GEOMETRICAL ISOMERISM OF THE O-SUBSTITUTED OXIMES OF SOME KETO-STEROIDS

A. BODOR*

Institute of Chemical and Pharmaceutical Research, str. Fabricii 126, 3400 Cluj, Romania

and

A. BARABÁS Institute of Chemistry, str. Donath 65, 3400 Cluj, Romania

(Received in UK 23 May 1978; Accepted for publication 8 August 1978)

Abstract—O-Benzyl- and/or O-iso-propyl-oximes of a number of 3-, 7- or 20-oxo-steroids and of some 3,20-dioxosteroids have been prepared. The products were characterized by their C,H,N-content and physical properties and studied by UV, ¹H- and ¹³C-NMR spectroscopy. The ketoximes of 3-oxo- Δ^4 -steroids were invariably found to consist of a mixture of two geometrical isomers, denominated syn and anti. In some cases both isomers could be obtained in a pure state by column-chromatography. Oximes of the 7-oxo- Δ^5 -steroids were found to consist only of the syn isomer, whereas the 20-oximino compounds showed no isomerism.

O-Substituted steroidal ketoximes are of recent interest owing to their biological activity.^{1,2} O-Carboxymethyl oximes (e.g. 3 - beta - hydroxy - 17 - oxo - 5 - androsten -7 - on - 7 - carboxymethyl oxime) bonded to proteins (e.g. bovine serum albumin, BSA) afford interesting steroid-containing antibodies.³ Further, O-substituted oximes have been used as protecting groups of the 20-oxo-substituent during preparation of Δ^{16} -20-oxosteroids.⁴

It has been reported,⁵ that condensation of α,β -unsaturated keto-steroids with O-methylhydroxylamines, yielded a mixture of syn and anti geometrical isomeric O-methyl oximes, which could be separated by different physico-chemical procedures.^{5.6} More recently,⁷ a larger number of O-substituted 3-ketoximino steroids were separated into syn and anti isomers and studied by ¹H NMR. On the contrary, 7 - oxo - cholesterol - 3 - beta acetate afforded only one 7-oximino derivative, to which a syn geometry was ascribed.⁷

In the present work we prepared a logical series of O-benzyloximes and O-iso-propyl oximes at different positions of the steroid skeleton and studied their geometrical isomerism by 'H and ¹³C NMR. The compounds examined are shown in Table 1.

RESULTS AND DISCUSSION

O-Substituted oximes were prepared by condensation of the keto-steroids with the appropriate O-substituted hydroxylamine. The O-substituted hydroxylamines employed for condensations were obtained^{8.9} from Nhydroxyphtalimide:

We improved this procedure⁹ by precipitating the Osubstituted hydroxylamines as chlorohydrates, thus increasing the yields to 80-81%. The chlorohydrates were employed directly in the condensations with ketosteroids (Procedure A). An alternative condensation procedure (B) was also tried, using ethyl alcohol and sodium acetate as reaction medium; but this proved less practical owing to the limited solubility of the steroid component in ethanol.

The rate of the condensation was dependent on the position of the oxo-groups: 3-oxo groups are more easily substituted than the 7-, 12-, 17- or 20-oxo groups. Thus selective substitution at position 3 of the 3,17- or 3,20-di-oxosteroids is perfectly possible by an appropriate choice of the reaction conditions. Oxo groups conjugated with skeletal double bonds are more easily substituted than their saturated counterparts. Kinetic measurements made in order to reinforce these qualitative observations will be reported elsewhere.

3-Oximino-steroids. Two components were identified by tlc in the rough condensation products obtained from reactions between O-substituted hydroxylamines and 3oxo- Δ^4 -steroids. In several cases the two components could be separated by column chromatography. As shown in Table 2, they afforded different m.ps and specific rotations, but practically the same analytical figures, thus being isomers. The position and intensity of their UV absorption maximum is also slightly but significantly different (Table 3). By analogy with the unsubstituted and O-methyl oximes⁵ the anti-geometry (23) was attributed to the isomers which afford their electronic absorption maximum at shorter wavelength and higher intensity.

23 (anti)

24(syn)

¹H NMR spectra proved especially valuable for studying isomerism $^{5-7,10-i2}$ of 3-oximino- Δ^{4-} (and Δ^{1})-steroids. As shown in Table 4, the olefinic proton bound to C-4 is shifted in one of the isomers about 0.65 ppm downfield from the other, which appears at nearly the same chemical shift as in the parent 3-oxo compound. (Testosterone 1 is shown in Table 4; this shift is remarkably constant in a number of 3-oxo- Δ^4 -steroids (see Ref. 13). As these chemical shift values are practically not influenced by the nature of the oxime substituent R, the difference between the isomers should be ascribed to the anisotropic deshielding effect of the oxime O atom. This conclusion implies that the syn-geometry belongs to the isomer having the more deshielded olefinic proton at C-4. This assumption checks the above mentioned interpretation of the electronic spectra. A less pronounced but still significant difference appears between the chemical shifts of the 19-Me protons in the two isomers. 'H NMR spectroscopy was also found appropriate for quantitative determination of the isomeric composition of these oximes: separate signals could be observed for the olefinic proton at C-4 as well as for the 19-Me group both in spectra of artificial mixtures of the two isomers and in spectra of the rough condensation products. The olefinic signals were used to evaluate the composition of the condensation product: it may be seen (Table 4) that the *anti*-isomer is slightly preferred.

¹³C NMR spectra proved highly informative about geometrical isomerism in 3-oximino- Δ^4 -steroids (Table 5). Using literature data^{14,15} on related steroids, all carbons in our compounds could be easily identified. The influence of isomerism is shown by the chemical shifts of many carbons, but is especially evident on those situated near to the oximino-group (positions 1-5). It is interesting to note that the relative shieldings are inverse to those found for the olefinic proton and as one would expect from rudimentary theoretical consideration of the anisotropy of the oximino-oxygen atom: carbons appear more shielded when close to the oximino O atom (4, 5, 6 in the *syn*-isomer and 1,2 in the *anti*-isomer) than in their

Table 1. Steroidal ketones and oximes examined

======	INTERFORMER'S CONSTRUCTION IN THE RESULT OF A STREET AND A
Compd.	no. IUPAC name
1	17beta-hydroxy-4-androsten-3-one
2	17beta-hydroxy-4-androsten-3-0-benzyloxime
2	4-androsten-17beta-y1 acetate-3-0-benzyloxime
4	17-oxo-4-androsten-3-0-benzyloxime
5	cholest-4-en-3-0-benzyloxime
ē	17beta-hydroxy-4-androsten-3-0-isopropyloxime
<u>1</u>	17beta-hydroxy-4-estren-3-0-benzyloxime
Ę	(25%)-spirost-4-en-3-0-benzyloxime
C H	cholest-5-en-3-0-benzyloxime
10	5-androsten-7-one-3beta-yl acetate, 17beta-yl benzoate
11	5-androsten-3beta-yl acetate, 17beta-yl benzoate-7-0-
	benzyloxime
12	cholest-5-en-3beta-yl acetate-7-0-benzyloxime
12	5alpha-cholestan-3beta-yl acetate-7-0-benzyloxime
<u>1</u> 4	17alpha-hydroxy-3,3-sthylenedioxy-20-oxo-pregna-5,9(11)
	dien-21-yl acetate
<u>15</u>	17alpha-hydroxy-3,3-ethylenedioxy-pregna-5,9(11)dien-
	21-yl acetate-20-0-benzyloxime
16	3,3-ethylenedioxy-pregna-5,9(11),16(17)-trien-21-yl
	acetate-20-0-benzyloxime
17	pregna-5,16-dien-3beta-yl acetate-20-0-benzyloxime
18	3,20-dioxo-l'/alpha-hydroxy-4-pregnen-21-yl acetate
12	17alpha-hydroxy-4-pregnen-21-y1 acetate-3,20-di-0-
	benzyloxime
ŜŌ	17ølpha-hydroxy-pregna-4,9(11)-dien-21-yl acetate-
	3,20-di-O-isopropyloxime
<u>21</u>	pregna-4,16(17)-dien-21-yl acetate-3,20-di-0-benzyloxime
<u>22</u>	17beta-hydroxy-5alpha-androstan-3-0-benzyloxime

Compd.		Proce-	Yield	в. D			Analve	ata. K			Datato
	LSOLGE	dii na ^B	6	0		calcd.	•		found		NOVE LOLY
		aure	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 = = = = = = = = = = = = = = = = = = =	0	H	N	U	н	N	power ^b
N	evn 	Y	80	149-51	79.34	8 80 80	3.56	78,72	8.27	3.55	
	enti			87-90		2		78.75	9.31	3.99	o
mi.	enti	ß	40	106-9	77.10	8.54	3,22	77.40	8.70	3.34	0
4	<u>eyn/anti</u>	A	70	99-103	61.67	8.49	3.92	79.75	8.85	3.62	+1980
w	<u>eyn/anti</u>	A	85	92-4	83,10	10.85	2.86	83.03	10.93	2.92	+1470
9	<u>ayn</u>	Ą	78	172-5	75.59	11.24	5	76.07	10,94	4.26	+221 ⁰
n	anti			129		+	T) • +	75.80	11.30	4.27	+1460
Ţ	<u>877</u>	V	85	108-10	74.17	8.76	17 5	79.13	9.48	3.51	+185°
•	ant1			102-3				78.84	9.41	3.61	+76.70
œ#	<u>eyn/enti</u>	A	80	151-3	79.10	9.15	2.71	79.10	9.88	2.69	+56.30
6	q	A	60	99-104	83.37	10.48	2.86	83.04	10.85	3.21	+4.65 ⁰
12	<u>87</u> 7	A	55	88-92	78.35	10.41	2.56	79.00	10.50	2.64	-145.5°
ц.	q	A	65	95-6	78.63	10.10	2.56	79.42	10.38	2.13	U
<u>15</u>	ą	A	80	152-4	71.65	7.75	2.61	72.02	8.15	2.56	o
1 6	p	4	ವ	126-30	74.25	7.54	2.71	74.12	8.31	2.89	+62.50
<u>1</u> 1	đ	A	60	94-7	78.29	8.93	3,02	77.65	8,93	3.32	υ
19	<u>syn/anti</u>	V	50	112-7	74.21	7.74	4.67	73.76	8.29	4.84	0
20	đ	A	70	134-7	69.54	8.85	5.61	69.50	9.24	5.99	+95.2 ⁰
22	q	æ	80	173-5	79.00	9.43	3.55	79.18	10.00	3.65	+51.9°
*See E)	xperimental: b_{α}	(D in chlorof	orme so	lution at 20	PC; 'not m	easured; ^d no	isomerism 1	found.			

= === N= ===				
Compound	3	<u>anti</u>		
no.	wavelength	ϵ_{max}	wavelength	ϵ_{max}
	(nm)	l/mole.cm	(nm)	l/mole.cm
	************	***********	1 2222222 22222220072222	
2ª	257	18,000	252	25,900
ē	257	17,600	250	26,200
<u>7</u>	257	14,000	250	23,000
			***********************	**************

Table 3. Electronic absorption maxima of the geometrical isomers of some steroid ketoximes in ethanol

Table 4. ¹H NMR Spectra of the 3-oximino- Δ^4 (and Δ^5)-steroids

					stic pro	ton shif	====≡≡≡ ts ^b
compa. no.	Isomer	%	4 〕 ≠C-∄	гагассегі сн-онс	18 -C벞3	19 - ^{C벞} 3	other groups
			5.78	3.70	0.80	1,20	-
_	syn	35	6.45	2 65	0.78	1.10	5.08 ^d
2	anti	65	5,80	5.05	0.10	1.05	5.10 ^d
3	anti	100	5.80	4.85	0.81	1.05	5.10 ^d 2.03 ^e
4	ayn	30	6.55	_	0.90	1.11	5.15 ^d
Ŧ	anti	70	5.88		·····	1,08	
5	syn	44	6.48	_	0.69	0.91	5.12 ^d
<u> </u>	anti	56	5.80				
ē	ayn	46	6.45	3,65	0.78	1.10	f
	anti	54	5.85	3.69		1.08	g
<u>7</u>	<u>syn</u> anti	· ·	6.50 5.88	3.65	0.78	-	5.08 ^d
ĝ	<u>syn</u> anti	50 50	6.45 5.80		0.80	'n	5.10 ^d
2			5.45 ⁱ		0.69	0.90	5.10 ^d

^a, determined on the rough product of the oximation reaction, using the 4-CH signals; not determined for compound <u>7</u>; ^b, refer to the proton shown in thick character; ^c, J_{16-17} = 8.2 - 8.3 Hz; ^d, 3-Ph-CH₂-O-N= group; ^e, 17-OCOCH₃ group; ^f, (CH₃)₂CH-O-N= chemical shifts: CH at 4.33, (CH₃)₂ at 1.23 and 1.25 ppm (diastereotopic magnetic nonequivalence), J= 6.0 Hz; ^G, (CH₃)₂CH-O-N= chemical shifts: CH at 4.33, (CH₃)₂ at 1.24 ppm, J= 6.2 Hz; ^hnot identified; ⁱ;5- =CH- group; **机体体分子体设计过程的现代外科学校研究中科学科学校研究和科学校研究和科学校的科学校研究和科学研究社会会会研究的研究和科学校教育和科学校教育和科学校研究和科学校研究和科学校研究研究的研究的研究的研究的研究的研究的研究的研究和科学科研究和科学科研究和科学科研究和科学科研究和科学科研究和科学科研究和科学科研究研究研究** -----24----- $--24 \cdot 6 - 111 \cdot 9 - 23 \cdot 9 - 26 \cdot 9 - 29 \cdot 1 - 26 \cdot 7 - 26 \cdot 7 - 20 \cdot 9 - 20 \cdot 5 - 11 \cdot 1 - 12 \cdot 5 - 127 \cdot 9^a - 127 \cdot 5$ 128,1 128.8⁸ 128.2^a 127 23 75.9 128.4⁸ 127.4^b 138.0 18.0 138.6 137.5 21.9 22.0 21 75.0 75.0 ------25+0--111+6---23+0--26+0--28+2--26+B--51+2--30+6--11+1--74+7 a, b, within the group of signals marked with the same letter, assignments are not certain;11.6 18.2 18**.**2 18.0 19 11.1 11.2 11.1 11.2 81.5 81.5 81.5 81.7 81.9 17 30.8 30.6 30.6 30.7 23.6 23.5 23.4 23.6 23.6 5 T 51.0 51.2 51.2 51.2 Carbon no. 43.0 43.2 43.2 43.2 43.2 43.2 anter e ditta en a a cara a 36.8 36.9 36.9 37.0 5 20,8 21.2 20.8 20.9 20,8 21.2 Η 39.0 38.6 38.2 38.2 10 32.2 54.4 54.4 54.4 54.5 54.5 54.4 36.0 36.2 36.2 28.8⁸ 36.4 32.0 31.5 32.2 32.3 31.9 32.7 32.8 33.2 35.0 156.9 155.7 36.4 159.2 153.5 35.2 156.0 154.9 45.6 36.6 159.0 153.1 171.9 26,2^a 19.8 117.9 123.9 18.2 118.2 weisensammenter formered 159.0 200.1 27.9^a 34.2 35.6 36.0 Isomer anti anti syn Ш : Comp. Q, В 2 ال

Geometrical isomerism of the O-substituted oximes of some keto-steroids

237

counterpart. Other factors should influence these chemical shifts, as carbon-3, bearing the oximino-substituent also shows its chemical shift dependent on this geometrical isomerism. Similar upfield shifts of the ¹³Csignals of carbons oriented syn to the oxime O atom were observed¹⁶ for simple aliphatic ketoximes and interpreted as steric compression shifts. The interpretation given¹⁷ to the ¹³C NMR spectra of some unsaturated aldoximes and ketoximes seems to be to some extent contradictory to that favoured in Ref. 16 and in the present paper. Thus the olefinic carbon in position 2 was found to resonate at higher field (119.8) in compound 25 than in 26 (124.8 ppm). However, the same authors¹⁷ observed an unusually high-field resonance signal (8.3 ppm) for carbon 4 in compound 27, thus reinforcing our interpretation.

No isomerism was detected either by TLC or ¹H-NMR in 3-oximino steroids without the $\Delta^{4(5)}$ double bond conjugated to the C=N (saturated (22) or $\Delta^{5(6)}$ compounds (9) were tested), although this isomerism should principally exist.

7-Oximino-steroids. One single compound was isolated from condensation between 7-oxo-steroids and O-benzylhydroxylamine. The ¹H NMR spectra of this group of substances (Table 6) indicate a syn-geometry for the $\Delta^{5(6)}$ -derivatives 11 and 12, if the chemical shifts of the olefinic proton at C-6 are compared to that in the parent 7-oxo compound, 10. This finding is in accord with data reported in the literature.⁷

20-Oximino-steroids. No isomerism could be detected in the ¹H NMR spectra of these compounds (Table 7), whether their structure contains a conjugated double bond ($\Delta^{16(17)}$), or not. This is not surprising, as this time the C=N bond is situated on a side chain with at least

some possibility to rotate around the C-17-C-20 single bond; thus the position of the oximino O atom against the steroid skeleton and specifically against the olefinic proton at C-16 becomes less rigorously determined.

3,20-Di-oximino-steroids. Geometrical isomerism of the 3-oximino group in these compounds can be easily followed qualitatively as well as quantitatively, when a Δ^4 -unsaturation is present. On the other hand, no isomerism is detected at the 20-oximino substituent (Table 8), thus confirming previous observations on mono-oximino derivatives.

EXPERIMENTAL

Preparation of the O-substituted ketoximes

Procedure A. I g oxo-steroid compound was dissolved in 25 ml dry pyridine. The appropriate O-substituted hydroxylamine chlorohydrate was added in moderate excess (molar ratios up to 2:1) and the mixture stirred at room temp. until a clear soln resulted. The progress of the condensation was followed by tlc on silica gel containing 13% gyps, eluting with a 4:1 mixture of benzene-EtOAc. When no more starting oxo-steroid appeared on the tlc plate, the mixture was poured into ice-water and the resulting ppt filtered off. In some cases it was necessary to keep the mixture several days in a refrigerator in order to obtain a crystalline product.

Procedure B. 1 g oxo-steroid (e.g. testosterone-17-acetate) was dissolved in 40 ml EtOH and 0.48 g NaOAc and 0.77 g O-benzylhydroxylamine chlorohydrate was added successively. The mixture was stirred at room temp. until a clear soln resulted, then left overnight. It was then poured into ice-water and kept in a refrigerator until the product crystallized. After filtration and recrystallization from MeOH, a 40% yield of 3 was obtained.

Purification of the O-substituted ketoximes and separation of their geometrical isomers. Chromatography on a 60 cm glasscolumn filled with silica gel (Merck, 70–230 mesh) was used to separate the geometrical isomers of the O-substituted ketoximes 2, 3, 6 and 7. Elution was performed with a 3:1 mixture of benzene-EtOAc. The eluted components were purified by evaporation to dryness and recrystallizations from MeOH until constant m.p. and rotatory power were obtained.

Syntheses

17 α ,21 - Dihydroxy - pregna - 5,9(11) - dien - 21 - acetate - 3 ethyleneketal - 20 - one, (14). 16 g 17 α ,21 - dihydroxy - pregna -4,9(11) - dien - 3,20 - dione - 21 - acetate were suspended in a mixture of 1200 ml benzene and 200 ml ethylene glycol, in a flask equipped with an azeotropic moisture separator. About 0.2 g p-toluenesulphonic acid was added and the mixture refluxed until no more water collected in the separator (10 hr). The content of

Compound	3 -⊂ <u>₩</u> -0	6 =C₩	17 -C뷰-0	18 -CH ₃	19 −C∰3			
10 ^a	4.9	5.78	5.00	0.96	1.25			
<u>ll</u> a,b	4.9	6.61	5.00	0.96	1.14			
12 ^{a, b}	4.7	6.55	-	0.68	1.10			
1 <u>3</u> a,b	4.6	-	~	0.64	0.90			

Table 6. ¹H NMR Spectra (δ , ppm) of the 7-benzyloximino- Δ^3 -steroids

^a, CH₃-COO- in position 3 appears at 2.03 \pm 0.04 ppm; ^b, =N-O-CH₂Ph appears at 5.05 \pm 0.02 ppm;

Compound	6 =CĦ	11 ∺C=	16 =C-∰	18 -⊂≞3	19 -⊂≞ ₃	21 -℃ <u>₩</u> 2-			
14 ^{a,b}	5.25 -	• 5•75	-	0.65	1.20	5.11° 4.87°			
15 ^{a,d,e}	5.30 -	- 5.60	-	0.56	1.20	4.80			
16 ^{a, f,g}	5.30 -	- 5.65	6.00- -6.25	0.88	1.22	4.93			
<u>17</u> ^{h,1}	5.25- -5.50	-	5.90- -6.10	0.93	1.05	1.95 ^j			

Table 7. 'H NMR Spectra (8, ppm) of the 20-benzyloximino-steroids

^a,-O-(CH₂)₂-O- at 3.95 ppm; ^b,CH₃COO- at 2.18 ppm; ^c,diastereotopic magnetic nonequivalence, $J_{AB}^{-}=$ 18.0 Hz; d, =N-O-CH₂-Ph at 5.14 ppm; ^e, CH₃COO- at 2.00 ppm; ^f, =N-O-CH₂-Ph at 5.18 ppm; ^g, CH₃COO- at 2.04 ppm; ^h, CH₃COO- at 2.02 ppm; ⁱ, =N-O-CH₂-Ph at 5.12 ppm; ^j,21-CH₃ group;

Table 8. ¹H NMR Spectra (δ , ppm) of the 3,20-di-oximino-steroids ============ 21 16 -с^дз -ся⁵-_{≖сна}--⊂H₃ Compound Isomer =CH-=CH-4.98^J 0.73 1.21 5.85 5.20^j 18 6.55 1.10 syn 19^{b,c,d} 4.84 0.60 5.84 1.05 anti 70%) 6.48 syn 33%) 5.40-20^{e,f,g} 0.65 1.20 4.83 -5.65 5.87 anti 1.12 syn 6.05-0.93 ----· 4.98 5.87 1.08 anti (70%)

^a, measured on rough synthetic products; isomeric compositions are included within parantheses; b,=N-O-CHp-Ph in position 3 appears at 5.15 ppm; ^c, =N-O-CH₂-Ph in position 20 appears at 5.18 ppm; d, CH₃COO- at 2.02 ppm; e, =N-O-CH(CH₃), in position 3 and 20 at 4.1 - 4.8 ppm; 1,=N-O-CH(CH₃)₂ in position 3 at 1.25, in position 20 at 1.22 ppm, J_{CH} - _{CH3} = 6.2 Hz; ^g, CH₃COO- at 2.08 ppm; h, =N-O-CH_-Ph in position 20 affords two signals at 5.22 and 5.28 ppm; ¹ CH₃COO- affords two signals at 2.02 and 2.05 ppm; J' diastereotopic magnetic nonequivalence, JAB = 18.0 Hz;

the flask was then washed with NaHCO3 aq, then with water and evaporated to obtain 13 g (70%) of 14, m.p. 243-5°.

21 - Hydroxy - 5,9(11),16(17) - pregnatrien - 21 - acetate - 3 ethyleneketal - 20 - 0 - benzyloxime, (16). A soln of 2 g (about 4 mmoles of 15, in 50 ml dry pyridine was mixed in a flask cooled to -20°, with 3 ml (1.8 g, 15 mmoles) SOCl₂ diluted with 10 ml pyridine. After cooling for 2 hr, the mixture was poured into excess water. It was extracted with benzene and the solvent

Zeiss Jena double beam instrument. All NMR spectra were recorded with a Bruker WP-60 FT-NMR spectrometer using a 14.1 kG magnet. For ¹H-measurements about 5% solns in CDCl₃ were used in standard 5 mm o.d. sample tubes. Proton chemical shifts were related to internal TMS and considered accurate within ± 0.01 ppm. Samples for ¹³C-measurements were prepared by solving 0.5 g of steroid compound in 2 ml of CDCl₃, using standard 10 mm sample tubes. ¹³C-Chemical shifts were also related to internal TMS and considered true within ± 0.1 ppm.

REFERENCES

- ¹J. A. Settepani, J. L. McGuire, H. Dowon and A. P. Shroff, Ger.
- Offen. 2.409.648 (12 Sept. 1974); Chem. Abstr. 82, 17008 (1975). ²A. F. Hirch, U.S. 3.873.701 (25 Mar. 1975); Chem. Abstr. 83, 43608 (1975).
- ³R. Condon and R. Emiliozzi, Steroids 23, 484 (1974).
- ⁴P. A. Diassi, Ger. 1,906,560 (18 Sept. 1969); Chem. Abstr. 72, 21841 (1970).
- ⁵H. Shoji, O. Kitao and I. Yoshimasa, Chem. & Ind. 832 (1967).
- ⁶M. G. Horning, A. M. Moss and E. C. Horning, Anal. Biochem. 22, 284 (1968).
- ⁷E. Mappus, C. Granot, H. Forest and C. Guilleron, C.R. Acad. Sci. Paris, ser. C 281, 247 (1975).

- ⁸D. G. Martin, E. L. Schumann, W. Veldkamp and H. Keasling, J. Med. Chem. 8, 456 (1965).
- ⁹E. Kasztreiner, G. Szilágyi, J. Kosáry and Zs. Huszti, Acta Chim. Acad. Sci. Hung. 84, 167 (1975).
- ¹⁰G. Slomp and W. J. Wechter, Chem. & Ind. 41 (1962).
- ¹¹C. W. Shoppee, M. I. Akhtar and R. E. Lack, J. Chem. Soc. 3392; (1964) and earlier papers cited.
- ¹²C. W. Shoppee, R. E. Lack, R. N. Mirrington and L. R. Smith, *Ibid.* 5868 (1965).
- ¹³N. S. Bhacca and D. H. Williams, Applications of NMR Spectroscopy in Organic Chemistry. Illustrations from the Steroid Field. Holden-Day, New York (1964).
- ¹⁴H. J. Reich, M. Jautelat, M. T. Messe, F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc. 91, 7445 (1969).
- ¹³H. Eggert and C. Djerassi, J. Org. Chem. 38, 3788 (1973).
- ¹⁶G. C. Levy and G. L. Nelson, J. Am. Chem. Soc. 94, 4897 (1972).
- ¹⁷Z. W. Wolkowski, E. Vauthier, B. Gonbeau, H. Sauvaitre and J. A. Musso, *Tetrahedron Letters* 565 (1972).