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DIASTEREOSELECTIVE REACTION OF CROTYLSILANES WITH ACETALS. 

 IMPORTANCE OF THE ELECTRONIC EFFECT IN ACYCLIC STEREOSELECTION1) 

 Akira HOSOMI,*+ Masatomo ANDO, and Hideki SAKURAI* 

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980 

Acyclic stereoselection of aromatic acetals in the reaction 

 with crotylsilanes depends upon the geometry of crotylsilanes. It 

 was also disclosed for the first time that the electronic effect 

 plays an important role on controlling the diastereochemistry. 

Control of acyclic stereoselection is one of the most important targets in 

synthetic organic chemistry and, therefore, much attention has been focused on the 

highly diastereoselective reaction of crotyl organometallics with aldehydes.2'3) 

We report herein that the diastereoselectivity in the reaction of crotylsilanes (1) 

with aromatic acetals4) is cleanly controlled by the geometry of the starting 1 

and, in addition, by the substituent on the aromatic nucleus, contrary to the 

remarkable syn selectivity reported for the reaction of 1 with aliphatic acetals 

irrespective of the starting geometry. To our knowledge, this is the unprecedented 

example showing that the electronic effect, rather than the steric effect, plays an 

important role on diastereofacial control. 

 At first the stereochemistry in reactions of Z-and E-1 with a variety of 

acetals (2) was examined and the results are listed in Table 1.5)

(1)

 Reactions of crotylsilanes (1) with aliphatic acetals such as pivalaldehyde 

dimethylacetal (2a) and isovaleraldehyde dimethylacetal (2b) proceed very smoothly 

in a regiospecific and highly syn selective mode, irrespective of the geometry of 

1. However aromatic acetals such as benzaldehyde dimethylacetal (2c) react with 

Z-1 with high anti preference, although the syn selectivity was observed with E-1. 

a-Chloro ether (2e) also affords similar results.4b) The stereoselectivity does 

not depend on the nature of Lewis acids or activators among examined such as 

titanium chloride, boron trifluoride etherate, iodotrimethylsilane, and trimethyl-

silyl trifluoromethanesulfonate. 

 Interestingly, the stereoselectivity can be dramatically controlled by the
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Table 1. Reactions of Z-and E-1 with Acetals (2) in CH2Cl2a)

a) All the reactions were conducted by the promotion of BF3•EOEt2 in CH 2Cl2•E4a) b) 

Z/E=89/11. c) Z/E=6/96. d) Yield after isolation by TLC. e) Determined by NMR. 

substituent on the ring of aromatic acetals, the results being listed in Table 2. 

 Increasing anti selectivity is observed in the case of Z-1 with increasing 

electron-withdrawal due to the substituent in the order of p-CN>H>p-Me>p-MeO. On 

the other hand, with E-1, syn selectivity increases with electron-withdrawing 

substituents. It is worth to note that the Hammett plot between logarithms of the 

diastereomer ratio, [ln(syn/anti) cor
r],6) with Brown-Okamoto's ƒ¿+ revealed good 

linear correlations (p=-1.25, r=0.996 for Z-1 and ƒÏ=1.26, r=0.988 for E-1). Appar-
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ently diastereoselectivity is controlled by the electronic effect. 

The observed selectivity is inconsistent with an acyclic-transition-state 

mechanism proposed for the reactions of 1 with aldehydes.2'3a) A simple six-

membered cyclic transition state with the most stable conformation in the chair 

form, 2, 3, 7) also cannot reasonably explain the results of the present reaction. 

The origin of this unprecedented stereochemistry in the aromatic acetals is 

not completely clear at this stage, but the mechanism of the reaction of 1 with 

aromatic acetals (2) may be explained as follows.

Scheme 1. Mechanism of diastereoselection in the allylation.

 In marked contrast to aliphatic acetals, aromatic acetals can be activated by 

an acid to undergo the C-O bond cleavage, resulting in the intermediary formation 

of benzylic cationic species. If the six-membered cyclic transition states (I and 

IV) are involved as shown in Scheme 1,8) an electron-withdrawing p-cyano group on 

the aromatic ring produces a partial double bond between the benzylic carbon and 

the ether oxygen due to the donation of electrons from the oxygen. Then aryl and 

methyl groups should occupy the anti position each other.10) Therefore, anti and 

syn isomers are dominantly produced from Z-1 and E-1, respectively. However such a 

double bond nature between benzylic carbon and alkoxy oxygen atoms may disappear or 

decrease the extent by the introduction of electron-donating p-methoxy group, 

resulting in the formation of the transition states (II and III) predominantly. 

Thus E-1 increases the anti selectivity and the reverse selectivity is induced in 

Z-1. This might be the reason why reversal of the diastereoselectivity from reac-

tions of the crotyl metallics (B, Al, Mg, Zn, Li, Ti, Zr etc) with aldehydes is 

induced, where the six-membered cyclic transition state is similarly involved.2) 
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