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The main signal-processing techniques used in elastography compute strains as the displacement de
rivative. They perform well for very low deformations, but suffer rapidly from decorrelation noise.
Aiming to increase the range of accurate strain measurements, we developed an adaptive method based
on the estimation of strains as local scaling factors. Its adaptability makes this method appropriate for
computing scaling factors resulting from larger strains or a wide spread of strain variations. First, seg
ments corresponding to the same part of tissue are adaptively selected in the rest and stressed state echo
signals. Then, local scaling factors are estimated by iteratively varying their values until reaching the
zero of the phase of the complex cross-correlation function.

Results from simulation and from experimental data are presented. They show how this adaptive
method can track various local deformations and its accuracy for strain up to 7%.

KEy WORDS: Adaptive estimation; complex cross-correlation; elastography; phase; scaling factor;
strain; ultrasound.

1. INTRODUCTION

Determining the elastic properties of soft biological tissues is of fundamental interest in
clinical diagnosis because of the correlation between the healthy or pathological state of a
tissue and its stiffness. Indeed, many cancers, such as breast carcinomas, are characterized
by the presence of extremely hard nodules, resulting from a higher stromal density.' Identi
cally, the atherosclerosis, which consists in a focal accumulation offatty, fibrous and blood
deposits, results in a modification of the elasticity of blood-vessel walls. Over the last few
years, it was shown that ultrasound is able to detect the spatial variations in the elastic proper
ties of biological tissue. This has led to a new imaging technique, termed elastography,
which visualizes the deformation behavior of a tissue in response to an externally applied
mechanical compression. In practical terms, ultrasonic rf signals are acquired from a tissue
in both rest and stressed states. Maps of local strains are then generated by evaluating the
variations within the signals induced by the stress.

It is essential to estimate strains with high accuracy in elastography, since clinicians' diag
noses will be directly related to those estimations. This requires a processing, that fits the lo
cal variations of the strain. Let us consider a medium composed of layers of low Young's
moduli or of Young's moduli of several magnitudes difference. Under compression, this
medium will be exposed to large deformations or to large discontinuities in the strain pat-
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tern.' Since a significant dynamic range of strains is expected in biological tissues,
computing the strain profile requires an algorithm with locally-adaptive parameters, like the
displacement of the window of study.

So far, the most common signal-processing techniques used in elastography are gradi
ent-based methods, which estimate strain as the displacement derivative. In the case of small
deformations, the ultrasonic signal acquired after compression is assumed to be a delayed
replica of the precompression signal. The local tissue displacement is, in this case, a simple
shift. It is computed as the location of the maximum of the cross-correlation function of
gated pre- and postcompression echo signals, 1,3-7 or as the zero of the phase of the complex
correlation function of the corresponding baseband signals."!' Although this technique per
forms well for very small deformations (0.25%-1 %), it fails rapidly with increasing strain.
The explanation is simple: with the physical compression of the tissue, the signal is subjected
to a variation in shape which is responsible for the decorrelation noise. One possible im
provement is to stretch the postcompression signal temporally by the appropriate factor,
prior to time delay estimation." 13 This preprocessing has been shown to significantly im
prove the correlation between the pre- and postcompression signals and it compensates
fairly well for the effect of compression at low strains. However, two fundamental limits
arise: first, a prior knowledge of the strain magnitude is required; second, the proper tempo
ral stretching factor depends on the local strain and cannot be constant over the signal. It
therefore seems more accurate to estimate strain directly from the estimation of local scaling
factors. A first study was carried out by Alam et ai, 14 which showed that using local scaling
factors leads to a method that is much more robust in terms of decorrelation noise.

In this paper, we present a method whose adaptability makes it very appropriate for the
computation of local scaling factors resulting from larger strains or a wide spread of strain
variations. It is expected that this method will increase the range of accurate strain measure
ments. To achieve maximum accuracy, the method first adaptively selects corresponding
segments in the pre- and postcompression echo signals. It is essential to work with two
signal segments that are representatives of the same part of tissue. The scaling factor is
then estimated by iterative variation until reaching the zero of the phase of the complex
cross-correlation function of the corresponding base-band signals. This is, in practice, per
formed by dichotomy.

The theoretical framework ofour paper is described in section 2 followed by a discussion
of the method's implementation in section 3. Finally, results from simulations and experi
mental data from a sponge phantom and a three-layer tissue-mimicking phantom are pre
sented in section 4.

2. THEORY

A. Biological tissue modeling

Modeling a soft biological tissue for elastography purposes must take mechanical as well
as acoustical properties into account. Acoustically, tissue can be considered as a discrete
medium of randomly distributed acoustical scatterers. It can thus be modeled as a sum of
Dirac distributions weighted by the scattering strength A. as follows

mj(t}= LAkO(t-tk )

k

where tk is the time of flight corresponding to the location of the k,k scatterer.

(1)
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Mechanically, a soft biological tissue can be modeled as a continuous, isotropic, and in
compressible medium composed of regions of different Young's moduli. These regions can
be of variable shape, size and location.

B. Deformation law analysis

The constitutive law of a medium depends on several intrinsic parameters such as the
Young's moduli, geometry, etc. and increases in complexity with the complexity of the na
ture and structure of the medium. In the general case, the strain tensor E is given by

(2)

where Exx Eyy Ezz represent elongation and EXYExz Eyz distortion. The x, y, and zaxes correspond
to the axial, lateral and elevational directions, respectively.

Under the conditions of uniaxial loading and low friction (ideally null), the stress field is
uniform and monodimensional. These conditions can be approximated when the compres
sion is performed with a plate that is larger than the medium under investigation15,16 and when
gel is used between the plate and the tissue to minimize friction. In such a case, the strain ten
sor is rewritten in Eq. (3), which clearly shows that the medium will undergo a 3-D motion,
where the lateral and elevational strains are directly proportional to the axial strain. There
fore, those strains could be estimated directly from the axial strain, by multiplication by a
factor V, which is the Poisson's ratio, nearly equal to 0.5 for biological tissues.

For those reasons, we focus on the estimation of the axial component of the strain tensor.

% 0 0 (3)Exx 0 0

E= 0 -VE xx 0 = 0 -V% 0

0 0 -VE xx 0 0 -V%
In this section, we will consider layered media submitted to a uniaxial loading in the x di

rection. Under the external stress 0', each layer will be deformed," verifying the physical
laws

s, o
E;

E; =!1L;
L;

(4)

(5)

where E, is the Young's moduli of the i th layer, L, its initial length, t.L i the difference in length
between the rest and compressed states and Ej the strain induced by the stress 0'. Therefore,
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any scatterer initially located in the kth layer at the position lko' will be, after compression, at
the location lk so that

k-I k-I

t, = :L(1-E;)L; + (l-Ek)lko = :La;L; +aJko
;=1 ;=1

with

(6)

(7)

The first term in Eq. (6) corresponds to the deformation of the upper layers and can also be
interpreted as the new location of the layer k within the tissue. The second term corresponds
to the deformation within the layer k itself. Eq. (6) clearly shows that the tissue motion and
therefore the deformation can be seen as the application of a succession of local scaling fac
tors (Xk' In each layer, (Xk is a constant. This is the parameter we wish to estimate from rfultra
sound signals.

C. Computing the local scaling factor

In this section, we will develop a method adapted to computing a scaling factor from two rf
echo signals, St and S2" It is assumed that this factor is constant over the window of study, i.e.,
that the postcompression signal is an exact scaled replica of the precompression signal. The
scaling factor is denoted by o, For our application, (X is a compression factor resulting from
the deformation of the medium.

8 2 (t) = 8 1(a t) = 8 1(t + (a -l)t) = 8 1(t +'t(t)) (8)

From Eq. (8), we can interpret the scaling factor as a variable delay, a function of the position
within the window of study. Therefore, it cannot be directly computed with cross-correlation.
However, if we stretch the postcompression echo signal, it will be increasingly correlated
with the precompression echo signal as the stretching factor compensates for the compres
sion. The conventional normalized autocorrelation function has a maximum equal to I at
zero lag, which also meets the zero of the phase of the complex correlation function of corre
sponding analytic signals. Since the variable delay, induced by the scaling factor, is directly
related to the phase of signals, it seems adequate to use the phase information.

The expression of the complex cross-correlation function is given by

T

(~, S2 )('t) =! f~ (t)s; (t +'t )dt
To

(9)

with SI (respectively S2)' the analytic signal associated to the rf echo signal S I' We defined
the function <p so that

T

<p(/3) =arg(!fSl (t)s; (/3t)dt)
To

(10)

The phase <p of the complex cross-correlation function of S 1 and a stretched version of s, is
calculated at zero lag as a function of the scaling factor B, Indeed, we have assumed that s, is
a pure scaled replica of sp not suffering from any delay.
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The phase <p is a continuous linear and strictly monotonic function. We can observe that,
when <p is positive, S2 is a stretched version ofsl' when it is zero, S2 is identical to s, and when <p
is negative, S2 is a compressed version ofS I' It is interesting to note that <p, for a given value of
~, represents also the phase ofan averaged value, which is the scalar product averaged on the
time interval T. This leads to a reduction of phase fluctuations in the presence of additive
noise.

Consequently, from a practical point of view, the local scaling factors are evaluated by
iteratively stretching the post-compression echo signal until reaching the zero ofthe phase of
the complex cross-correlation function." Finding the zero crossing is achieved by dichot
omy. This technique consists ofperforming a framing ofa zero ofa function and reducing
this framing until reaching the searched value with the desired accuracy. First, an interval
containing the zero of the phase function is given as initial condition. The sign ofthe phase
therefore changes on this interval. Then, the interval is iteratively reduced by keeping a sign
change. This method offers the advantage ofbeing accurate and ofrapidly converging to the
solution. It is interesting to note that, since the unwrapped phase is a monotonic function, it is
very well adapted to such processing. The estimated stretching factor ~ is the inverse value
of the compression factor of the medium, a.

~ so that <p(~) = 0 with <p(~) = arg(!JSl (t)s; (~t)dt)
To

3. IMPLEMENTATION

The implementation of our processing requires three main steps:
(I) adaptive windowing
(2) strain estimation
(3) a feedback loop.

(II)

A. Adaptive windowing

When performing adaptive windowing, corresponding segments are truncated from the
pre- and postcompression echo signals. To achieve a maximum ofcorrelation between the
two signals and therefore to estimate the scaling factor with a maximum ofaccuracy, it is es
sential to work with two signal segments that are representatives of the same part of tissue.
This adaptive windowing is based on the principle that while regularly displacing the win
dow ofstudy on the precompression signal," this window is adaptively displaced on the sig
nal after compression. The window displacement is a function of the previous strain
estimates."

i-I

d'; =d'i-l +(l-ci_l)il =L(l-ck)il
k=O

(12)

(13)

where d, is the window displacement on the precompression signal, d'j is the window dis
placement on the postcompression signal and !1 is the window displacement step.
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Eq. (14) clearly shows that the displacement is adapted at each step. The more the tissue is
compressed, the less displacement there will be. So, for no tissue deformation (e = 0), the
window displacement on the pre- and postcompression signal is identical and therefore the
relative window displacement between the pre- and postcompressed states will be zero. Oth
erwise, the higher the strain the more this relative displacement will increase.

B. Strain estimation

Having selected two corresponding signal segments, the second step ofour method is the
estimation ofthe scaling factor itself. This estimation is performed iteratively, using an algo
rithm of dichotomy. The postcompression signal is first stretched by a factor B, Then, the
phase is computed and the stretching factor is varied until reaching the zero crossing ofthat
function.

Since we are working with sampled data, precisely estimating the local scaling factor will
require interpolation. So, for practical reasons, we will use baseband signals for the estima
tion ofthe phase, given that the root ofthe complex correlation ofanalytic or base-band sig
nals is the same. Linear interpolation can be used with baseband signals, which is both
accurate and fast." Baseband signals are computed from the analytic form as follows

The strain estimate is finally computed as

E=I-X

(14)

(15)

c. Feedback loop

The expression given by Eq. (13) is exact when the postcompression signal is a pure scaled
replica ofthe precompression signal and when strains are correctly estimated. However, in
practice, the postcompression signal is a distorted scaled replica ofthe precompression sig
nal. It is subjected to a variation ofthe scaling factor over the window ofstudy, leading to an
erroneous strain estimation. For these reasons, it is sometimes necessary to readjust the tem
poral window position." We denote aie the corrected window displacement, and 0 the cor
rective term, a term of small magnitude compared to d'ie'

d'. =d'. +0
t c I

with

<i sothatc(<i)=max(c(t)) with c(t) = js\(t)s2(13(t+'t))d't

(16)

(17)

ois computed as the location of the cross-correlation function maximum between the
pre-compression signal and the postcompression signal, stretched by the estimated scaling
factor. Then the scaling factor ~ is iteratively estimated once again. The process is reiterated
until reaching 0 = O.

The feedback loop permits readjustment of the adaptive windowing, in case it has per
formed badly due to an erroneous strain estimation.
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To evaluate the performance of the implemented method, we tested our algorithm on sim
ulations and experimental data.

A. Simulations

We first studied the case of a three-layer medium subjected to a low compression. The
simulated mechanical body consisted of a region 36 x 15 mm', composed of three distinct 12
mm homogeneous layers. The Young's moduli of the middle layer was assumed to be twice
as low as that of the other two. This medium was simulated as a set of scatterers with uni
formly distributed locations, and possessing strengths that were normally distributed within
the range [-1, 1]. FIELD software was used to construct rfultrasound Avlines" using the fol
lowing parameters. The pulse of 7.5 MHz center frequency is a sine function weighted by a
Gaussian function of a 60 % fractional bandwidth at -6 dB. A high 360 MHz sampling fre
quency was used in order to avoid further interpolation and additional computational errors
that would not be directly related to the estimation method itself. The speed of sound was as
sumed to be constant, equal to 1540 mls. A random additive noise was generated and scaled
to produce a signal-to-noise ratio of 40 dB. We then simulated a low uniaxial loading of this
medium, resulting in a uniform and monodimensional stress field. The low compression
was assumed to induce a constant strain of 1%,2%, and 1% in the layers. The different strain
levels were created by decreasing the spacing between scatterers in a corresponding propor
tion.

Finally, elastograms were computed by estimating the local scaling factors between each
congruent pair of rf A-lines, as indicated above. A correlation kernel of I mm (approxi
mately 5 wavelengths) was used with 60% overlap. A median filtering was applied to these
estimates to reduce noise.

In order to evaluate the accuracy of our method, we computed the average strain profile for
the elastogram, including its standard deviation, and compared it with the theoretical profile.
Figure 1(a) shows that the mean values of the estimates are close to the theoretical values.
More precisely, for the region of 1% theoretical deformation, the mean strain was estimated
at 0.97% and for the region of2% induced strain, it was estimated at 1.95%. The standard de
viation is higher for the region of 2% strain than for the region of I % strain, but remains low
over the profile. For the regions of strain discontinuity, the estimation appears less accurate
(see the borders of each region, figure lea)). This can be easily explained. First, the studied
strain profile is an extreme case since it presents vertical edges (infinite slopes). This means
that the strain will vary instantaneously by one or several magnitudes, with no transition.
This represents the most difficult case possible, explaining the decrease in accuracy for such
regions. Our method then assumes a constant strain for the window of study. This assump
tion is clearly not verified when this window is positioned on a region of strain discontinuity.
The estimate will be much more an averaged value of the strains of the two layers, leading to
an increasing estimation error. However, this decrease in accuracy is very local and does not
influence the following estimations.

The results being satisfactory for small strains, we then studied the medium previously de
scribed but subjected to a higher compression. The induced strains were assumed to be 3%,
6%, and 3%, respectively. The results illustrated in figure 1(b) show that although the defor
mation is much greater, our method still gives a good estimation of strains, with a low stan
dard deviation. The mean strain for the region of 3% theoretical strain is estimated at 2.98%
and at 5.9% for the region of 6% induced strain. Strain estimates remain in good agreement
with the expected values. The standard deviation increases with strain, but it remains low for
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FIG. 1 Average strain profile and standard deviation computed with a study window length of 1 mm with 60%
overlap, for a three-layer medium submitted to (a) low deformation: 1%,2%,1% (b) higher deformation: 3%,6%,
3%. In each case, strain estimates are very close to the theoretical profile (solid line). Standard deviation increases
with strain but remains low for each profile.

the profile. Furthermore, as in the previous case, the estimation is less accurate where the
strain profile ruptures, but this has no consequence on the following estimations.

Finally, to show the necessity of an adaptive displacement of the window of study, we
computed the relative displacement between the pre- and postcompression signals. Results
are presented in figure 2, which illustrates the change and the magnitude ofthis window dis
placement in terms ofdepth for the two previously studied cases. By definition, the slope of
these curves will correspond to the strain estimation. As expected, the higher the strain the
greater the relative displacement. Each curve is composed of three distinct segments with
slopes equal to 1%,2%, and 1% in the first case and 3%, 6%, and 3% in the second one. These
values are in agreement with the amplitude of the simulated deformation and the previous
strain estimates. Note that this method is sensitive to the rupture ofthe slope and therefore to
the location of the regions of strain discontinuities. But the most fundamental observation
remains thatthe relative displacement for the higher strain atthe end ofthe signals is up to 1.2
mm, greater than the length of the window of study. This means that without this adaptive
displacement, we would have processed two totally decorrelated signals. Consequently,
adaptive displacement of the window of study is essential for an accurate estimation of the
deformation.

In order to measure the range ofreliability ofthis estimation, we computed the mean esti
mated strain and standard deviation as a function ofthe true strain (Fig. 3). Results show an
accurate estimation ofthe mean strain with low standard deviation for strains up to 7%. At
higher strains, the accuracy of the method decreases. For very low strains (0.25% - 0.5%),
the standard deviation is higher than for 1% strain, but it remains acceptable. Indeed, very
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FIG.2 Relative displacement ofthe window ofstudy between the pre- and postcompression signals computed in
the case of the three-layer medium subjected to low strain (1%, 2%, 1%; solid line) and high strain (3%, 6%, 3%;
dashed line).

low strains result in a very slight variation in signal shape that is hardly perceptible. This
complicates the estimation.

For strains up to 7% however, our results showed that the proposed method was accurate
and robust in terms ofthe decorrelation noise, increasing the range ofprecise strain estima
tion.

B. Experiments

We tested our algorithm on experimental data from two phantoms. The first evaluation
was performed on a set ofexperimental data from a sponge phantom containing a spherical
hard inclusion. This inclusion, consisting ofagar-agar, had a diameter ofapproximately 1.5
cm. In particular, it has no different acoustical properties compared to the background (Fig.
4(a)). A data-capture system for elasticity imaging was built allowing both the induction ofa
controlled deformation and data acquisition: a clinical ultrasound scanner and a plate were
adapted on a vertical positioning sliderofa controlled step compressor device. The plate was
used to increase the area ofloading and approximate the conditions ofuniaxial loading. Ac
curate displacements and strains were therefore induced at the top of the phantom by verti
cally lowering the transducer. All displacements were measured from the face of the
transducer. Data were acquired with an ultrasound probe with 7.2 MHz center frequency
with 60% fractional bandwidth at --6 dB. The sampling frequency was 36 MHz.

The phantom was placed in a water tank and the ultrasound transducer was initially
preloaded to insure proper contact. Then, an average deformation of1% was induced. Rfim
ages composed of3l2lines of 1,920 samples were stored on disk and processed off-line. A
preliminary resampling of the data was performed by an exact interpolation of 10:1. Then
the elastogram was computed by estimating the local scaling factors, between each pair of
congruent rfA-lines. The parameters were set as the same value as those chosen for strain es-
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FIG.3 Estimated mean strain and standard deviation as a function of the true strain. The method is reliable for
strains up to 7%.

timation with the simulated data. A correlation kernel of I mm (approximately 5 wave
lengths) was used with an overlap of60%. The elastogram is displayed in figure 4(b) with a
linear gray-scale in which black corresponds to 0% strain (hard region) and white to 6.8%
strain (soft region). A 5 x 5 median filtering was applied on the resulting elastogram to re
duce noise (Fig. 4(c».

Figures 4(b) and (c) show that our algorithm distinguishes the different elastic properties
of a medium. Indeed, although the hard inclusion was not visible on a classical B-scan im
age, it was clearly brought out on the elastogram. Moreover, the boundaries of the hard in
clusion were well defined, which confirms the sensitivity of this method to the strain
discontinuities and its adaptability in the processing of a medium submitted to a large spread
of strain variations.

The method was also tested on a set of experimental data from a gel-based phantom. A
three-layer tissue mimicking phantom was made from a solution of agar and gelatin. The top
and the bottom layers have the same stiffness and the middle one is softer. At a fixed concen
tration of gelatin, gels with different hardness can be obtained by varying the agar concentra
tion. Hard layers were made from a solution of 6% (by weight) gelatin and 4.5% agar, and
the soft one was made using 6% gelatin and I% agar. In each solution, we added I% carbo
rundum particles (Silicon-Carbide (SiC), ranging from 15 urn) for scattering. Attention was
taken for building an acoustical homogeneous phantom with no bright internal interfaces.

The elastogram was computed using a correlation kernel of 1 mm with 60% overlap. Re
sults are presented in figure 5. In figure 5(a) is displayed the conventional B-mode image,
where the three layers are not distinguishable. However these three layers are clearly de
tected on the resulting elastogram (Fig. 5(b» with well-defined internal boundaries.
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FIG.4 (a) Classical B-scan image of the ROI (4 em x 4 em), displayed with a logarithmic gray scale. The hard
inclusion is not visible. (b) Corresponding elastogram of the 4 x 4 em ROI in linear gray scale where black corre
sponds to 0% strain (hard region) and white to 6.8% strain (soft region). The 1.5-cm diameter agar-agar inclusion is
clearly detected. (c) Elastogram ofthe4 x 4 em ROI after 5 x 5 median filtering, displayed in linear gray scale where
black corresponds to 0% strain and white to 6.3% strain.
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(a)

(b)

FIG.5 (a) Classical B-Scan image of the ROI (4cm x 4cm), displayed with a logarithmic gray scale. The three
layers are not distinguishable. (b) Corresponding elastogram of the 4 x 4 em ROI in linear gray scale where black
corresponds to 0% strain (hard region) and white to 5% strain (soft region). The three layers are clearly detected
with well defined internal boundaries.

5. CONCLUSIONS

We have developed a signal-processing technique to map the strain distribution occurring
in a medium exposed to mechanical compression. This method is based on an adaptive and
iterative estimation oflocal scaling factors. Results show how this method can track various
local deformations in a medium. The estimation of strains gives a high level of accuracy for
strains up to 7% with low standard deviations. Results for regions of strain discontinuity are
less accurate, but this is very local and mainly due to the fact that the studied profiles corre
spond to extreme cases where variations of strains present infinite slopes. A first evaluation
with experimental data has shown how such an algorithm can separate regions of different
Young's moduli and has shown its potential for the detection of hard inclusions. For those
reasons, we can expect that the adaptive method is suitable for mapping the elastic properties
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of biological tissues with a wide spread of strain variations. Our future research efforts will
concentrate on this experimental aspect of elastography.
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