The combination of solvomercuration and reductive demercuration provides a method for C—C bond formation between electron-rich and electron-poor alkenes³. We have now observed that these two reaction steps can be carried out in a one-pot synthesis without isolation of the organomercuric compound 5 and without changing the solvent if ethanol is used. $$C_2H_5OH + R^1 C = C R^3 + X^1 C = C X^2 \xrightarrow{1. Hg(OAc)_2} R^3 H C = C X^3$$ ## C—C Bond Formation between Electron-Rich and Electron-Poor Alkenes in a One-Pot Synthesis B. GIESE*, U. LÜNING Institut für Organische Chemie, Technische Hochschule Darmstadt, Petersenstrasse 22, D-6100 Darmstadt, Federal Republic of Germany The reduction of alkylmercuric salts (1) in the presence of electron-poor alkenes (2) yields products 3 via a radical-chain reaction. An efficient synthesis of alkylmercuric salts (5) is the addition of mercury(II) acetate to electron-rich alkenes (4) in a nucleophilic solvent LH². The effect of the substituents X^1 , X^2 , and X^3 on the yield of 6 is shown by the reactions of alkenes 2 with cyclopentene [4, R^1 – R^3 =(CH₂)₃, R^2 =H] (Table 1) and the effect of the substituents R^1 , R^2 , and R^3 is shown by the reactions of alkenes 4 with acrylonitrile (2, X^1 = X^2 =H, X^3 =CN) (Table 2). The overall yields of these two-step reactions are 50–75% if X^1 , X^2 , X^3 at alkenes 4 are powerful electron-withdrawing substituents. The smaller yields with styrene and dichloroethene reflect the low reactivity of these alkenes in addition reactions with alkyl radicals⁴. ## Alkanes or Substituted Alkanes (6); General Procedure: A suspension of mercury(II) acetate (4.1 g, 13 mmol) in ethanol (10 ml) is mixed with alkene 4 (20 mmol) at 20 °C. After the mercury(II) acetate has dissolved, mercury(II) oxide (1.5 g, 7.0 mmol) is added in four portions. The colorless solution is diluted with dichloromethane (100 ml) and the alkene 2 (60 mmol). The mixture is then cooled to 0 °C, sodium borohydride (1.5 g, 40 mmol) is added quickly and stirring is continued for 1 h. The excess of sodium borohydride is de- **Table 1.** Substituted Cyclopentanes [6, $R^7 - R^3 = (CH_2)_3$, $R^2 = H$] from Alkenes 2 and Cyclopentene | 6 | X1 | \mathbf{X}^2 | X^3 | Yield
[%]ª | b.p. ^b
[°C/0.1 torr] | Molecular
formula ^c | I.R. (film) v [cm -1] | ¹H-N.M.R. (CDCl ₃ /TMS _{int})
δ [ppm] | |---|---------------------|-----------------|---------------------|---------------|------------------------------------|---|-----------------------|--| | a | Н | Н | -CN | 65 | 85° | C ₁₀ H ₁₇ NO
(167.3) | 2260 (CN) | 1.15, 1.18 (t, 3 H, $J = 7.0$ Hz); 1.4-2.0 (m, 9 H); 2.40 (t, 2 H, $J = 7.0$ Hz); 3.2-3.8 (m, 2 H) | | b | Н | Н | —СООСН3 | 60 | 75° | $C_{11}H_{20}O_3$ (200.3) | 1740 (CO) | 3 H)
1.16, 1.18 (t, 3 H, $J = 7.0$ Hz); 1.4-2.0 (m, 9 H); 2.37 (t, 2 H, $J = 7.0$ Hz); 3.3-3.6 (m, 3 H); 3.66 (s, 3 H) | | c | Н | Н | —CO—СН ₃ | 51 | 60° | $C_{11}H_{20}O_2$ (184.3) | 1715 (CO) | 1.16, 1.18 (t, 3 H, J=7.0 Hz); 1.4-2.0 (m, 9 H); 2.14 (s, 3 H); 2.49 (t, 2 H, J=7.0 Hz); 3.2-3.7 (m, 3 H) | | d | Н | Н | C_6H_5 | 15 | 105 ° | C ₁₈ H ₂₂ O
(218.3) | | 1.16, 1.18 (t, 3 H, $J = 7.0$ Hz); 1.2-2.1 (m, 9 H); 2.62 (t, 2 H, $J = 7.0$ Hz); 3.2-3.8 (m, | | e | Н | Cl | CN | 66 | 100° | C ₁₀ H ₁₆ CINO
(201.7) | 2270 (CN) | 3 H); 7.2 (mc, 5 H)
1.16, 1.18 (t, 3 H, $J = 7.0$ Hz); 1.4-2.5 (m, 0 H); 2.1.2.9 (m, 2 H); 4.4.4.8 (m, 1 H) | | f | Н | Cl | Cl | 21 | 110° | $C_9H_{16}Cl_2O$ (211.1) | | 9 H); 3.1-3.9 (m, 3 H); 4.4-4.8 (m, 1 H)
1.16, 1.18 (t, 3 H, J=7.0 Hz); 1.4-2.5 (m,
9 H); 3.2-3.8 (m, 3 H); 5.80, 5.83 (t, 1 H,
J=6.5 Hz) | | g | -CN | Н | —CN | 66 | 115° | $C_{11}H_{16}N_2O$ (192.3) | 2260 (CN) | 1.16, 1.18, 1.19 (t, 3 H, J =7.0 Hz); 1.3-2.3 (m, 7 H); 2.4-4.1 (m, 6 H) | | h | —COOCH ₃ | CH ₃ | —COOCH ₃ | 37 | 95° | $C_{14}H_{24}O_5$ (272.3) | 1735 (CO) | (m, 711), 2.4-4.1 (m, 611)
1.16, 1.19 (t, 3 H, J =7.0 Hz); 1.24, 1.27 (d, 3 H, J =7.0 Hz); 1.4-2.4 (m, 7 H); 2.6-3.1 (m, 2 H); 3.2-3.8 (m, 3 H); 3.67 (mc, 6 H) | ^a Yield based on alkene 4 (cyclopentene). Temperature of the bath. ^c The microanalyses were is satisfactory agreement with the calculated values: C, ± 0.35 ; H, ± 0.13 ; N, ± 0.10 . **Table 2.** 5-Ethoxyalkanenitriles (6, $X^1 = X^2 = H$, $X^3 = CN$) from Alkenes 4, Ethanol, and Acrylonitrile | R ¹ | R ² | R ³ | Yield
[%]³ | b.p. ^b
[°C/0.1 torr] | Molecular
formula ^c | I.R. (film)
v [cm ⁻¹] | ¹H-N.M.R. (CDCl₃/TMS _{int})
δ [ppm] | |---|---|---|---|---|---|---|---| | n-C ₄ H ₉ | Н | Н | 65 | 60° | C ₁₁ H ₂₁ NO
(183.3) | 2260 (CN) | 0.90 (mc, 3 H); 1.18 (t, 3 H, J=7.0 Hz); 1.1-1.9 (m, 10 H)
2.38 (mc, 2 H); 3.1-3.7 (m, 3 H) | | C ₆ H ₅ | Н | Н | 48 | 115° | $C_{13}H_{17}NO$ | 2260 (CN) | 1.16 (t, 3 H, $J = 7.0 \text{ Hz}$); 1.5-2.0 (m, 4 H); 2.25 (mc, 2 H)
3.34 (mc, 2 H); 4.15 (mc, 1 H); 7.25 (mc, 5 H) | | C ₂ H ₅ | CH ₃ | Н | 53 | 50° | C ₁₀ H ₁₉ NO
(169.3) | 2260 (CN) | 0.84, 0.85 (t, 3 H, <i>J</i> = 7.0 Hz); 1.10 (s, 3 H); 1.16 (t, 3 H, <i>J</i> = 7.0 Hz); 1.4–1.9 (m, 6 H); 2.37 (mc, 2 H); 3.32 (q, 2 H, <i>J</i> = 7.0 Hz) | | <i>t</i> -C ₄ H ₉ | CH ₃ | Н | 10 | 85° | $C_{12}H_{23}NO$ (197.3) | 2250 (CN) | 0.92 (s, 9 $\rm \dot{H}$); 1.12 (t, 3 $\rm \dot{H}$, J =7.0 $\rm \dot{H}z$); 1.14 (s, 3 $\rm \dot{H}$); 1.3-2.0 (m, 4 $\rm \dot{H}$); 2.2-2.4 (m, 2 $\rm \dot{H}$); 3.46 (q, 2 $\rm \dot{H}$, J =7.0 $\rm \dot{H}z$) | | CH ₃ | Н | CH ₃ | 75 | 45° | C ₉ H ₁₇ NO
(155.2) | 2260 (CN) | 0.90 (d, 3 H, J=6.5 Hz); 1.07, 1.09 (d, 3 H, J=6.0 Hz)
1.16, 1.17 (t, 3 H, J=7.0 Hz); 1.4–2.1 (m, 3 H); 2.40 (mc, 2 H); 3.1–3.8 (m, 3 H) | | Н | —(CI | I ₂) ₄ — | 68 | 100° | C ₁₁ H ₁₉ NO
(181.20) | 2250 (CN) | 1.16, 1.18 (t, 3 H, <i>J</i> = 7.0 Hz); 0.8-2.5 (m, 13 H); 2.7-3.0 (m, 1 H); 3.2-3.8 (m, 2 H) | | CH ₃ | CH ₃ | CH ₃ | 60 | 100° | C ₁₀ H ₁₉ NO
(169.3) | 2260 (CN) | 0.90 (d, 3 H, J = 7.0 Hz); 1.07 (s, 3 H); 1.14 (s, 3 H); 1.14 (t 3 H, J = 7.0 Hz); 1.2-2.2 (m, 3 H); 2.2-2.6 (m, 2 H); 3.38 (q 2 H, J = 7.0 Hz) | | | C ₆ H ₅ C ₂ H ₅ t-C ₄ H ₉ CH ₃ | n-C₄H₀ H C₀H₃ H C₂H₅ CH₃ t-C₄H₀ CH₃ CH₃ H H —(CH | n-C ₄ H ₉ H H C ₆ H ₅ H H C ₂ H ₅ CH ₃ H t-C ₄ H ₉ CH ₃ H CH ₃ H CH ₃ | n - C_4H_9 H H 65 C_6H_5 H H 48 C_2H_5 CH_3 H 53 t - C_4H_9 CH_3 H 10 CH_3 H CH_3 75 H $-(CH_2)_4$ - 68 | n - C_4H_9 H H 65 60° C_6H_5 H H 48 115° C_2H_5 CH_3 H 53 50° t - C_4H_9 CH_3 H 10 85° CH_3 H CH_3 75 45° CH_3 CH | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | n -C ₄ H ₉ H H 65 60° $C_{11}H_{21}NO$ 2260 (CN) C_6H_5 H H 48 115° $C_{13}H_{17}NO$ 2260 (CN) C_2H_5 CH ₃ H 53 50° $C_{10}H_{19}NO$ 2260 (CN) t -C ₄ H ₉ CH ₃ H 10 85° $C_{12}H_{23}NO$ 2250 (CN) CH ₃ H CH ₃ 75 45° $C_{9}H_{17}NO$ 2260 (CN) CH ₃ H CH ₃ 75 45° $C_{9}H_{17}NO$ 2260 (CN) CH ₃ CH ₂ / ₄ — 68 100° $C_{11}H_{19}NO$ 2250 (CN) CH ₃ CH ₃ CH ₃ 60 100° $C_{10}H_{19}NO$ 2260 (CN) | ^a Yield based on alkene 4. stroyed with water (30 ml) and the liquid layers are decanted and separated. The water layer is extracted with dichloromethane (3×30 ml) and the combined organic phases are filtered through a funnel covered with magnesium sulfate. Distillation yields products **6.** This work was supported by the Fonds der Chemischen Industrie. U. L. thanks the Studienstiftung des Deutschen Volkes for a graduation scholarship. Received: February 8, 1982 0039-7881/82/0932-0736 \$ 03.00 © 1982 Georg Thieme Verlag · Stuttgart · New York ^b Temperature of the bath. The microanalyses were is satisfactory agreement with the calculated values: C, ±0.35; H, ±0.20; N, ±0.32. ^{*} Address for correspondence. ¹ B. Giese, J. Meister, Chem. Ber. 110, 2588 (1977). ² K. P. Zeller, H. Straub, H. Leditschke, in: Houben-Weyl, Methoden der Organischen Chemie, 4th Edn., E. Müller, Ed., Vol. XIII/2b, Georg Thieme Verlag, Stuttgart, 1974. B. Giese, K. Heuck, Chem. Ber. 112, 3759 (1979); Tetrahedron Lett. 21, 1829 (1980). ⁴ B. Giese, J. Meixner, Angew. Chem. 92, 215 (1980); Angew. Chem. Int. Ed. Engl. 19, 206 (1980); Chem. Ber. 114, 2138 (1981).