suitable crystalline material, but these efforts further illustrate the potential of this chemistry as the cyclopropanes 15a-d were obtained in 98% ee and above.

After considerable experimentation, a crystalline product was obtained by reduction of the enantiomerically pure nitrocyclopropane **15b** with $SnCl_2$ to the aniline, followed by *N*-acylation to form **16** (Scheme 2). X-ray crystallographic analysis of crystals of **16** revealed that the absolute configuration was (1*R*,2*S*). All other trifluoromethyl-substituted cyclopropanes were tentatively assigned the same relative and absolute configuration by analogy.

In conclusion, $Rh_2(R-PTAD)_4$ has shown to be an effective chiral catalyst in the decomposition of 1-phenyl-2,2,2trifluorodiazoethane and its derivatives to form chiral trifluoromethyl-substituted cyclopropanes with very high enantioselectivity. These studies further broaden the range of donor/acceptor-substituted rhodium carbenoids that are capable of highly stereoselective transformations.

Acknowledgment. Financial support of this work by the National Science Foundation (CHE-0350536) is gratefully acknowledged. We thank Dr. Mateusz Pitak, University at Buffalo, for the X-ray analysis.

Supporting Information Available: Experimental data for the reported reactions and a CIF file for the X-ray crystallographic data for **16**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070714F

^{(18) (}a) Bellachioma, G.; Cardaci, G.; D'Onofrio, F.; Macchioni, A.; Sabatini, S.; Zuccaccia, C. *Eur. J. Inorg. Chem.* **2001**, 1605. (b) Hughes, R. P.; Zhang, D.; Ward, A. J.; Zakharov, L. N.; Rheingold, A. L. *J. Am. Chem. Soc.* **2004**, *126*, 6169.