RATE CONSTANTS FOR ADDITION OF TRIETHYLSILYL RADICALS TO SPIN TRAPS

R. G. Gasanov, L. V. Ivanova, UDC 541.127:543.422:541.515:547.245 and R. Kh. Freidlina

The securing of quantitative data on the unit steps of chemical processes, which are studied by the EPR method employing the technique of spin traps (ST) [1, 2], is of interest. To identify the Et_3Si radicals, which are widely used in chemical reactions, it is customary to use 2,4,6-(Me₃C)₃C₆H₂NO (NB) [3] and PhCH=N(O)CMe₃ (PBN) [4], which form radicals (I) and (II), as the ST.

$$Et_{3}\dot{S}i + HB \xrightarrow{k \text{ add }} 2,4,6-(Me_{3}C)_{3}C_{6}H_{2}\dot{N}OSiEt_{3} (I)$$
(1)

$$Et_{3}\dot{S}i + PBH \xrightarrow{k^{2}add} PhCH(Et_{3}Si)N(\dot{O})CMe_{3} (II)$$
(2)

In the present paper the rate constants for the addition of $Et_3 \dot{S}i$ radicals to NB and PBN were determined by the EPR method. Here we used the method of a competing rate (see, for example, [5]). As the competing reactions we selected either the cleavage of Cl

$$Et_{3}Si + RCl \xrightarrow{R_{cleav}} Et_{3}SiCl + R$$
(3)

or the addition of the C=O group to the O atom.

$$Et_{3}\dot{Si} + RR'CO \xrightarrow{k \text{ add}} RR'\dot{C}OSiEt_{3}$$
(4)

The k_{cleav} constants from RC1 were determined in [6], while the k_{add} constants were determined in [7].

The simultaneous identification by the EPR method of the spin adducts of the Et_3Si and R radicals with either PBN or NB permits determining the rate constant for the addition of these radicals to ST via Eq. (1)

$$k_{\text{add}}^{i} = k_{\text{cleav}} \frac{[\text{RCI}]_{0}}{[\text{ST}]_{0}} \cdot \frac{[\text{A}]}{[\text{B}]} \quad (i = 1, 2)$$

$$(1)$$

where [A] is the concentration of either radicals (I) or (II), and [B] is the concentration of the spin adducts of the \hat{R} radicals with either PBN nitroxyls (III) or NB (IV). It is obvious that

$$NB \xrightarrow{R^{*}} 2, 4, 6 - (Me_{3}C)_{3}C_{6}H_{2}N(O)R$$
(III)

$$PBN \xrightarrow{R} PhCHRN(\dot{O})CMe_{3}$$
(IV)

 k_{add}^{1} can also be determined by the simultaneous identification via the EPR method of the radicals RR'COSiEt₃ (V) (see [4]) and either (I) or (II) in the reaction of Et₃Si with RR'CO and either NB or PBN by using Eq. (2).

$$k_{\text{add}}^{i} = k_{\text{add}} \frac{[\text{RR'CO}]_{0}}{[\text{ST}]_{0}} \cdot \frac{[\text{A}]}{[\text{V}]}$$
(2)

The HFC constants of the (II) radicals, formed by the UV irradiation of $(Me_3CO)_2$, Et_3SiH , and PBN solutions are given in Table 1 (expt. 1). In Table 1 are also given the parameters of the EPR spectra of the spin adducts of the R radicals with PBN; and of the (IV) radicals, which were obtained by the photochemical reaction of Et_3Si with RC1 (R = CCl₃, PhCH₂, Me₃C) in the presence of PBN (expts. 3-5). The HFC constants found by us coincide with the corresponding constants for the spin adducts of the Me₃Si, CCl₃, PhCH₂, and Me₃C radicals with PBN [4, 8, 9]. From these results and the data in Table 2 it can be seen that at the selected [RC1] and

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 938-941, April, 1984. Original article submitted June 28, 1983.

864

TABLE 1. Parameters of EPR Spectra of Radicals $2,4,6-(Me_3C)_3-C_6H_2NOSIEt_3$ (I), PhCH(Et_3Si)N(0)CMe_3 (II), $2,4,6-(Me_3C)_3C_6H_2N-(0)R$ (III), PhCHRN(0)CMe_3 (IV), and RC(Ph)OSIEt_3 (V), Oe

Expt. No.	Radicals	Generation method	^a N	a _H
1 2 3 4 5 6 7	$ \begin{array}{c} (II) * \\ (I) \\ (I) + (IV) \\ (R = CCl_2) \\ (II) + (IV) \\ (R = PhCH_2) \\ (II) + (IV) \\ (R = Me_3C) \\ (I) + (III) \\ (R = PhCH_2) \\ (V) \\ (V) \\ (V) \end{array} $	A † B † A+CCl ₄ A+PhCH ₂ Cl A+Me ₃ CCl B+PhCH ₂ Cl Et ₃ SiH+(Me ₃ CO) ₂ +(PhCO) ₂ D + (PhCO) ₂	15,3 10,5 15,3; 13,8 15,3 14,0 15,3 14,1 10,6 13,7 -	$ \begin{array}{c} 6,1 \\ 2,1 \\ 2,1 \\ 1,5 \\ 6,1 \\ 2,6 \\ 6,1 \\ 2,6 \\ 6,1 \\ 2,2 \\ 2,1 \\ 14,9 \\ a_{p-H}=a_{o-H}=3,0; \\ a_{m-H}=1,1 \end{array} $
8	$(\mathbf{R}=\mathbf{PhCO})$	B+(PhCO) ₂	10,5	$a_{p-H} = a_{o-H} = 3,0$ $a_{m-H} = 1,1$

 $*\alpha_{29}S_{i} = 14.4.$

[†]A = $E_{t_3}SiH$ + (Me₃CO)₂ + PBN; B = $E_{t_3}SiH$ + (Me₃CO)₂ + NB. ‡From m-H of ST. ** α_{m-H} = 0.9 from hydrogen of trap.

 $[PBN]_{\circ}$ concentrations the (II) and (IV) radicals can be simultaneously recorded by the EPR method at 25°C. The concentrations of these radicals are given in Table 2. On the basis of these data and the k_{cleav} values for CCl₄, PhCH₂Cl, and Me₃CCl [6] (see Table 2) at known initial concentrations of PBN and RCl we used Eq. (1) to determine the rate constants for the addition of Et₃Si radicals to PBN (see Table 2).*

To determine the k_{add} constants for the addition of Et_3 Si to NB we ran the competing reaction with NB and PhCH₂Cl. The selection of PhCH₂Cl, and not, for example, of either CCl₄ or Me₃CCl as the Cl source, was due to the fact that in the case of CCl₄ the formed CCl₃ radicals, as is known [1, 3], are not fixed by NB, while in the case of Me₃CCl the Me₃C radicals should be obtained, whose spin adducts with NB have HFC constants that are close to the corresponding constants for the (I) radicals [3]. The HFC constants of the spin adducts of the PhCH₂ radicals, formed in the reaction of Et_3 Si with PhCH₂Cl, are given in Table 1 (expt. 6) and coincide with the corresponding constants for the (III) radicals (R = PhCH₂) [3]. Having calculated the steady-state concentrations of radicals (I) and (III) from the obtained EPR spectra, by using Eq. (1) at known k_{cleav} values we obtain: $k_{add}^1 = 1.4 \cdot 10^9$ liters/mole·sec (see Table 2, expt. 4).

The k_{add}^1 value was also determined by studying the reaction of Et_3Si with NB in the presence of (PhCO)₂ (see Table 2, expt. 5).

When Et₃Si is reacted with $(PhCO)_2$, the signals of the $PhC(0)\dot{C}(Ph)OSiEt_3$ radicals are observed in the EPR spectrum, the values of whose HFC constants are given in Table 1 (expt. 7) and they coincide with the corresponding constants of these radicals, studied in [11]. When a solution of Et₃SiH and $(Me_3CO)_2$, containing NB in $(PhCO)_2$, is irradiated with UV light the signals of radicals (I) and (V) (R = Ph, R' = PhCO) are observed in the EPR spectrum (Table 1, expt. 8). Substituting in Eq. (2) the concentrations of the identified radicals (see Table 1, expt. 8), and the initial concentrations of $(PhCO)_2$ and ST when $k_{add} =$ $3.3 \cdot 10^8$ liters/mole·sec [7], we obtain for k_{add}^1 at 25°C: $1.9 \cdot 10^9$ liters/mole·sec.

EXPERIMENTAL

The EPR spectra were obtained on an RÉ-1306 spectrometer. The ampul with the solutions, which were degassed by the vacuum-freezing (at $10^{-3}-10^{-4}$ mm) and thawing method (several cycles), were exposed to the UV light from a DRSh-500 lamp in the resonator of the spectrometer. When PBN was used as the spin trap the Et₃Si radicals were generated by using Et₃SiH and (Me₃CO)₂ in a 1:1 volume ratio as the source of the radicals. In the case of NB we took 0.1 ml of Et₃SiH in TBP in each experiment. We used C₆H₆ as the solvent. The same

^{*}The rate constant for the addition of Et_3Si to PBN was determined in [10], which at 25°C is equal to $(7.1 + 2.8) \cdot 10^7$ liter/mole•sec.

1	di-		1
- (Me	r Ad		
4.6	Ę0		
2.	ante		
(II)	onst		
1e ₃	с е		
•0	Rat		
į)Ν(s of		
It _a S	allue		
CH(I	d Ve		
, Ph) an		
(I)	(ST		
Et3	$\hat{\Sigma}$		
NOSi	Eta		ĺ
C ₆ H ₂)0Si		
C) ³ ((Ph)		
(Me	d RC		
4,6-	, an		
2,			ŀ
cals	e3 (
Radi	3 0 0		
of	- IRN (25°C	ŀ
ion	PhCI	at	
trat	E),	ST	
ncen	II)	i to	
Col	() R	t _a s.	
2.	H2N(of E	
ABLE) ₃ C6	ion	
Ĥ	C)	j,	l

Generation		[RCI]•	ISTI .	kcleav.	[1].f0ª	[II] · 106	[III] · 10°	[IV].10 ⁶	[V] 10°	kadd.
method	ж,	mole	/liter	liter/mole • sec		u	ióle/liter			liter/mole sec
RCI+A *	ccl₃	3,6.10-3	PBN, 0,1	2.10 ⁹ [6]	1	1,59	1	6,98	1	1,6-107
same	PhCH ₂	$3,2.10^{-2}$	*	2.107 [6]	ł	5,7	1	2,56	I	1,4.107
*	Me ₃ C	5,5.10-1	*	1.107 [6]	1	2,7	1	2,53	ł	5,5.10
RCI+B *	PhCH ₂	0,89	[NB], 1,2.10 ⁻²	2.107 [6]	3,6	1	3,6)	I.	1,4.109
RC(0) Ph+B	PhCO	6.10-2 +	[[NB], 2,2·10- ³	3,3.10 ⁸ [7]	0,72	1	1	1	6,08	1,9-10

A = Et_3SiH + (Me_3CO)₂ + PBN_ B = Et_3SiH + (Me_3CO)₂ + NB. † (PhCO)₃. ratios of the reactants were also chosen in the experiments with $(PhCO)_2$ when generating the $PhC(0)C(Ph)OSiEt_3$ radicals. The concentrations of RCl and $(PhCO)_2$ in the competing reactions are given in Table 2. As the standard for calculating the concentrations of the radicals we selected $[2,2,6,6-Me_4-4-(PhCO)_2-C_6H_2NO]_0 = 3 \cdot 10^{-3}$ mole/liter.

CONCLUSIONS

The rate constants for the addition of triethylsilyl radicals to α -phenyl-N-tert-butylnitrone (k_{add} = (11 ± 5)•10⁶ liter/mole•sec) and 2,4,6-tri-tert-butylnitrosobenzene (k_{add} = (1.5 ± 0.3)•10⁹ liter/mole•sec) at ~20°C were determined by the EPR method.

LITERATURE CITED

- 1. R. Kh. Freidlina, I. I. Kandror, and R. G. Gasanov, Usp. Khim., <u>47</u>, 508 (1978).
- R. G. Gasanov, L. V. Ivanova, and R. Kh. Freidlina, Izv. Akad. Nauk SSSR, Ser. Khim., 1011 (1982).
- 3. S. Terabe and R. Konaka, J. Chem. Soc. Perkin Trans., 2, 369 (1973).
- 4. H. Chaudra, I. M. Davidson, and M. C. R. Symons, J. Chem. Soc. Perkin Trans., 2, 1353 (1982).
- 5. E. Janzen and C. Evans, J. Am. Chem. Soc., 94, 8236 (1972); 95, 8205 (1973).
- 6. C. Chatgilialoglu, K. U. Ingold, and J. C. Scaiano, J. Am. Chem. Soc., 104, 5123 (1982).
- 7. C. Chatgilialoglu, K. U. Ingold, and J. C. Scaiano, J. Am. Chem. Soc., 104, 5119 (1982).
- 8. R. G. Gasanov and R. Kh. Freidlina, Dokl. Akad. Nauk SSSR, 235, 1309 (1977).
- 9. E. G. Janzen and B. J. Blackburn, J. Am. Chem. Soc., 91, 4481 (1969).
- C. Chatgilialoglu, K. U. Ingold, and J. C. Scaiano, J. Am. Chem. Soc., <u>105</u>, 3292 (1983).
 J. Copper, A. Hudson, and R. A. Jackson, J. Chem. Soc. Perkin Trans. 2, <u>1933</u> (1973).

IONIC HYDROGENATION IN THE PRESENCE OF SURFACE-ACTIVE SUBSTANCES

UDC 541.128:541.183:542.941

D. N. Kursanov*, G. D. Kolomnikova, S. A. Goloshchapova, M. I. Kalinkin, and Z. N. Parnes

The rate of many chemical reactions depends on the presence of surface-active substances (SAS) in the reaction medium [1]. Frequently this is related to the formation of micelles, and in this case the accelerating effect of the SAS is called micellar catalysis. The vast majority of the data on micellar catalysis was obtained for aqueous solutions. Data on micellar catalysis in organic solvents is very scanty, although it is specifically such reactions that have interest for synthetic organic chemistry.

We studied the possible catalytic effect of the SAS in the ionic hydrogenation reaction [2]. The key step of this reaction is the formation of the carbocation, and consequently we used SAS which form micelles that are capable of stabilizing the intermediate carbenium ion, and specifically the Na salt of the diisooctyl ester of sulfosuccinic acid (I), poly(ethylene glycol 12-monolaurate) (II), and poly(ethylene glycol 10-oleate) (III). The substrates were olefins of variable structure and acetophenone, as the proton donor we used 68% HClO₄,[†] the triethyl- and diphenylsilanes served as the hydride-ion donors, and the solvent was n-octane, in which (I)-(III) form micellar solutions [4]. It proved that all of the studied SAS substantially accelerate the ionic hydrogenation of branched olefins and acetophenone (Table 1).

From Table 1 it can be seen that the ionic hydrogenation rules, established using the standard silane: CF_3COOH system, are retained, and unbranched olefins, in particular cyclohexene, are not hydrogenated, while acetophenone is reduced to the hydrocarbon.

[†]The use of HClO₄ as the proton donor in ionic hydrogenation was shown in [3].

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimichekaya, No. 4, pp. 941-942, April, 1984. Original article submitted August 19, 1983.

^{*}Deceased.