Certificate of Analysis U-[¹³C₁₅]-Altenusin in Methanol

1. General information

This document is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31[1].

2. Description of the Reference Material (RM)

Name:	U-[¹³ C ₁₅]-Altenusin in Methanol	
Catalog number:	STD#7055U	
CAS number:	31186-12-6(unlabeled)	
Formula:	¹³ C ₁₅ H ₁₄ O ₆	
Formula weight:	305.27	
Lot #:	1100H30	
	U-[¹³ C₁₅]-Altenusin,lot#l18384C,Pribolab Pte.Ltd.	
Starting material:	U-[¹³ C ₁₅]-Altenusin,lot#l18384C,Pribolab Pte.Ltd.	
Starting material: Solvent:	U-[¹³ C₁₅]-Altenusin,lot#l18384C,Pribolab Pte.Ltd. Methanol,LiChrosolv®,Merck	
-		
Solvent:	Methanol,LiChrosolv®,Merck	
Solvent: Amount:	Methanol,LiChrosolv®,Merck 1.2mL	

2.1 Intended use of the RM

- for laboratory use only

- internal standard[2]

2.2 Instruction for the correct use of the RM

The compound should be stored at $2-8^{\circ}$ C in a dark place.Before usage of the RM,the compound should be allowed to warm to temperature($20\pm3^{\circ}$ C).The recommended minimum sub-sample amount for all kinds of application is 100 µL.The expiry date of this RM is based on the current knowledge and holds only for proper storage conditions in the originally closed flasks/packages.

2.3 Hazardous situation

The normal laboratory safety precautions should be observed when working with this RM.Further details for the handing of this RM are available as safety data sheet.

Hazardous Ingredients Concentration in%

Pictograms

Signal word Hazard statement(s)

Methanol

>99.9

Danger

H225; H301+H311+H331; H370

3. Certified values and their uncertainties

	U-[¹³ C ₁₅]-Altenusin in Methanol				
	Compound	Mass conc	entration ^a		
	U-[¹³ C ₁₅]-Altenusin,99.1 atom% ¹³ C	Certified value ^b	Uncertainty ^c		
		10.08µg/mL	±0.24µg/mL		
а	Values are based on preparation data and confirmed experimentally by HPLC-DAD				
b	Mass concentration based on weighed amount ,purity and dilution step				
с	Expanded uncertainty U(k=2) of the value u $_{c}$ according to GUM[3]				

3.1 Calculation of uncertainty

The uncertainty of the calibrant solution was calculated on the basis of preparation [4].

Uncertainty components	Description	Standard uncertaint	y (U)
Purity (P) of solid U-[$^{13}C_{15}$]-Altenusin,99.1 atom% ^{13}C	P=97.9±2.1%	u(P)=1.2%	а
Weighing procedure Weighted sample: mws=1.030mg	U _(m) =0.0000008g+1.21*10 ⁻⁵ *m _{Toxin} u _(m) =U _(m) /2	u _(m) =0.0004mg	b
Dilution procedure Volumetric flask:V _f =100mL	calibration: 100mL±0.1mL repeatability: 0.04mL volume expansion solvent	u(cal)=0.04mL u(rep)=0.04mL u(Vol.exp.)=0.20mL u(v)=0.2mL	c d e f

a Maximum tolerance of purity (rectangular distribution) was divided by $\sqrt{3}$

b Calculation of this u-value is based upon the uncertainty formula for the weighed amount as given in the calibration report from annual balance calibration

c A triangular distribution (division by $\sqrt{6}$) was chosen for the calculation of u(cal)

d Based on a series of ten fill and weigh experiments on a typical 100mL flask; the value was used directly as a standard deviation

coefficient of Methanol is 1190*10⁻⁶/°C[5], volume expansion term(rectangular distribution) was divided by $\sqrt{3}$

f The three contributions are combined to give the u(V)= $\sqrt{u(cal)^2 + u(rep)^2 + u(Vol.exp)^2}$

Calculation of the combined uncertainty u $_{\rm c}$ and the expanded standard uncertainty U for U-[^{13}C_{15}]-Altenusin

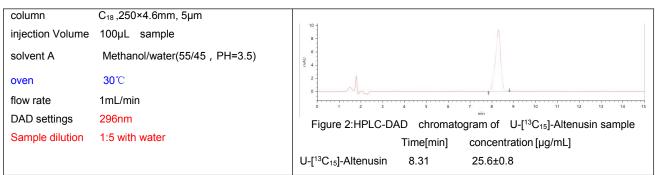
$$\mathbf{c}_{Toxin} = \frac{10 \times m_{ws} \times P}{V_f} = \frac{10 \times 1.030 \times 97.9}{100} = 10.08 mg / L$$

$$\frac{u_c(c_{Toxin})}{c_{Toxin}} = \sqrt{\left[\frac{u(p)}{p}\right]^2 + \left[\frac{u(m)}{m_{ws}}\right]^2 + \left[\frac{u(V)}{V_f}\right]^2} = \sqrt{\left[\frac{1.2}{97.9}\right]^2 + \left[\frac{0.0004}{1.030}\right]^2 + \left[\frac{0.2}{100}\right]^2} = 0.012$$

$$\mathbf{u}_C(c_{Toxin}) = c_{Toxin} \times 0.011 = 10.08 \times 0.012 = 0.12 mg / L$$
calculation of expanded standard uncertainty U using a coverage factor k=2

$$\mathbf{U}(c_{Toxin}) = u_c(c_{Toxin}) \times 2 = 0.12 \times 2 = 0.24 mg / L = 0.24 \mu g / mL$$

4.Isotopic enrichment and isotope pattern


Isotope pattern ^a		
Compound	Isotopic distribution	
U-[¹³ C ₁₅]-Altenusin	87.5%	
U-[¹³ C ₁₄]-Altenusin	11.5%	
U-[¹³ C ₁₃]- Altenusin	1.0%	=
Calculated isotopic enrichn	nent level ^a :99.1atom % ¹³ c	Figure1: Enhanced resolution scan
^a Approximation based on LC-MS/MS data		[¹³ C ₁₅]-Altenusin for determination of isot pattern

5. Discussion of traceability

This calibrant is certified on the basis of gravimetric preparation [5]. Thus the certified value(mass concentration of U-[$^{13}C_{15}$]-Altenusin,99.1 atom% ^{13}C is based on the weighed amount of the starting material and is therefore traceable to the stated purity of the solid raw material. High purity material represents a practical realization of concentration units, through conversion of mass to molar quantity.

6. Confirmation of certified value by HPLC-DAD

The certified concentration of U- [¹³C₁₅]-Altenusin,99.1 atom% ¹³C of the gravimetric prepared solution was confirmed by HPLC-DAD against an independently prepared reference batch of unlabeled Altenusin.

7.Further information

Inspected by

The purchaser must determine the suitability of this product for its particular use. Pribolab makes no warranty of any kind, express or implied, other than its products meet all quality control standards set by Pribolab. We do not guarantee that the product can be used for a special application.

me

Quality System Specialist

References:

- [1]ISO Guide 31:2015 1-18, "Reference materials contents of certificates, labels and accompanying documentation"
- [2]G. Häubl, F. Berthiller, R. Krska, R. Schuhmacher, "Suitability of a fully ¹³C isotope labelled internal standard for the determination of the mycotoxin deoxyAltenusin by LC-MS/MS without clean-up", Anal. Bioanal. Chem. 384 (3), (2006), 692-696
- [3] International Organization for Standardization (ISO), (2008), "Guide to the expression of uncertainty in measurement", (GUM 1995 with minor corrections) 1st Ed. Geneva, Switzerland
- [4] R.D. Josephs, R. Krska, S. MacDonald, P. Wilson, H. Pettersson, J. AOAC Int. 86, 50-60, (2003),
 "Preparation of a Calibrant as Certified Reference Material for Determination of the Fusarium Mycotoxin Zearalenone"
- [5] E.W. Flick, (1998), "Industrial Solvents Handbook", 5th Ed., Noyes Data Corp. Westwood NJ