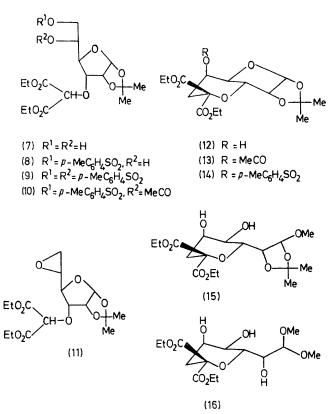

Synthesis of 3,7-Anhydro-octose Derivatives Related to Octosyl Acids

By K. Anzai* and T. Saita


(The Institute of Physical and Chemical Research, Wako-shi, Saitama, Japan 351)

Summary Some derivatives of 3,7-anhydro-6-deoxy-Dglycero-D-allo-octofuranosyluronic acid, the sugar portion of octosyl acids A and B, have been synthesized. As an approach to the synthesis of octosyl acids A and B (1) and (2),¹ which were isolated from the fermentation broth of the polyoxin²-producing micro-organism, *Strepto-myces cacaoi* var. *asoensis*,³ and were considered to be

carbo-analogues of cyclic AMP,¹ the synthesis of the sugar portion of these nucleosides has been attempted. Thus, reaction of 1,2:5,6-di-O-isopropylidene- α -D-allofuranose (3)⁴ with ethyl bromoacetate in the presence of NaH afforded the ethyl ester (4), m.p. 89–90 °C; m/e 331 (M^+ – Me),† which was converted into the malonic acid derivative (5) by treatment in refluxing diethyl carbonate (b.p. 127 °C) with an equimolar amount of NaH; yield 80%; m.p. 50-51 °C, v (KBr) 1740 and 1770 cm⁻¹ (CO); m/e 403 (M^+ – Me); δ 4.78 (1H, s, EtO₂CCHCO₂Et). If (4) was treated with diethyl carbonate and NaH in tetrahydrofuran at 0 °C, the Claisen condensation product (6) (syrup) was obtained exclusively as a mixture of stereoisomers; m/e 631 (M⁺ -Me); δ 5.68 - 5.88 (2H, m, 1- and 1'-H), and 4.72 (1H, s, EtO₂CCHCO₂Et).

Treatment of (5) in 70% acetic acid at 37 °C for 3 h afforded the partially deacetonated product (7) (82%), m.p. 53 °C; m/e 363 (M^+ – Me), which was converted into the monotosylate (8), (syrup) m/e 517 (M^+ – Me), by reaction with an equimolar amount of tosyl chloride (70%). With excess of tosyl chloride the ditosylate (9) (syrup) was obtained. Treatment of (8) with NaH afforded the epoxy compound (11) (syrup) as well as the product of C-C bond formation (12) (syrup) in a ratio of 1:2-3; (11): m/e(75 eV) 345 (M^+ – Me), 302 [M^+ – Me – CH₂CH(O)], 169 $[M^+ - Me - EtO_2CCH(O)CO_2Et - H]$, and 127 $[M^+$ - Me - EtO₂CCH(O)CO₂Et - CH₂CH(O)]; δ 4.68 (1H, s, EtO₂CCHCO₂Et); (12): v (KBr) 3500 (OH), 1700sh, and 1743 (CO) cm⁻¹; δ (CDCl₃, Me₄Si) 2.31 and 2.77 (2H, 2 × dd, 6-H^a and -H^b, $J_{5,6a}$ 3, $J_{5,6b}$ 4, J_{gem} 15 Hz), 4.35 (1H, dd, 3-H, $J_{2,3}$, 4, $J_{3,4}$ 12 Hz), and 5.77 (1H, d, 1-H, $J_{1,2}$ 4 Hz). A large $J_{3,4}$ value in (12) corresponds well with the $J_{3',4}$ value of 10.5 Hz in octosyl acid A (1).¹

Similarly, the ditosylate (9) and the acetyl tosyl compound (10) (syrup) were converted into the tosylate (14), m.p. 146-147 °C, m/e 499 (M^+ – Me), and the acetate (13) (syrup), m/e 387 (M^+ – Me), of (12). Compound (10) was prepared by treatment of (8) with Ac₂O-pyridine.

Treatment of (12) with 0.01N HCl in methanol resulted in initial cleavage of the furanose ring prior to release of Me_2CO to give (15), followed by further conversion into compound (16); (15): m.p. 90 °C, m/e 377 (M^+ – Me), and 361 $(M^+ - \text{OMe})$; δ (CDCl₃) 1.47 and 1.49 (6H, 2 × s, $Me_2C <$), 2.23 and 2.76 (2H, 2×dd, 6-H^a and -H^b, J_{5,6a} 3, J_{5,6b} 4, Jgem 15 Hz), 3.41 (3H, s, MeO) and 5.33 (1H, d, 1-H, $J_{1,2} = 1 \text{ Hz}$; (16): δ (CDCl₃) 2.21 and 2.77 (2H, 2 × dd, 6-H^a and -H^b, $J_{5,6a}$ 3, $J_{5,6b}$ 4, J_{gem} 15 Hz), and 3.44 and 3.76 (6H, $2 \times s$, OMe).

This acid lability of (12) may explain unsuccessful attempts to convert (12) into octosyl acid nucleosides through a route involving acetolysis of (12) using H_2SO_4 as catalyst followed by reaction with trimethylsilyluracil using SnCl₄ as catalyst.⁵

We thank Dr. S. Suzuki for interest and Drs. K. Isono and H. Ohrui for helpful discussions.

(Received, 14th May 1976; Com. 551.)

† All compounds were adequately characterised; only selected spectral data are reported.

¹ K. Isono, P. F. Crain, and J. A. McClosky, J. Amer. Chem. Soc., 1975, 97, 943. ² K. Isono, K. Asahi, and S. Suzuki, J. Amer. Chem. Soc., 1969, 91, 7940.

³ K. Isono, J. Nagatsu, Y. Kawashima, and S. Suzuki, Agric. Biol. Chem., 1965, 29, 848.

⁴ R. L. Whistler and J. N. Beniller, Methods Carbohydrate Chem., 1972, 6, 123; D. C. Baker, D. Horton, and C. G. Tindall, Jr., Carbohydrate Res., 1972, 24, 192.

⁶ H. Vorbrüggen, K. Krolikiewicz, and U. Niedballa, Ann. New York Acad. Sci., 1975, 255, 82; H. Vorbrüggen and U. Niedballa, Angew. Chem., 1971, 83, 729.