## Formation of 2,2-difluoro-3-hydroxymethylbenzo-1,4-oxathianes from 2-(α-trifluoromethylvinylthio)phenols

A. Yu. Sizov, \* A. F. Kolomiets, and A. V. Fokin

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5085

It is shown that 2,2-difluoro-3-hydroxymethylbenzo-1,4-oxathianes are formed together with 3-trifluoromethylbenzo-1,4-oxathianes when *ortho*-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)-phenols are boiled with excess aqueous alkali. The mechanism of the reaction is discussed.

Key words: *ortho*- $(\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenols, *ortho*- $(\alpha$ -trifluoromethylvinylthio)phenols, 3-trifluoromethylbenzo-1,4-oxathianes, 2,2-difluoro-3-oxy-methylbenzo-1,4-oxathianes.

In the preceding paper<sup>1</sup> it was shown that when ortho-( $\alpha$ -trifluoromethylvinylthio)phenols are heated with aqueous alkali (70-80 °C), they are converted to 3-trifluoromethylbenzo-1,4-oxathianes as a result of intramolecular heterocyclization. Analogous products were also obtained from 2-( $\alpha$ -trifluoromethyl- $\beta$ -chloro-ethylthio)phenols that readily eliminate HCl when heated (~70 °C) with excess alkali. On the other hand, it is known that the heterocyclization of phenyl- $\alpha$ -trifluoromethylvinyl sulfide with ethyl acetoacetate in the presence of diazabicycloundecene (DBU) involves defluorination of the intermediate carbanion.<sup>2</sup>



In the present work we considered the possible analogous transformations of  $2-(\alpha-trifluoromethylvinylthio)$ phenols.

It has been shown that boiling 5-fluoro- and 5-methoxy-2-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenols with excess alkali not only yields the corresponding 3-fluoromethylbenzo-1,4-oxathianes (1, 2), but also affords 2,2-difluoro-3-hydroxymethylbenzo-1,4oxathianes (3, 4) in yields up to 30 %. In the case of 5-methoxy-2-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenol, 2-( $\alpha$ -carboxyvinylthio)-5-methoxyphenol (5) was also isolated in low yield.

Analogously, in a boiling alkali solution, 4,5methylenedioxy-2-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenol forms tricycic compounds 6 and 7 in 33 % and 21 % yields, respectively.

The mixture of 2- and 4-( $\alpha$ -trifluoromethyl- $\beta$ chloroethylthio)-1-naphthols that was obtained from



R = F (1, 3); MeO (2, 4, 5)



1-trifluoromethyl-2-chloroethylsulfenylchloride and 1-naphthol, resulted in oxathianes 8 and 9 under the same conditions.

Therefore, the formation of 2,2-difluoro-3-hydroxymethylbenzo-1,4-oxathianes from 2-( $\alpha$ -trifluoromethylvinylthio)phenols in boiling alkali solution has a general character. It is most probable that the reaction mechanism involves the primary attack of a hydroxy-anion at the C=C bond of the starting compound, stabilization of

| Com-<br>pound | Yield<br>(%) | M.p./°C<br>B.p./°C | $\frac{R_{\rm f}}{({\rm CCl}_4:{\rm acetone})}$ | $n_{\rm D}^{20}$ |                       | <u>Found</u> (%)<br>Calculated |                           | Molecular formula                                |
|---------------|--------------|--------------------|-------------------------------------------------|------------------|-----------------------|--------------------------------|---------------------------|--------------------------------------------------|
|               |              | (p / Torr)         |                                                 |                  | С                     | Н                              | F(S)                      |                                                  |
| 1             | 58           | 62—63              | 0.49 (CCl <sub>4</sub> )                        |                  | <u>45.50</u><br>45.38 | <u>2.53</u><br>2.52            | <u>31.79</u><br>31.93     | C <sub>9</sub> H <sub>6</sub> F <sub>4</sub> OS  |
| 3             | 30           | 93-95 (1)          | 0.61 (4:1)                                      | 1.4817           | <u>45.81</u><br>45.76 | <u>2.96</u><br>2.97            | <u>24.07</u><br>24.15     | $C_9H_7F_3O_2S$                                  |
| 4             | 17           | 142-143 (1)        | 0.51 (4:1)                                      | 1.4856           | <u>48.54</u><br>48.39 | $\frac{4.04}{4.03}$            | <u>15.25</u><br>15.32     | $C_{10}H_{10}F_2O_3S$                            |
| 5             | 6            | 140 (decomp.)      | 0.30 (3:1)                                      | _                | <u>52.85</u><br>53.09 | <u>4.28</u><br>4.42            | <u>(13.90)</u><br>(14.16) | $C_{10}H_{10}O_4S$                               |
| 7             | 21           | 69—70              | 0.44 (4:1)                                      | _                | <u>45.92</u><br>45.80 | <u>3.08</u><br>3.05            | <u>14.34</u><br>14.50     | $C_{10}H_8F_2O_4S$                               |
| 8             | 20           | 6061               | 0.34 (5:1)                                      | -                | <u>57.49</u><br>57.77 | <u>3.30</u><br>3.33            | <u>21.02</u><br>21.11     | C <sub>13</sub> H <sub>9</sub> F <sub>3</sub> OS |
| 9             | 13           | 67—68              | 0.52 (4:1)                                      | _                | <u>58.32</u><br>58.21 | <u>3.74</u><br>3.73            | <u>14.12</u><br>14.18     | $C_{13}H_{10}F_2O_2S$                            |

Table 1. Yields, characteristics, and elemental analysis data of compounds 1, 3-5 and 7-9



the generated carbanion by elimination of the fluoride ion, and cyclization of the intermediate difluoromethylene compound.



The formation of compound 5 can be explained by dehydrofluorination of oxathiane 2, which has a high CH-acidity, to 3-oxycarbonyl-7-methoxybenzo-1,4-oxathiane and by the recyclization of the latter.

The structure of oxathianes 3, 4, 7, and 9 was established according to their spectral data. For example, the <sup>1</sup>H NMR spectra of these compounds exhibit signals for the OH group at 4.50 ppm in  $(CD_3)_2CO$  or 3.10 ppm in  $CD_3CN$ . The <sup>19</sup>F NMR spectra are also informative and have specific signals for two non-equivalent fluorine atoms at -13.7 to -14.4 and -3.6 to -3.9ppm with the spin-spin coupling constant ~152 Hz.

## Experimental

The <sup>1</sup>H and <sup>19</sup>F NMR spectra were recorded on a Bruker WR-200SY spectrometer with working frequencies 200.12 and 188.31 MHz, respectively. Chemical shifts were determined using TMS (<sup>1</sup>H, internal standard) and CF<sub>3</sub>COOH (<sup>19</sup>F, external standard) as references. The  $R_f$  values of the obtained compounds are reported for Silufol UV-254 plates in a CCl<sub>4</sub>— acetone system. For the column chromatography, silica gel L 40—100 mm (Chemapol) was used.

The yields, properties, elemental analysis data, and spectral characteristics for compounds 1, 3-5, and 7-9 are given in Tables 1 and 2. The corresponding data for compounds 2 and 6 were described earlier.<sup>1</sup>

7-Fluoro-3-trifluoromethyl-benzo-1,4-oxathiane (1) and 2,2-difluoro-3-hydroxymethyl-7-methoxybenzo-1,4-oxathiane (3). 5-Fluoro-2-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenol (13.7 g) was added to 30 mL of a 20 % aqueous solution of NaOH at 10 °C. The mixture was heated for 2 h at 100 °C and cooled to ~20 °C. The oil that separated was extracted with ether and dried with MgSO<sub>4</sub>. The fraction with b.p. 70-75 °C (1 Torr) was obtained by distillation and recrystallized from hexane. 6.9 g of oxathiane 1 and 3.5 g of oxathiane 3 were obtained.

| Com-<br>pound | <sup>19</sup> F NMR<br>δ, ppm (J/ Hz)                                  | <sup>1</sup> Η NMR<br>δ, ppm (J/ Hz)                                                                                                  |
|---------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1             | -8.6 d.d (3 F, 2.0 and 8.6); 37.5 p (1 F, 4.5)                         | 7.18 d.d (1 H, 6.4 and 9.3); 6.80 m (2 H); 4.93 d.d (1 H, 2.7 and 12.0);<br>4.38 m (2H)                                               |
| 3             | -13.8 d (1 F, 152.5); -3.6 d.d (1 F, 8.7 and 152.5); 37.3 p (1 F, 4.5) | 7.33 d.d (1 H, 8.5 and 6.2); 6.97 m (2 H); 4.52 br.s (1 H); 4.10 m (1H); 3.84 m (2 H)                                                 |
| 4             | -13.7 d (1 F, 152.5); -3.7 d.d (1 F, 8.8<br>and 152.5                  | 7.04 d (1 H, 8.5); 6.58 m (2 H); 4.05 m (1 H); 3.75 m (2 H);<br>3.70 s (3 H); 3.10 br.s (1 H)                                         |
| 5             | _                                                                      | 7.62 d (1 H, 7.9); 6.83 m (2 H); 6.45 s (1 H); 5.25 s (1 H);<br>4.08 s (3 H)                                                          |
| 7             | -14.4 d (1 F, 152.0); -3.8 d.d (1 F, 9.0<br>and 152.0)                 | 6.78 s (1 H); 6.69 s (1 H); 6.05 s (2 H); 4.06 m (1 H);<br>3.73 m (2 H); 3.08 br.s (1 H)                                              |
| 8             | -8.7 d.d (3 F, 1.8 and 8.5)                                            | 8.23 d (1 H, 7.4); 8.05 d (1 H, 7.4); 7.52 m (3 H); 7.31 d (1 H, 8.5);<br>5.25 m (1 H); 4.53 m (2 H)                                  |
| 9             | -13.7 d (1 F, 152.0);<br>-3.9 d.d (1 F, 9.0 and 152.0)                 | 8.21 d (1 H, 7.3); 8.05 d (1 H, 7.3); 7.61 m (3 H); 7.37 d (1 H, 8.2);<br>4.53 t (1 H, 6.1); 4.24 m (1 H); 4.13 m (1 H); 3.97 m (1 H) |

Table 2. <sup>1</sup>H and <sup>19</sup>F NMR spectral data of compounds 1, 3–5, and 7–9

\*Solvent: (CD<sub>3</sub>)<sub>2</sub>CO for compounds 1, 3, 5, 8, 9, CD<sub>3</sub>CN for compounds 4, 7.

3-Trifluoromethyl-7-methoxybenzo-1,4-oxathiane (2), 2,2difluoro-3-hydroxymethyl-7-methoxybenzo-1,4-oxathiane (4), and 2-( $\alpha$ -carboxyvinylthio)-5-methoxyphenol (5). 5-Methoxy-2-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenol (13.3 g) was added to 30 mL of a 20 % aqueous solution of NaOH at 10 °C. The mixture was heated for 2 h at 100 °C and cooled to ~20 °C. The oil that separated was extracted with ether and dried with MgSO<sub>4</sub>. The ether was removed *in vacuo*, and the residue was inserted into a column with 150 g of silica gel and eluted with a CCl<sub>4</sub>-acetone (10:1) mixture. 3.3 g of compound 2 and 2.1 g of compound 4 were obtained. The aqueous solution was acidified with hydrochloric acid. The oil that separated was extracted with ether and dried with MgSO<sub>4</sub>. The ether was removed *in vacuo*, and the residue was extracted with hot hexane to obtain 0.7 g of compound 5.

3-Trifluoromethyl-6,7-methylenedioxybenzo-1,4-oxathiane (6) and 2,2-difluoro-3-hydroxymethyl-6,7-methylenedioxybenzo-1,4-oxathiane (7). 4,5-Methylenedioxy-2-( $\alpha$ -trifluoromethyl- $\beta$ -chloroethylthio)phenol (15 g) was added to 30 mL of a 20 % aqueous solution of NaOH at 10 °C. The mixture was heated for 2 h at 100 °C and cooled to ~20 °C. The oil that separated was extracted with ether. The ether solution was dried with MgSO<sub>4</sub> and the ether was removed *in vacuo*. The residue was inserted into a column with 150 g of silica gel and eluted with a  $CCl_4$ -acetone (10:1) mixture to obtain 4.4 g of oxathiane 6 and 2.8 g of oxathiane 7.

3-Trifluoromethylnaphto[1,2-b]-1,4-oxathiane (8) and 2,2difluoro-3-hydroxymethylnaphto[1,2-b]-1,4-oxathiane (9). 1-Trifluoromethyl-2-chloroethylsulfphenyl chloride (19.9 g) was added to a solution of 1-naphthol (14.4 g) in chloroform (50 mL) with stirring at ~0 °C. The mixture was heated to ~20 °C and stored for 20 h until no HCl was liberated. The solvent was removed *in vacuo*. The residue was added to 60 mL of a 20 % aqueous solution of NaOH at 10 °C. The mixture was heated for 2 h at 100 °C and cooled to ~20 °C. The oil that separated was extracted with ether. The ether solution was dried with MgSO<sub>4</sub> and the solvent was removed *in vacuo*. The residue was inserted into a column with 150 g of silica gel and eluted with a CCl<sub>4</sub>-acetone (15:1) mixture to obtain 5.4 g of oxathiane 8 and 3.5 g of oxathiane 9.

## References

1. A. Yu. Sizov, A. F. Kolomiets, and A. V. Fokin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 1625 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1991, **40**, 1441 (Engl. Transl.)].

2. A. E. Feiring, J. Org. Chem., 1980, 45, 1962.

Received December 13, 1993