Journal of Organometallic Chemistry, 236 (1982) C37—C40 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

INSERTION OF ISOCYANIDES INTO THE PALLADIUM—(2-PYRIDYL) BOND

ANTONIO MANTOVANI

Cattedre di Chimica, Facoltà di Ingegneria, University of Padova (Italy) and BRUNO CROCIANI*

Istituto di Chimica Generale, Via Archirafi 26, University of Palermo (Italy) (Received June 7th, 1982)

Summary

The reaction of the pyridyl-bridged binuclear complex $[PdBr(\mu-2-C_5H_4N)(PPh_3)]_2$ with isocyanides CNR $(R=p-C_6H_4OMe, Me, C_6H_{11})$ yields the complex $[PdBr\{C(=NR)C(=NR)(2-C_5H_4N)\}(PPh_3)]$ containing a C,N-chelated 1,2-bis(imino)-2-(2-pyridyl)ethyl group, which results from successive insertions of two isocyanide molecules into the palladium—2-pyridyl bond. The mononuclear compound trans- $[PdBr(2-C_5H_4N)(PMePh_2)_2]$ readily reacts with various CNR ligands $(R=p-C_6H_4OMe, Me, C_6H_{11}, CMe_3)$ to give the imino(2-pyridyl)methylpalladium(II) derivatives, trans- $[PdBr\{C(=NR)(2-C_5H_4N)\}(PMePh_2)_2]$.

Complexes of palladium(II) with C-bonded 1,2-bis(imino)alkyl groups can generally be prepared by successive insertion reactions of two isocyanide molecules into Pd—Me [1,2], Pd—Ph [2a] or Pd—H [3] bonds. Due to our interest in the chemistry of this new class of ligands, we have studied the insertion of isocyanides into the Pd—C bond of 2-pyridylpalladium(II) derivatives of the type [PdBr(μ -2-C₅H₄N)(PPh₃)]₂ [4] and trans-[PdBr-(2-C₅H₄N)(PMePh₂)₂], as a possible synthetic route to imino(2-pyridyl)-methylpalladium(II) complexes (i.e., the imino-carbon palladated analogues of 2-iminomethylpyridines) (eq. 1 and 2).

Reaction 1 can be conveniently carried out either in dichloromethane at room temperature (2-3 days) or in 1,2-dichloroethane at 60°C (7-8 h) with a molar ratio Pd/CNR = 1/2. If a Pd/CNR ratio of 1/1 is used, a mixture of I and unreacted starting product is obtained. This fact and the observed IR spectral changes during the course of the reaction suggest a stepwise mechanism

PPh₃
Pd

Br

2 CNR

Br

Ph₃

Ia: R =
$$\rho$$
-C₆H₄OMe; Ib: R = Me;
Ic: R = C₆H₁₁

PMePh₂

Br Pd C

PMePh₂

PMePh₂

PMePh₂

$$R$$

$$IIa: R = p-C_6H_4OMe; IIb: R = Me;$$

$$IIc: R = C_6H_{11}; IId: R = CMe_3$$

of the type shown in eq. 3, in which the first step (a), involving a fast cleavage of the 2-pyridyl bridge, is followed by an even faster reaction (b) with a second isocyanide molecule to give the intermediate B, which then rearranges slowly to the final product I. The postulated transient A is not observed in the IR spectra of the reaction mixtures, which a few minutes after mixing of the reactants are characterized by a $\nu(C=N)$ band in the range $1600-1630 \text{ cm}^{-1}$ (1615 cm^{-1} for $R = C_6H_{11}$, in CH_2Cl_2) and by a sharp $\nu(C=N)$ absorption at ca. 2200 cm^{-1} (2202 cm^{-1} for $R = C_6H_{11}$), attributable to the intermediate B. However, highly reactive palladium(II) species containing isocyanides ligands cis to a Pd—Me bond have been previously isolated and characterized [5].

In the course of step (c), the $\nu(C=N)$ band of the coordinated isocyanide progressively disappears with concomitant formation of a second $\nu(C=N)$ band in the range 1620—1650 cm⁻¹ (1635 cm⁻¹ for $R = C_6H_{11}$). The complexes I are monomeric species which exhibit two $\nu(C=N)$ and one $\nu(Pd-Br)$ vibrations in their IR spectra (at 1647, 1633 and 165 cm⁻¹ respectively, for Ib). On the basis of trans- influence considerations, the low frequency position of $\nu(Pd-Br)$ (180—165 cm⁻¹) suggests a solid state configuration with the bromide ligand trans to the Pd-C σ bond. On the other hand, the ¹H and ³¹P NMR spectra in CDCl₃ at ambient temperature indicate that only one isomer is present in solution, characterized by two non-equivalent R groups (δ (OMe) 3.68, 3.83 ppm for Ia, δ (Me) 2.95, 3.45 ppm for Ib), and by a marked low-field chemical shift of the pyridyl ring proton in position 6 (δ (H⁶) in the range 9.7—9.5 ppm), due to N-coordination of the pyridyl moiety.

The desired imino(2-pyridyl)methylpalladium(II) derivatives can be easily prepared by reaction 2, involving insertion of one isocyanide molecule into the Pd—C σ -bond of the mononuclear complex trans-[PdBr(2-C₅H₄N)-

(PMePh₂)₂]*. In this case, as expected [5b], the insertion rate is markedly influenced by the nature of the entering CNR ligand: in benzene, the reaction is almost immediate for $R = p - C_6 H_4$ OMe at room temperature, whereas it takes 5-6 h for completion at 60°C when R is an alkyl group. Infrared and electrical conductivity measurements in 1,2-dichloroethane show that reaction 2 proceeds essentially through an ionic intermediate, which may be formulated as [Pd(2-C₅H₄N)(CNR)(PMePh₂)₂] Br, in accordance with the proposed insertion mechanism on trans- $[PtX(R')(L)_2]$ substrates [5b,6]. The IR spectra of the monomeric complexes II show a $\nu(C=N)$ band in the range 1615—1605 cm⁻¹ and a $\nu(Pd-Br)$ band in the range 185–175 cm⁻¹. The trans-arrangement of the PMePh₂ ligands is indicated by the triplet pattern of δ (P—Me) signals in the ¹H NMR spectra (IIa, δ (P-Me) 1.90 ppm, ²J(P-H)+⁴J(P'-H) = 6.4 Hz. in CD₂Cl₂) and by the occurrence of only one singlet in the ³¹P NMR spectra (IIa, $\delta(P)$ 4.65 ppm down-field from external H_3PO_4). In contrast to compounds I, in II the pyridyl ring proton in position 6 resonates at higher field, 8.7-8.5 ppm, the same range in which the corresponding signal of the free ligand 2-(p-methoxyphenylimino)methylpyridine is observed (δ (H⁶) 8.67 ppm).

Attempts to extend reaction 2 to the platinum(II) derivatives, trans-[PtBr(2-C₅H₄N)(L)₂] (L = PPh₃, PMePh₂) (obtained from oxidative addition of 2-bromopyridine to [Pt(L)₄]) gave only a poor yield of insertion products, even with the more reactive p-CNC₆H₄OMe ligand, in line with the much reduced tendency of isocyanides to insert into the Pt—C σ -bonds [5b].

Preliminary results show that both compounds I and II can act as N-donor ligands towards various transition metal centers, such as cobalt(II), nickel(II), copper(II) and zinc(II). Of particular interest are the binuclear complexes

^{*}This compound can be conveniently prepared by oxidative addition of 2-bromopyridine to the $[Pd_2(dba)_3]$ *CHCl₃/2 PMePh₂ system (dba = dibenzylideneacetone) [7].

PdII/CuII, the catalytic activity of which in the oxidation of olefins we are currently investigating.

Financial support by C.N.R. (Progetto Finalizzato: Chimica Fine e Secondaria) is gratefully acknowledged.

References

- 1 Y. Yamamoto and H. Yamazaki, Inorg. Chem., 13 (1974) 438.
- 2 (a) B. Crociani, M. Nicolini and R.L. Richards, J. Organometal. Chem., 104 (1976) 259; (b) B. Crociani and R.L. Richards, ibid., 154 (1978) 65.
- 3 P.L. Sandrini, A. Mantovani and B. Crociani, J. Organometal. Chem., 185 (1980) C13.
- 4 K. Nakatsu, K. Kinoshita, H. Kanda, K. Isobe, Y. Nakamura and S. Kawaguchi, Chem. Lett., (1980) 913.
- 5 (a) S. Otsuka, A. Nakamura, T. Yoshida, M. Nurato and K. Ataka, J. Amer. Chem. Soc., 91 (1969) 7196; (b) S. Otsuka and K. Ataka, J. Chem. Soc., Dalton, (1976) 327.
- 6 P.M. Treichel, K.P. Wagner and R.W. Hess, Inorg. Chem., 12 (1973) 1471.
- 7 T. Ukai, H. Kawazura, Y. Ishii, J.J. Bonnet and J.A. Ibers, J. Organometal. Chem., 65 (1974) 253.

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 236, No. 1

AUTHOR INDEX

Avilés, T., 101	Hänssgen, D., 53	Ochiai, H., 7
7141105, 1., 101	Helmer, B.J., 21	Orchin, M., 95
Barroso, F., 101	Herrmann, W.A., C18	Oremin, Mr., 33
Bauer, C., C18	Hiramatsu, M., 131	Passon, B., C11
Beringhelli, T., 109	Hoberg, H., C28	Pickardt, J., C11
Biliotti, A., 119	Hoberg, II., O20	Fickardt, J., CII
Bourgeois, MJ., 63	Ishikawa, M., 7	Ray, D.J.M., C23
Brown, M.P., C33	isiikawa, iii., i	
blown, M.1., C33	Jurkschat, K., 69	Roper, W.R., C7
Cerveau, G., 33	ourkschat, K., 65	Royo, P., 101
	Voices I 192	G-1-: G 101
Chiusoli, B.P., C31	Kaiser, J., 123	Sakai, S., 131
Clark C.B. C7	Kane-Maguire, L.A.P., C15	Schaefer, D., C28
Clark, G.R., C7	Kumada, M., 7	Seddon, K.R., C33
Colomer, E., 33	Yarlara M. Ot	Sieler, J., 123
Cometti, G., C31	Luksza, M., C1	Solladié-Cavallo, A., 83
Corriu, R.J.P., 33	76 W 1 D 40	Steffens, R., 53
Crociani, B., C37	Maillard, B., 63	Stevenson, A.J., C23
D G: 4 00	Malisch, W., C1	Stoppioni, P., 119
De Cian, A., 83	Manojlovic-Muir, L., C33	Strumolo, D., 109
Dinjus, E., 123	Mantovani, A., C37	Suffert, J., 83
Drury, D.J., C23	Marciniec, B., 1	
	Mayer, K.K., C18	Thanh, N.N., 123
Evans, D.J., C15	Morassi, R., 119	Trenkle, A., 71
	Morazzoni, F., 109	
Fiederling, K., C1	Moulding, R.P., C33	Vahrenkamp, H., 71
Freudenberger, J.H., 95	Muir, K.W., C33	
Fujinami, T., 131	Müller, J., C11	Walther, D., 123
		Wanka, U., C1
Gardrat, C., 63	Nakano, H., 131	West, R., 21
Gielen, M., 69	Nalesnik, T.E., 95	Wright, A.H., C7
Green, M.J., C23	Nishimura, K., 7	
Gulińska, H., 1	Noordik, J.H., 101	Yavari, A., C33