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Abs t r ac t  This paper proposes the use of more than one clustering method to improve 
clustering performance. Clustering is an optimization procedure based on a specific clustering 
criterion. Clustering combination can be regarded as a technique that constructs and processes 
multiple clustering criteria. Since the global and local clustering criteria are complementary 
rather than competitive, combining these two types of clustering criteria may enhance the 
clustering performance. :In our past work, a multi-objective programming based simultane- 
ous clustering combination algorithm has been proposed, which incorporates multiple criteria 
into an objective function by a weighting method, and solves this problem with constrained 
nonlinear optimization programming. But this algorithm has high computational complexity. 
Here a sequential combination approach is investigated, which first uses the global criterion 
based clustering to produce an initial result, then uses the local criterion based information 
to improve the initial result with a probabilistic relaxation algorithm or linear additive model. 
Compared with the simultaneous combination method, sequential combination has low compu- 
tational complexity. Results on some simulated data and standard test data are reported. It 
appears that clustering performance improvement can be achieved at low cost through sequen- 
tial combination. 

Keywords  clustering combination, probabilistic relaxation, linear additive model, clus- 
tering criterion 

1 I n t r o d u c t i o n  

Clustering is an important  tool for data  analysis. It  has been widely used in data  compression, 
da ta  visualization, pa t te rn  recognition, economics and other scientific fields. Many algorithms have 
been developed [1,2], including such popular methods as hierarchical clustering [3'4], graph theoretic 
clustering [5'6] , statistic mixture model estimation [7's], objective function clustering [9] , and neural net- 
work clustering[r]. All clustering methods have their own advantages and drawbacks, and they are 
suitable to different da ta  structures. From the mathemat ical  viewpoint, clustering is an optimization 
procedure according to the clustering criterion. As there is no unity of clustering criteria that  can be 
respected by all applications, various clustering approaches present different clustering criteria from 
their own perspectives. In a sense, the more desirable properties the clustering criterion has, the bet ter  
the algorithm is. Since most clustering criteria are complementary rather  than competitive, clustering 
combination becomes an important  method to improve the clustering performance. However, the 
combination of clustering algorithms is different from the combination of classifiers [1~ and several 
difficulties have to be overcome: 

�9 The quality of clustering combination cannot be evaluated as precisely as combining classi- 
fiers. Prior knowledge and user's judgement always play a critical role in clustering performance 
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estimation [11. This problem creates an obstacle to proposing a mathemat ica l  theory to design duster-  
ing combination schemes. 

�9 As various clustering algorithms always produce results with large differences due to different 
clustering criteria, directly combining these clustering results with integration rules such as product, 
sum, median and majori ty vote may not generate a good result, no mat te r  how effective these rules 
are in combining classifiers. 

�9 For classifier combination, a group of classifiers must be bo th  diverse and accurate in order to 
improve the recognition rate of the system [12]. But  for clustering combination, a group of clustering 
algorithms should be chosen by more complicated strategies. 

In terms of clustering criteria, all the existing clustering algorithms can be classified into two 
categories: 

�9 Local criterion based clustering. 
�9 Global criterion based clustering. 
In the first method, clustering is realized at the local level, and clusters are formed according 

to the local structure of the data such as spatial nearest neighbor relationship and the local area 
statistic features. This kind of clustering method is flexible and non-parametric,  and makes very 
few assumptions on the characteristics of the data. However it will easily run into trouble when the 
clusters are close to each other and the boundaries are indistinct, moreover it is extremely sensitive 
to random noise. Most of the graph theoretic clustering and hierarchical clustering belong to the 
local criterion based method. Different from the local criterion based clustering is the global criterion 
based clustering that  assumes a prototype of data  distribution, and assigns the patterns to clusters 
according to the distance between patterns and prototypes.  If the da ta  distribution does not conform 
to the presumed prototype,  it will become less effective. Both the objective function algorithm and 
the statistic mixture model estimation belong to the global criterion based clustering. 

I t  is obvious that  if both the global and local criteria are considered in clustering, the performance 
of clustering may be improved. In [13,14], we proposed a multi-objective programming based clustering 
combination algorithm, which incorporates the global and local criteria into an objective function by 
a weighting method,  and solves this problem with constrained nonlinear optimization programming. 
In most cases, it produces bet ter  results than the global or the local criterion based method alone, but 
it suffers high computat ional  complexity, especially as the size of da ta  set becomes large. To speed up 
the combination procedure, a sequential combination method is presented in this paper. It  first uses 
the global criterion based fuzzy clustering algorithm to generate an initial result, then uses the local 
criterion based information to improve the initial result with a probabilistic relaxation algorithm or 
a linear additive model. The organization of this paper  is as follows: in the next section we briefly 
review a fuzzy objective function clustering that  is based on the global criterion and graph theoretic 
clustering that  is based on local criterion. Section 3 describes the sequential combination approach in 
detail. Experimental  results are discussed in section 4. Finally, the summary  and conclusion of the 
study are presented. 

2 O b j e c t i v e  F u n c t i o n  C l u s t e r i n g  a n d  G r a p h  T h e o r e t i c  C l u s t e r i n g  

The objective function clustering and the graph theoretic clustering are typical of the global 
criterion based clustering and the local criterion based clustering respectively. They play an important  
role in clustering analysis. As their criteria are very complementary, we will use them for combination. 

2.1 Objective Function Clustering 

In the objective function clustering, the data set is divided into subsets according to their similarities 
and dissimilarities, the data points belonging to the same subset are close to each other in a specific 
measurement,  whereas those belonging to different subsets are far from each other. The definitions of 
similarity and dissimilarity are dependent on distance measurement,  and the distance measurement 
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also determines the prototype of clusters. By now many objective function algorithms have been 
proposed such as the spherical, line, shell and ellipsoid prototype based clustering[ 9]. 

In general, a basic objective function can be defined as: 

C N 

Jm(U,H,X) -- ~_.~_.,#ijx-'x'-" rnD2r j, Hi) (1) 
i=i j=l 

C 

Probabilistic constraint: E #ij = 1, j = 1, . . . ,  N (2) 
i = I  

where C is the number of clusters, D(xj, Hi) is the distance from point xj to the cluster kernel Hi, #ij 
is the membership which indicates the degree of point xj belonging to the i th  cluster, m is a constant 
that controls the fuzzy degree, and if m = 1, this is a hard clustering. The most common distance 
measure chosen is the Euclidean distance, i.e. C-mean algorithm. 

C N 

Jm(U, V,X) = E E# i '~  Ilxj - viii2 (3) 
i=1  j = l  

where vi is the central position of the ith cluster. 
There are various methods to get a solution of the cluster kernel parameters and fuzzy member- 

ships by minimizing the objective function. Among them, mathematical  programming and heuristic 
searching are two main approaches. Readers can refer to [9, 15]. 

2.2 G r a p h  T h e o r e t i c  C l u s t e r i n g  

Different from the objective function clustering, the graph theoretic clustering uses various kinds of 
geometric structures or graphs for analyzing data. It can identify irregularly shaped or non-globular 
clusters according to local area distribution. Several useful algorithms have been proposed such as the 
nearest neighbor, minimum spanning tree, relative neighborhood and Gabriel graph clustering. These 
graphs reflect different local structures or inherent visual characteristics in the data  set. Clustering 
divides the graph into connected components by identifying and deleting inconsistent edges, and each 
subgraph consisting of connected components refers to a cluster. Here we only introduce a modified 
Gabriel graph method [5], and derive a fuzzy connectivity matrix that will be used for combination. 

Suppose a non-directional graph G = (V, E),  V = ( v l , . . . ,  VN) is a set of vertices that  corresponds 
to the data set, and E = ( e l , . . . ,  eM) is a set of distinct edges, each edge e m  ~-- (Vi ,  vj) connects a pair 
of vertices. Assume p and q are two data points. The definitions of their Gabriel influence region [16] 
is given by: 

rv q= B ( p + q  d(p,q)) (4) 
' 2 ' 2 

d(x, y) = [x - y[ (5) 

B(x, r) = {y: d(x, y) < r} (6) 

Then the edge set E can be computed by: 

(p, q) E E,  if and only if Fv, q n V = t~ (7) 

It can be observed that the Gabriel graph only considers the information of the region between two 
vertices, and does not consider the regions around these two vertices. Therefore, Urquhart  proposed 
a modified Gabriel graph whose influence region is defined as[5]: 

= B (P + q q)) u q)) u B(q,  d(p, q)) (s) 
' 2 ' 2 
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where c~ is a constant, a = 0.25 is chosen in our experiments.  Then  the edge set can be obtained by 
(7). The dusters  can be formed by grouping the connected vertices. 

A connectivity matr ix  RNxN can also be derived from the edge set, and the value of its element 
is determined by: 

1, if (vi,vj) E E; 
rij = 0, otherwise. (9) 

As the value of element is 1 or 0, we call this non-directional graph a crisp graph. Crisp graph may 
cause the loss of useful information. Therefore, it is not suitable for ambiguous and noisy environments, 
al though it is very simple. In this paper, a fuzzy edge set is presented, in which each pair of vertices 
has an edge with fuzzy membership that  is an indicator of connectivity strength. Thus the value of 
element in the connectivity matr ix  is redefined as: 

2 
rij - -  1 + eXA'J (10) 

A i j  is the number of points in influence region F N V. A > 0 is a constant that  controls the fuzzy 
degree, if A -+ ~ ,  the fuzzy graph degenerates to a crisp graph. 

From the above discussion, it can be observed tha t  there is no contradiction between the clustering 
criteria of the objective function clustering and the graph theoretic clustering, and these criteria 
actually complement each other, although these two methods are very different. It  suggests that  the 
combination of these two methods is possible, and the combination performance may  be better.  

3 S e q u e n t i a l  C o m b i n a t i o n  A l g o r i t h m s  

SequentiM combination method means that  the global and local criteria are not processed simul- 
taneously, but that  they are considered sequentially. In this method,  the global criterion is first to be 
processed, i.e., fuzzy objective function clustering algorithm is used to generate an initial clustering 
result. Second, the local criterion is processed, i.e., the fuzzy connectivity mat r ix  derived from graph 
theoretic clustering is used to improve the initial clustering result. The key problem is to find a tech- 
nique that  wilt efficiently realize this improvement in the second step. In this section we will propose 
two algorithms - -  probabilistic relaxation and linear additive model. And their advantages and limits 
are also discussed. 

3 .1  P r o b a b i l i s t i c  R e l a x a t i o n  B a s e d  C o m b i n a t i o n  

The second step can be considered as a procedure in which the probabilistic labeling (membership 
vectors) associated with every node (data point) of a graph is updated  according to the statistical 
relations among the probabilistic labelings at neighboring nodes. So the probabilistic relaxation or 
the so-called relaxation labeling (RL) scheme [17-191, and other similar methods such as the stochastic 
relaxation [2~ and the Polya Urn model [2tl can be used in the second step. The  mechanism of RL is 
based on heuristic arguments, and the local constraints or the so-called compatibil i ty function can 
be designed flexibly according to our requirements. This gives RL a broader potential  application, 
although RL was originally developed to deal with ambiguity and noise in vision systems. RL is an 
iterative and parallel technique which uses the local constraints to update  the probabili ty of labeling, 
and its iterative probabil i ty updating equations can be writ ten as: 

and 

+ 

Lk= P  

c 

q (1) = Z 
k=l jEN(i) 

(n) 

(12) 
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where p~(l) is the probability/fuzzy membership of the i th node belonging to the lth class at the 
iteration t, and q~(1) is a support function that represents an influence on the labeling by the predefined 
constraints between class labels, wij(1, k) is the compatibility value between the pair of i th and j t h  
nodes, and the j t h  node is a neighbor R(i) of the irk node. 

We now turn to the clustering combination problem. In the graph theoretic clustering, we have 
constructed a non-directional graph based on the modified Gabriel graph method, and this graph 
contains the useful information about the local constraints of RL. Based on this graph, the neighbor 
of a~node is defined as a node set whose elements have an edge connected to this node, and the 
compatibility value Wij(k,l) between the ith and j t h  nodes can be derived from the connectivity 
strength rij: 

l) = ~ rij,  if k = l, (13) wij(k, 
[ - r i j ,  i f k r  

The initial probability p0 is the fuzzy membership set U obtained from the objective function 
clustering in the first step. Based on iterative updating (11)-(12), the clustering result will be modified 
after each iteration. 

Obviously, RL can do something useful to the clustering combination, because the updating equa- 
tion includes the global and local clustering criteria, the former is reflected in the initial probabilistic 
distribution, and the latter is reflected in the compatibility value. 

In [22], it has been pointed out that the updating sequence converges in the following cases, and 
if the updating sequence converges, one of the following cases will occur. 

Case  1: p~(l) ~ 0 for all i and l, and all q~(l) = a .a  is a scalar value, i.e. local constraints approach 
a constant. 

Case  2: p~(l) = 0 for some (but not all) ls, the corresponding q~ can be arbitrary, but for the 
remaining p~(l') ~ O, the corresponding q~ should be a scalar value a. 

C a se  3: p~(l) = 1 for exactly one l, and p~(l') = 0 for all l' # l. 
As the convergence conditions of Cases 1 and 2 are very difficult to be satisfied, Cases 1 and 2 

seldom occur. Hence case 3 usually happens when RL converges, which means that  the initial fuzzy 
clustering result is changed to the crisp clustering result after RL-based combination. 

In practice, we sometimes find that  the probabilities of most points in the data  set converge so 
fast to p(l) = 1 for exactly one cluster l, and p(l') = 0 for all l' # l, that  local connection information 
cannot impose any further impact on these points in this case. For clustering combination, it makes 
the local clustering criterion play a lesser role in combination than we expected. To overcome this 
problem to some extent, we increase the fuzzy degree of the initial fuzzy clustering result. For the 
fuzzy objective function clustering algorithm, it is only needed that a large value is given to parameter 
m in (1), because the larger the value of rn is, the more fuzzy the clustering result is. Essentially, this 
method increases the weight of the local criterion by decreasing the weight of the global criterion. 

3.2 Linear Ad d i t i ve  Mode l  Based  C o m b i n a t i o n  

The clustering result with RL is influenced by the predefined constraints between class labels in a 
neighborhood. Besides RL, other methods can also be used, among them the linear additive model [23] 
is a good selection. This system is similar to the continuous Hopfield network differing only in (1) 
the diagonal of compatibility matrix W which is not a null vector, (2) the compatibility matrix W 
which is not symmetric, and (3) the dynamical property which is not nonlinear. Its additive activation 
dynamics are: 

U k+l = U k W  (14) 

where U is a C x N membership matrix, and compatibility coefficient W is derived from the connec- 
tivity strength rij.  
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r{j if i 7~ j', (N ) Ep=l,p~i rip Jr- 1 

wi j  = 1 if i = j. 

Ep=l,pr ~P ~- 1 

(15) 

This definition of W can guarantee that the sum of memberships of each pat tern belonging to all 
clusters remains unchanged in all iterations 

C 

Epi~ = 1 (16) 
i = 1  

which is necessary to obtain a meaningful result. 
Before we discuss the convergence of a linear additive model, a theorem about the convergence of 

the Markov chain is given [241 . 
T h e o r e m  1. Consider  a regular Markov  chain having a t rans i t ion  mat r i x  P and an init ial  state 

xo. We  have (1) The sequence of  distributions o f  s ta tes  x0,xt  = xoP,  x2 = x o P 2 , . . ,  approaches 
a vector  x that satisf ies x P  = x. This l imit  vector is a left e igenvector  o f  P corresponding to the 
eigenvaIue 1. (2) The sequence of  ma t r i x  P, P 2 , P 3  . . .  approaches a s tochast ic  ma t r i x  T .  The rows 
o f  T are all identical, a row being a left e igenvector  o f  P corresponding to the eigenvalue 1. 

If we regard the transposition W t as a specific transition matrix, the foiiowing theorem can be 
obtained. 

T h e o r e m  2. In  a linear additive model, (1) The sequence o f  m a t r i x  W,  W 2, W 3 , . . .  approaches 
a stochastic ma t r i x  T ~. The columns of  T ~ are all identical,  a co lumn being a left e igenvector o f  W t 
corresponding to the eigenvalue 1. (2) The sequence o f  membersh ip  sets  Uo, UI = UoW, U2 = UoW2,  . . . 
approaches the transposi t ion o f  a left eigenvector o f  W t corresponding to the eigenvalue 1. 

Theorem 2 shows that the local information in a linear additive model.can spread unlimitedly 
until the memberships of all points are identical, which is different from RL. With this property, the 
weights of the global and local clustering criteria can be adjusted by the iteration number. The results 
of clustering combination appear to be getting better for the first few iterations, after which they may 
become worse, for example, the convergent result of a linear additive system is not our expectation. In 
order to terminate the iteration before convergence, we propose a method to determine the termination 
condition, which is based on the measurement of fuzzfication degree [91. The degree of fuzzification can 
be measured by: 

1 c N 
M (ub = 1 - (17) 

i = l  j = l  

C - 1  
When the updating sequence converges, My will reach to its maximum ~ .  The determination 

condition can be defined: 

if MF(U k) > T, terminate the iteration process. 

C -  1.3 . 
T is a threshold, T - - -  is chosen in our experiments. In contrast to the RL-based combination, 

C 
the final clustering result will be fuzzier than the initial result after the linear additive model based 
combination. 

The probabilistic relaxation and the linear additive model have no essential difference in dealing 
with clustering combination, although their algorithms have some differences. Compared with the 
simultaneous combination methods, both of them not only need less computing time, but also provide 
a more flexible combination strategy. The first step is not limited to the fuzzy objective function 
clustering, and other global criterion based clustering algorithms can also be used. Just the same, 
connectivity matrix can also be derived from other local criterion based methods besides the graph 
theoretic algorithm. 
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4 E x p e r i m e n t a l  V e r i f i c a t i o n  

To test our methods, a lot of experiments on synthetic and real data  have been done. For the 
examples given in this section, the fuzzy C-mean (FCM) algorithm is used as the objective function 
clustering, and the fuzzy modified Gabriel graph clustering is used as the graph theoretic clustering. 
Parameter  m in (3) is defined as 4 for the probabilistic relaxation based combination, and 2 for the 
linear additive model based combination. Other parameters used in our experiments have been defined 
in previous sections~ In addition, when experimental results are used for visualization and comparison, 
they should be defuzzified. 

First we apply our Mgorithms to Fisher's Iris data. Iris data set has four attributes, but only 
the third and the fourth attributes have good discrimination power, so we only consider these two 
attributes in the experiments (Fig.l(a)). Figs. l(b)-(d)  are the results with C = 3 by FCM, RL-based 
combination, and linear additive model based combination respectively. Because the two subsets of 
Iris data  overlap, the graph theoretic clustering fails in this data set, and the local criterion can not 
provide useful information for the partit ion of these two overlapping subsets, but  FCM is suitable for 
this data  set. From the experiment we find that the results of the three clustering methods are very 
similar, and among them only one or two data points have different labels, which illustrates there is 
not obvious contradiction between the clustering criteria of FCM and the graph theoretic algorithm, 
even though the latter is not suitable for this data set. 
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F i g . 1 .  E x p e r i m e n t  o n  I r i s  d a t a .  ( a )  O r i g i n a l  d a t a  o n l y  i n c l u d i n g  t h e  t h i r d  a n d  t h e  f o u r t h  a t t r i b u t e s .  ( b )  F C M .  (c )  

I l L - b a s e d  c o m b i n a t i o n .  ( d )  L i n e a r  a d d i t i v e  m o d e l  b a s e d  c o m b i n a t i o n .  

The  data  set in Fig.2(a) consists of two Gaussian distributions with different parameters, their 
means are (320, 200) and (320, 300), and variances are 35 and 10 respectively. As the difference 
between these variances of two Gaussian distributions becomes large, some patterns belonging to the 
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distribution with a large variance are misclassified by FCM to the distribution with a small variance 
(Fig.2(b)), but the modified Gabriel graph clustering can deal with this case effectively. Figs.2(c) 
and (d) show that the results of RL-based combination, and linear additive model  based combination 
respectively. We find that the labels of three data points in the left of  Fig.2(c) have not been corrected, 
which is due to the too fast convergence of RL. This experiment illustrates that the result of FCM 
can be improved by the local criterion based information. 
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F ig .2 .  E x p e r i m e n t  o n  t h e  d a t a  set  i n c l u d i n g  two  d i f ferent  G a u s s i a n  d i s t r i b u t i o n s .  (a)  O r i g i n a l  d a t a .  (b) F C M .  (c) R L  

b a s e d  c o m b i n a t i o n .  (d)  L i n e a r  a d d i t i v e  m o d e l  b a s e d  c o m b i n a t i o n .  

We further evaluate our algorithms on six datasets (Table 1) from the UCI repository of machine 
learning database[25]. All examples in the dataset have their own classification labels that are not 
used in clustering process, but can be used to evaluate clustering performance. We give the following 
definition of error rate as the measure of clustering performance, which is based on the difference 
between the clustering labels/~O and classification labels Yij. 

1 C N 

error rate = ~ E E II#ij - yijn/N 
i = 1  j = l  

(18) 

where # is the crisp membership obtained by the defuzzification of the clustering result, and y is the 
standard classification label. If the error rate of clustering algorithm A is less than that of algorithm 
B, in most cases we can say that the performance of algorithm A is superior to that of algorithm 



126 QIAN Yuntao, Ching Y. Suen et al. Vol.17 

B. The  error rates of FCM,  RL-based combinat ion,  and linear addit ive model  based combinat ion are 
given in Table 2. 

Tabl(e 1. Description of Datasets 
Domain Data size Classes Attributes 
Balance scale 625 3 4 
Wisconsin breast c~ncer 699 2 9 
Glass 214 6 9 
Image segmentation 210 7 19 
Pima diabetes 768 2 8 
Wine 178 3 13 

Table 2. Error Rates of FCM, RL-Based Combination, Linear Additive 
Model Based Combination, and Nearest Neighbor Classifier 

Domain FCM RL Linear additive model NN classifier 
Balance scale 0.3648 0.2288 0.2294 0.2080 
Wisconsin breast cancer 0.0443 0.0343 0.0343 0.0572 
Glass 0.5514 ~9.5327 -5.5249 0.3410 
Image segmentation 0.3524 0.2738 0.2574 0.1381 
Pima diabetes 0.2956 0.3021 0.3206 0.3010 
Wine 0.0787 .0.0562 0.0562 0.0510 

"vVe also give the error rates of the neares:t neighbor  (NN) classifier in Table 2. As we know, 
the NN classifier is not  a clustering algorithm, but  its classification performance can reflect the local 
characterist ics of the d a t a  set. If  the error rate o f  NN classifier is low for a specific da ta  set, the pat terns  
in this da ta  set belonging to the same class are ahvays  closer to each other  than  the pat terns  belonging 
to different classes. In other  words, the local cri,terion based clustering is suitable to this da ta  set, 
and the per formance  of  the clustering combinat ion a lgor i thm will be bet ter  than  tha t  of FCM. If the 
error rate of the NN classifier is high, clustering co~mbination will not  make notable  improvement on 
FCM.  From Table 2, we find that  in all cases the pe:rformances of clustering combinat ion algorithms 
are superior to F C M  except for the P ima  diabetes a n d  Glass da ta  sets, and the improvements  brought  
by combinat ion  a lgor i thms range from 23% to 31%. Fur thermore,  our  results also outperform the 
results obta ined by m a n y  other  clustering approaches,  for example the best clustering performance 
of the breast cancer data set by other algorithms is about 0.0443 [4], but our Mgorithms can achieve 
0.0343. For the Pima diabetes and Glass datasets, the error rates of the NN classifier are 30.1% and 
34.1% respectively, which illustrates the local information is not suitable for classifying these two data 
sets correctly, so it is reasonable that the clustering combination can not produce better results than 
FCM in these two particular cases. %Ve also find that the combination performance of RL and the 
linear additive model have only slight difference, so whichever of them can be selected in practice. 

For the sequential clustering combination, the initial clustering result produced by the objective 
function clustering has decisive influence on the performance of clustering combination. In the above 
experiments, FCM has been chosen as the objective function clustering algorithm, but for some appli- 
cations, FCM is not suitable, because the distribution of clusters is not always 'spherical'. Therefore, 
other objective function algorithms such as the linear, ellipsoidal and shell prototype based algorithms 
should be selected according to specific situation. Although other graphs can replace the modified 
Gabriel graph, it is noted that the change of the cluster prototype in objective function clustering has 
not any relation wi th  the choice of the local cri terion based clustering algorithm. 

Finally, we discuss the computa t iona l  cost of these two algorithms. The  computa t iona l  cost of  the 
sequential clustering combinat ion  (ts) includes the cost of the global criterion based clustering (tg), 
the local cri terion based information extract ion (tl), and the combinat ion a lgor i thm (tc), i.e. 

ts = tg + tl + t~ (19) 

The average iteration numbers of RL and the additive linear model are about 40 and 20 separately 
for the clustering combination, and each iteration needs O(N 2) time complexity for both of them. As 
the updating (14) of the linear additive model is simpler than (11), (12) of RL, the overall speed of 
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the additive linear model is about 5 times as fast as RL. If this fact is considered that the most of 
elements of W are zero, the computational cost of RL and the additive model will be lower than the 
above estimation. In experiments te is relatively very little, but tg and h take more time, especially h. 
How to decrease tl is our next research interest in the future. However, compared to the simultaneous 
combination method [13'14], sequential combination algorithms have low computational cost. 

5 C o n c l u s i o n s  

Clustering combination offers an effective and flexible approach to improve clustering performance 
by taking advantage of various clustering algorithms. But clustering combination is also a difficult 
problem, and we have to watch for the inconsistency between the clustering algorithms which may fail 
the combination. Therefore, the first task of clustering combination is to choose the clustering methods 
to be combined. In this paper, we choose the global criterion based clustering and the local criterion 
based clustering, because they complement each other, and there is not much contradiction between 
them. Then the next task is to choose an approach to combine the clustering algorithms. In this paper 
a sequential combination approach is proposed, in which an initial clustering result is first produced 
by the fuzzy objective function clustering algorithm, then by RL or the linear additive model the 
initiaI result is improved with the locat information that  is derived from the graph theoretic clustering 
algorithm. Compared with the simultaneous combination method [la't41, the sequential combination 
method is flexible, computing is fast, and algorithm realization by computer is also straightforward. 
The experiments illustrate that our approach is powerful and effective. 

In this study, both the objective function clustering and the graph theoretic clustering in the 
combination use the identical features of the data set. But in some applications, we can classify the 
features into two classes, one for the local criterion based clustering, and the other for the global 
criterion based clustering. This may produce a bet ter  result than using identical features. 
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