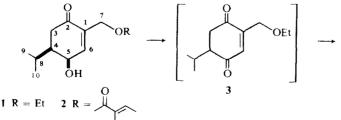
A NEW CARVOTANACETONE DERIVATIVE FROM BLUMEA WIGHTIANA*

FERDINAND BOHLMANN[†], CHRISTA ZDERO[†] and A. G. RAMACHANDRAN NAIR[‡]

† Institute of Organic Chemistry, Technical University, D-1000 Berlin 12, W. Germany: ‡ Jawarharlal Institute of Postgraduate

Research, Pondicherry-6, India

(Received 17 November 1978)


Key Word Index -- Blumea wightiana; Compositae; Inuleae; new carvotanacetone derivatives.

So far no characteristic compounds have been isolated from *Blumea* species (tribe Inuleae). In addition to simple monoterpenes [1, 2], some flavanoids [3] and the widespread pentaynene [4], only sporadic isolations of other compounds are reported. The aerial parts of *Blumea* wightiana DC. afforded only two compounds, which were identified as the carvotanacetone derivatives 1 and 2. The structure of 1 followed clearly from the result of the manganese dioxide oxidation, which afforded the quinone 4 as shown by ¹H NMR-spectroscopy (Table 1). However 1 probably was an artefact as the plant material was extracted with ethanol. The free alcohol could not be isolated. The absolute configuration probably was the same as that of D-carvotanacetone as the optical rotation of 1 also was positive.

Table 1. ¹H NMR data of 1, 2 and 4 (270 MHz, $CDCl_3$, TMS as internal standard, δ values)

	1	2	4
3α-H	2.56 dd	2.59 dd	
3β-H	2.47 dd	2.49 dd (6.50 d
4α-H	1.67 m	1.68 m	
5α-H	4.51 dd	4.52 dd	
6-H	7.02 dt	6.93 dt	6.80 t
7-H	4.19 ddd	4.90 ddd	
7'-H	4.13 ddd	4.83 ddd	4.34 d
8-H	1.67 m	$1.68 \ m^{-3}$	3.05 dqq
9-H	1.05 d	1.05 d	
10-H	0.97 d	0.98 d	1.14 d
OR	3.56 q	6.91 <i>qq</i>	3.60 q
	1.23 t	1.86 dg	1.26 t
		1.81 dq	

J(Hz): 3α , $3\beta = 16.5$; 3α , $4\alpha = 5.5$; 3β , $4\alpha = 11$; 4α , $5\alpha = 3$; 5α , 6 = 5.5; 5α , 7 = 1.5; 8, 9 = 8, 10 = 7; OEt: 7; OTigl: 7 and 1.5.

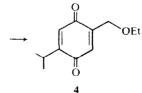
* Part 205 in the series "Naturally Occurring Terpene-Derivatives". For Part 204 see Bohlmann. F. and Dutta, L. (1979) *Phytochemistry* 18 (in press).

EXPERIMENTAL

The air-dried plant material was extracted with EtOH and the resulting extract first separated by CC (Si gel, act. grade II) and further by TLC (Si gel GF 254). 1 kg of aerial parts afforded 75 mg 1 (Et₂O petrol, 1:1) and 10 mg 2 (Et₂O-petrol, 1:1).

5-Hydroxy-7-ethoxy-carvotanacetone (1). Colourless oil, bp_{0.1} 150°. IR cm⁻¹: 3620 (OH); 1685 (C=C CO). MS m/e (rel. int.): 212.143 (M⁺) (C₁₂H₂₀O₃): 195 (M⁺ - 'OH, 13); 183 (M⁺ - 'C₂H₅, 28); 169 (M⁺ - 'C₃H₇, 90): 151 (169 - H₂O, 79); 123 (151 - CO, 100); 95 (123 - C, H_a, 93).

$$[\alpha]_{24^{c}}^{\lambda} = \frac{589}{+59.3} \frac{578}{+61.9} \frac{546}{+70.4} \frac{436 \text{ nm}}{+113.2} (c = 4.7).$$


15 mg 1 in 3 ml Et₂O were stirred for 3 hr with 100 mg MnO₂. After TLC (Et₂O-petrol, 1:3) 10 mg 4 were obtained, yellow oil. IR cm⁻¹: 1655, 1615 (*p*-quinone). MS m/e (rel. int.): 210 (M⁺, 33): 195 (M⁺ - 'Me, 46); 165 (M⁺ - 'OEt, 100).

5-Hydroxy-7-ethoxy-carvotanacetone (1). Colourless oil, $bp_{0,1}$ IR cm⁻¹: 3620 (OH): 1720, 1655 (C=C CO₂R): 1685 (C=C CO). MS *m*/e (rel. int.): 266.152 (M⁺, 2) (C₁₅H₂₂O₄); 249 (M⁺ - 'OH, 2); 166 (M⁺ - C₄H₇CO₂H, 24): 83 (C₄H₇CO⁺, 100).

Acknowledgement — We thank the "Deutsche Forschungsgemeinschaft" for financial support.

REFERENCES

- 1. Simonsen, J. L. and Rau, G. M. (1922) J. Chem. Soc. 121, 876.
- 2. Karrer, W. (1958) Konstitution und Vorkommen der Organisch-
- en Pflanzenstoffe. Birkhäuser, Basel. 3. Rao, C., Rao, T. and Muralikrishna, B. (1977) Planta Med.
- 235. 4. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally
- Occurring Acetylenes. Academic Press, London and New York.

