SAFETY DATA SHEETS According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition Version: 1.0 Creation Date: Aug 16, 2017 Revision Date: Aug 16, 2017 #### 1. Identification #### 1.1 GHS Product identifier Product name gallic acid #### 1.2 Other means of identification Product number - Other names 3,4,5-trihydroxybenzenoic Acid #### 1.3 Recommended use of the chemical and restrictions on use Identified uses For industry use only. Food additives -> Flavoring Agents Uses advised against no data available #### 2. Hazard identification #### 2.1 Classification of the substance or mixture Skin irritation, Category 2 Eye irritation, Category 2 Specific target organ toxicity – single exposure, Category 3 ### 2.2 GHS label elements, including precautionary statements Pictogram(s) Signal word Warning Hazard statement(s) H315 Causes skin irritation H319 Causes serious eye irritation H335 May cause respiratory irritation Precautionary statement(s) Prevention P264 Wash ... thoroughly after handling. P280 Wear protective gloves/protective clothing/eye protection/face protection. P261 Avoid breathing dust/fume/gas/mist/vapours/spray. P271 Use only outdoors or in a well-ventilated area. Response P302+P352 IF ON SKIN: Wash with plenty of water/... P321 Specific treatment (see ... on this label). P332+P313 If skin irritation occurs: Get medical advice/attention. P362+P364 Take off contaminated clothing and wash it before reuse. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337+P313 If eye irritation persists: Get medical advice/attention. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P312 Call a POISON CENTER/doctor/···if you feel unwell. Storage P403+P233 Store in a well-ventilated place. Keep container tightly closed. P405 Store locked up. Disposal P501 Dispose of contents/container to ... #### 2.3 Other hazards which do not result in classification none ## 3. Composition/information on ingredients #### 3.1 Substances | Chemical | Common names and | CAS | EC | Concentration | |-------------|------------------|----------|--------|---------------| | name | synonyms | number | number | | | gallic acid | gallic acid | 149-91-7 | none | 100% | #### 4. First-aid measures ## 4.1 Description of necessary first-aid measures General advice Consult a physician. Show this safety data sheet to the doctor in attendance. If inhaled Fresh air, rest. In case of skin contact Remove contaminated clothes. Rinse and then wash skin with water and soap. In case of eye contact First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention. If swallowed Rinse mouth. Induce vomiting (ONLY IN CONSCIOUS PERSONS!). Give one or two glasses of water to drink. Rest. # 4.2 Most important symptoms/effects, acute and delayed Inhalation of dust may irritate nose and throat. Contact with eyes or skin causes irritation. (USCG, 1999) # 4.3 Indication of immediate medical attention and special treatment needed, if necessary For immediate first aid - Ensure that adequate decontamination has been carried out. If victim is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask, device or pocket mask as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep victim quiet and maintain normal body temperature. Obtain medical attention. /Organic acids and related compounds/ ### 5. Fire-fighting measures ## 5.1 Extinguishing media Suitable extinguishing media Combustible. Extinguish with water, dry chemicals, foam, or carbon dioxide. # 5.2 Specific hazards arising from the chemical Flash point data for this chemical are not available. It is probably combustible. ## 5.3 Special protective actions for fire-fighters Wear self-contained breathing apparatus for firefighting if necessary. #### 6. Accidental release measures # 6.1 Personal precautions, protective equipment and emergency procedures Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. For personal protection see section 8. ## 6.2 Environmental precautions Sweep spilled substance into covered containers. If appropriate, moisten first to prevent dusting. Carefully collect remainder. Then store and dispose of according to local regulations. ## 6.3 Methods and materials for containment and cleaning up Pick up and arrange disposal. Sweep up and shovel. Keep in suitable, closed containers for disposal. ### 7. Handling and storage #### 7.1 Precautions for safe handling Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Avoid exposure - obtain special instructions before use. Provide appropriate exhaust ventilation at places where dust is formed. For precautions see section 2.2. #### 7.2 Conditions for safe storage, including any incompatibilities Dry. Keep in the dark.PROTECT FROM LIGHT. #### 8. Exposure controls/personal protection #### 8.1 Control parameters Occupational Exposure limit values no data available Biological limit values no data available ## 8.2 Appropriate engineering controls Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday. # 8.3 Individual protection measures, such as personal protective equipment (PPE) Eye/face protection Safety glasses with side-shields conforming to EN166. Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Skin protection Wear impervious clothing. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it. Respiratory protection Wear dust mask when handling large quantities. Thermal hazards no data available #### Physical and chemical properties 9. Physical state white crystalline powder Colour Colorless or slightly yellow cyrstalline needles or prisms. Odour no data available Melting point/ freezing 251°C (dec.) point Boiling point or initial 501.1°C at 760 mmHg boiling point and boiling range **Flammability** Combustible. Lower and upper no data available explosion limit / flammability limit 271°C Flash point no data available **Auto-ignition** temperature no data available Decomposition temperature рН no data available no data available Kinematic viscosity In water:12 g/L cold water Solubility Partition coefficient n- log Kow = 0.70 octanol/water (log value) 7.32E-11mmHg at 25°C Vapour pressure Density and/or relative 1.694 density ## 10. Stability and reactivity #### 10.1 Reactivity no data available ### 10.2 Chemical stability Stable under recommended storage conditions. ## 10.3 Possibility of hazardous reactions Phenols, such as GALLIC ACID, do not behave as organic alcohols, as one might guess from the presence of a hydroxyl (-OH) group in their structure. Instead, they react as weak organic acids. Phenols and cresols are much weaker as acids than common carboxylic acids (phenol has pKa = 9.88). These materials are incompatible with strong reducing substances such as hydrides, nitrides, alkali metals, and sulfides. Flammable gas (H2) is often generated, and the heat of the reaction may ignite the gas. Heat is also generated by the acid-base reaction between phenols and bases. Such heating may initiate polymerization of the organic compound. Phenols are sulfonated very readily (for example, by concentrated sulfuric acid at room temperature). The reactions generate heat. Phenols are also nitrated very rapidly, even by dilute nitric acid. #### 10.4 Conditions to avoid no data available # 10.5 Incompatible materials no data available # 10.6 Hazardous decomposition products Thermal decomposition products include carbon dioxide and carbon monoxide. /Organic acids and related compounds/ # 11. Toxicological information Acute toxicity · Oral: LD50 Rabbit oral 5.0 g/kg · Inhalation: no data available · Dermal: no data available Skin corrosion/irritation no data available Serious eye damage/irritation no data available Respiratory or skin sensitization no data available Germ cell mutagenicity no data available Carcinogenicity no data available Reproductive toxicity no data available STOT-single exposure no data available STOT-repeated exposure no data available Aspiration hazard no data available # 12. Ecological information # 12.1 Toxicity - · Toxicity to fish: no data available - · Toxicity to daphnia and other aquatic invertebrates: no data available - · Toxicity to algae: no data available - · Toxicity to microorganisms: no data available ## 12.2 Persistence and degradability AEROBIC: An aerobic biodegradation study of gallic acid, based on BOD measurements, using a sewage inoculum at 20°C and an unknown gallic acid concentration, indicated 0.08 percent BODT, over a period of 5 days(1). An aerobic biodegradation study of gallic acid, based on COD measurements, using an activated sludge inoculum of 100 mg/l and an initial pyrogallic acid concentration of 200 ppm, indicated 90.5 percent COD removal over a period of 5 days at pH=7.2 and 20°C(2). An aerobic biodegradation study of gallic acid, based on BOD measurements, using an acclimated sewage inoculum at and an unknown gallic acid concentration, indicated 0 percent BODT, over a period of 5 days(3). The carbon dioxide evolution from pasture soil (pH=6.7) and arable sandy soil (pH=6.2) was studied after addition of gallic acid to the soil and an incubation period of 300 hours at 13 deg c and 20°C(4). The decomposition of gallic acid, reflected as carbon dioxide production, became exponential within 10 hours(4). ANAEROBIC: Under both aerobic and anaerobic conditions, gallic acid is mineralized to methane and carbon dioxide in the presence of certain Rhodospirillaceae(5). #### 12.3 Bioaccumulative potential An estimated BCF value of 2 was calculated for gallic acid(SRC), using an experimental log Kow of 0.70(1,SRC) and a recommended regression-derived equation(2). According to a classification scheme(3), this BCF value suggests that bioconcentration in aquatic organisms is low(SRC). # 12.4 Mobility in soil The Koc of gallic acid is estimated as approximately 57(SRC), using a measured log Kow of 0.70(1) and a regression-derived equation(2,SRC). According to a recommended classification scheme(3), this estimated Koc value suggests that gallic acid is expected to have high mobility in soil(SRC). #### 12.5 Other adverse effects no data available # 13. Disposal considerations ## 13.1 Disposal methods **Product** The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems. Contaminated packaging Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials. ### 14. Transport information #### 14.1 UN Number ADR/RID: no data available IMDG: no data available IATA: no data available ### 14.2 UN Proper Shipping Name ADR/RID: no data available IMDG: no data available IATA: no data available #### 14.3 Transport hazard class(es) ADR/RID: no data available IMDG: no data available IATA: no data available # 14.4 Packing group, if applicable ADR/RID: no data available IMDG: no data available IATA: no data available #### 14.5 Environmental hazards ADR/RID: no IMDG: no IATA: no ## 14.6 Special precautions for user no data available # 14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code no data available # 15. Regulatory information # 15.1 Safety, health and environmental regulations specific for the # product in question | Chemical name | Common names and synonyms | CAS number | EC number | |--------------------------------|---------------------------|------------|-----------| | gallic acid | gallic acid | 149-91-7 | none | | European Inventor (EINECS) | Listed. | | | | EC Inventory | Listed. | | | | United States Toxi | Listed. | | | | China Catalog of H | Not Listed. | | | | New Zealand Inver | Listed. | | | | Philippines Invento
(PICCS) | Listed. | | | | Vietnam National (| Listed. | | | | Chinese Chemical (China IECSC) | Listed. | | | #### 16. Other information Information on revision Creation Date Aug 16, 2017 Revision Date Aug 16, 2017 Abbreviations and acronyms - · CAS: Chemical Abstracts Service - ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road - · RID: Regulation concerning the International Carriage of Dangerous Goods by Rail - · IMDG: International Maritime Dangerous Goods - · IATA: International Air Transportation Association - · TWA: Time Weighted Average - · STEL: Short term exposure limit - · LC50: Lethal Concentration 50% - · LD50: Lethal Dose 50% - EC50: Effective Concentration 50% References - · IPCS The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home - HSDB Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm - · IARC International Agency for Research on Cancer, website: http://www.iarc.fr/ - eChemPortal The Global Portal to Information on Chemical Substances by OECD, website: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en - CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple - ChemIDplus, website:http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp - ERG Emergency Response Guidebook by U.S. Department of Transportation, website: http://www.phmsa.dot.gov/hazmat/library/erg - Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp - · ECHA European Chemicals Agency, website: https://echa.europa.eu/ Disclaimer: The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. We as supplier shall not be held liable for any damage resulting from handling or from contact with the above product.