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Abstract. We present a condensed-mass advection based
model (MADVEC) designed to simulate the condensa-
tion/evaporation of liquid polar stratospheric cloud (PSC)
particles. A (Eulerian-in-radius) discretization scheme is
used, making the model suitable for use in global or
mesoscale chemistry and transport models (CTMs). The
mass advection equations are solved using an adaption of
the weighted average flux (WAF) scheme. We validate the
numerical scheme using an analytical solution for multicom-
ponent aerosols. The physics of the model are tested using
a test case designed by Meilinger et al. (1995). The results
from this test corroborate the composition gradients across
the size distribution under rapid cooling conditions that were
reported in earlier studies.

1 Introduction

PSCs have a major role in the destruction of stratospheric
ozone, which they contribute to by activating chlorine and
denitrifying the stratosphere. PSC particles enable the het-
erogeneous reactions which release active chlorine com-
pounds from the man-made chlorofluorocarbons (CFCs)
(Soloman et al., 1986). The rates of the heterogenous reac-
tions are dependent on the physical state and composition of
the particles (Carslaw and Peter, 1997). Recent analysis of
space-borne observations (Tabazadeh et al., 2000) indicate
that downward fluxes of large particles (greater than a few
micrometres) can form within long-lived PSCs, denitrifying
layers of the stratosphere and so increasing the life-time of
active chlorine.
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Field observations, both lidar and in situ, have shown
that there are a number of different types of PSC particle,
both solid and liquid, mainly composed of a mixture of
HNO3/H2SO4/H2O (Peter, 1997). PSC particles form from
the background stratospheric aerosol particles, which are
mostly supercooled liquid H2SO4/H2O droplets, although
many other minor components have been identified (Murphy
et al., 1998). As the temperature falls below 200 K, these
droplets absorb H2O and HNO3, growing and changing in
composition to become liquid supercooled ternary solution
(STS) particles (Carslaw et al., 1994). Though the composi-
tion and mechanisms of formation and dynamics of these liq-
uid particles are well known (Carslaw et al., 1997), the pos-
sible mechanisms of formation and different compositions of
the solid PSC particles are still under study (e.g. Koop et al.,
1997; Salcedo et al., 2000; Tolbert and Toon, 2001).

The aim of developing MADVEC (mass advection) model
is to allow global or mesoscale CTMs to model the non-
equilibrium evolution of PSC particles. PSC development
has previously been studied using trajectory box models (i.e.
Meilinger et al., 1995; Rizi and Visconti, 1999). However
this type of model is unsuitable for use within CTMs, be-
cause the Lagrangian particle growth schemes used create
gaps in the model “radius space”. To avoid this problem we
utilise a fixed size discretization, in which the aerosol popu-
lation is described using mass distribution functions for each
component (Pilinis, 1990).

We will initially describe the model, then discuss its
performance and limitations. Analytical solutions to the
aerosol general dynamic equation (GDE), developed by
Ferńandez D́ıaz et al. (1999), will be used to validate the nu-
merical solvers in the model. Then the PSC-specific physics
of the model will be tested using a test case from Meilinger
et al. (1995).

c© European Geosciences Union 2003



30 D. Lowe et al.: Liquid PSC box model

2 MADVEC model

The particle distribution is described using a full-stationary
size structure, which fixes the radius of each size bin, while
particle growth is treated as advection of mass between size
bins. Because of the fixed size bins, this method is ideal for
nucleation, emissions, coagulation, and transport. However
it suffers from numerical diffusion, and information about
the original composition of growing particles is lost, which
is a disadvantage when using particles with involatile com-
ponents.

To avoid these problems models using full-moving size
structures were developed (i.e. Gelbard, 1990; Meilinger
et al., 1995). Particle growth causes the radii of the size bins
to change, preserving particle information and eliminating
numerical diffusion. However the lagrangian methods used
can lead to gaps between size bins, causing problems for nu-
cleation, coagulation and transport.

Recent work has focused on combining these two basic
systems to reduce their disadvantages. Quasistationary size
structures (Jacobson, 1997) use lagrangian particle growth,
but then transpose the size bins back onto a stationary grid at
each step, which can cause numerical diffusion. The moving-
centre structure (Jacobson, 1997) uses fixed size bin edges,
but with variable size bin centres, which change as the parti-
cles grow. Particle growth produces no diffusion, as all par-
ticles in the bin are moved at the same time, however some
diffusion occurs when particles moved to a new bin are aver-
aged with the particles already in the bin.

A full-stationary size structure is used in order that MAD-
VEC can be as fast as possible while being compatiable with
CTMs. A solver is chosen such that no spurious oscilla-
tions are generated in the neighborhood of steep gradients,
and numerical diffusion is reduced. As yet the model cal-
culates only the effects of condensation and evaporation on
STS particles, no account is taken of nucleation, coagulation
or sedimentation.

2.1 Numerical basis

The aerosol particle distribution is described with a set of
partial differential equations derived from the aerosol GDE
(Seinfeld and Pandis, 1998). For the case considered here,
an isolated volume of dilute aerosol travelling with the air
flow, the GDE can be written:

∂n(m, t)

∂t
+

∂

∂m

[
I (m, t)n(m, t)

]
= S(m, t), (1)

wherem is the mass of the particle,n(m, t) is the size dis-
tribution density function at timet , such thatn(m, t)dm is
the number concentration of particles in the mass interval
[m,m + dm]. I (m, t) is the rate of change of the total mass
of a particle,dm/dt , due to condensation or evaporation.
S(m, t) is a source function describing particle formation and
loss. The aerosol is considered dilute enough for no coagu-
lation to occur.

For an aerosol without nucleation or primary sources,
Eq. (1) translates to:

∂n(m, t)

∂t
+

∂

∂m

[
n(m, t)

nc∑
i=1

dmi

dt

]
= 0, (2)

wheredmi/dt is the rate of change of componenti in an
individual particle, andnc is the total number of components.
This can be written in terms of a fractional growth rate,Hi :

dmi

dt
= Him. (3)

The mass concentration of componenti in the size range
[m,m + dm] can be defined asqi(m, t). The total aero-
sol distribution function,q(m, t), is given by q(m, t) =∑n
i=1 qi(m, t), which is related to number concentration by:

q(m, t) = mn(m, t). (4)

Substituting Eqs. (3) and (4) into Eq. (2) gives us:

∂q(m, t)

∂t
+m

∂

∂m

[
q(m, t)H(m, t)

]
= 0, (5)

whereH =
∑nc
i=1Hi .

Equation (5) is a first order partial differential equation
with characteristic curvesdm/dt = mH . These charac-
teristic curves are the curves following the mass growth of
individual particles (or more precisely all the particles in the
mass binm). These provide a link with the Lagrangian meth-
ods of Meilinger et al. (1995). Pilinis (1990) has exploited
the method of characteristics to derive the equations for each
component from Eq. (5):

∂qi

∂t
= Hiq −Hqi −m

∂qiH

∂m
. (6)

Aerosol dynamic equations are more usually expressed
with particle radius as a dependent variable. However, be-
cause particle distributions can cover large size ranges we
adopt a logarithmic radius scale:µ = ln r/r0, wherer0 is
a reference radius. Then, the mass concentration of compo-
nenti, qi(m, t), over mass range[m,m + dm] is related to
the mass concentration of componenti, pi(µ, t), over size
range[µ,µ+ dµ] by

qi(m, t)dm = pi(µ, t)dµ. (7)

For a spherical particle

dµ

dm
=

1

3m
. (8)

Substituting Eqs. (7) and (8) into Eq. (6) gives us:

∂pi

∂t
+

1

3

∂

∂µ
(piH) = Hip; i = 1, N, (9)

whereN is the number of species of which the particle is
composed of (in the case below, three: H2O, HNO3 and
H2SO4).
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Pilinis (1990) solved these continuous distribution equa-
tions using the finite element method. However this scheme
can produce negative aerosol concentrations close to the edge
of square mode aerosol distribution. Dhaniyala and Wexler
(1996) used a positive-definite scheme, which maintained
positive concentrations while limiting numerical diffusion.
We use a similar total variation diminishing (TVD) scheme,
based on the weighted average flux (WAF) scheme.

2.2 Numerical schemes

Equation (9) can be solved by splitting it into two parts, al-
lowing the use of the method of fractional steps (Yanenko,
1971; Toro, 1999, Chapter 15). Particle growth is described
using a system of simultaneous ordinary differential equa-
tions
dpi

dt
= Hip; i = 1, N. (10)

While the consequent advection of mass in log-radius space
(µ-space) is described using a system of partial differential
equations

∂pi

∂t
+

1

3

∂

∂µ
(piH) = 0; i = 1, N . (11)

The fractional step method advances the solution of Eq. (9)
in one co-ordinante direction at a time. The advantage of
this method is that it allows us to choose the most suitable
schemes for solving each part of Eq. (9). However, it is lim-
ited by the need to use small time-steps, ensuring that the
properties of the system do not appreciably change during
the time-step.

The treatment of Eq. (11) as advection inµ-space allows
us to use fluid dynamical methods. The approach used is a
TVD version of the basic WAF method (Toro, 1999, Chapter
13). This method calculates the flux of mass between adja-
cent size bins (f wafi = piH ), which is used to solve eq. (11)
(see appendix for WAF equations). We solve Eq. (10) us-
ing a simple Euler forward step (an ode-timestep limiter is
applied).

2.3 Model physics

Of the three components comprising STS particles, only H2O
and HNO3 are volatile, H2SO4 is treated as involatile be-
cause of the low temperature of the stratosphere. Equilibrium
vapour pressures of H2O and HNO3 above the STS particles
are described using non-ideal solution thermodynamics fol-
lowing Luo et al. (1995). The bulk densities of the STS par-
ticles are calculated following MacKenzie et al. (1995).

The growth rates for each component can be determined
by substituting fordmi/dt in Eq. (3). These are calculated
assuming uncoupled mass fluxes between the gas and liquid
phases for each componenti of the multicomponent particle
(e.g. Vesala, 1991):

dmi

dt
= aFS

4πrMiD

RT

(
e∞i − aiKe

vap
i

)
, (12)

whereaFS is the Fuchs-Sutugin correction,Mi is the molar
mass of componenti,D is the vapour diffusivity (assumed to
be equal for each component) andR is the universal gas con-
stant.e∞i is the partial pressure of componenti, initialised at
the start of the model run and updated using the conservation
equations:e∞i (t) + c

∑nbin
j=1 p

j
i (t) = K, whereK is a con-

stant andc is a conversion factor. The vapour pressure,e
vap
i ,

of componenti is calculated from work by Luo et al. (1995).
The Kelvin effect term for componenti is calculated from
aiK = exp 2σvim/RT r, wherevim is the partial molar volume
of componenti in the liquid phase, andT is the temperature.
The liquid-gas surface tension,σ , is calculated from work by
MacKenzie et al. (1995). Heat transport is not coupled with
these mass fluxes.

3 Analytical analysis

Katoshevski and Seinfeld (1997) developed an analyt-
ical solution of the multicomponent aerosol general dy-
namic equation, which could be solved for condensation-
evaporation, deposition and sources. The condensation-
evaporation aspect of this solution was elaborated upon by
Ferńandez D́ıaz et al. (1999), in order to study the complex-
ities of this aspect of aerosol behaviour. They also presented
several test cases. We shall use a variant of one of these be-
low to validate our numerical model.

The analytical solution developed by Fernández D́ıaz et al.
(1999) is also based on Pilinis’s work (Eq. 9). They solved
Eq. (9) for bothH = 0 andH 6= 0, and studied three growth
laws: diffusion, surface reaction and volume reaction. We
shall use their solutions forH 6= 0 and the diffusional growth
law.

The growth rate for a particle of sizeµ is:

dµ

dt
=

1

3
H . (13)

This equation defines a characteristic curve in the(µ, t) co-
ordinate system. Equation (13) is integrated to obtain the
equation of the characteristic curve:

µ = f (µ0, t0, t) (14)

which may be inverted

µ0 = f0(µ, t0, t), (15)

whereµ = µ0 when t = t0. This integration will be per-
formed later for the diffusion case.

Using the method of characteristics, Fernández D́ıaz et al.
solved Eq. (9) forH 6= 0:

pi(µ, t) =
H(f0(µ, t0, t))

H(µ)

([
exp(3(µ− f0(µ, t0, t)))− 1

]
×Aip(f0(µ, t0, t), t0)+ pi(f0(µ, t0, t), t0)

)
. (16)
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where

Ai =
Hi(J, t)

H(J, t)
. (17)

This analytical solution is valid whileAi is constant, andHi
is a function of separable variables (Hi = H

µ
i (µ)H

t
i (t)).

Ferńandez D́ıaz et al. noted a limitation on the use of
Eq. (16). When analyzing the evolution of an aerosol con-
taining an evaporating component (Hi < 0) this equation
will give negative values forpi after a certain time (t ilim),
however until that time Eq. (16) is valid.

To simulate aerosol evolution a simple version of the dif-
fusional growth law is used:

Hi(s) = Gih(s), (18)

whereh(s) is a potential function andGi is a constant that
depends on the condensing component. This ignores the
Kelvin effect and fixes the concentration of each component
in the vapour state (makingHi independent of time). When
all components possess the same growth law, we have

H(s) =

(
nc∑
i=1

Gi

)
h(s) = Gh(s) (19)

and

Ai =
Gi∑nc
i=1Gi

= constant, (20)

which allows us to use Eq. (16).
In diffusion-controlled growth the volume growth rate de-

pends on the molar volume of the condensing species, on
its vapour pressure, and on its molecular diffusion coeffi-
cient, and is nearly proportional to the particle diameter (see
Sect. 2.3 above).

dsi

dt
= Gis

1/3 (21)

hence

Hi = Gis
−2/3. (22)

If Gi > 0 the component undergoes condensation, and if
Gi < 0 it undergoes evaporation.

If all the components condense or evaporate by diffusion
then the growth law (Eq. 13) for the total particle becomes

dµ

dt
=

1

3
Gs

−2/3
r exp(−2µ). (23)

Equation (23) can then be integrated to give the equation of
the characteristic curve (c.f. Eq. 15):

µ0 = f0(µ, t0 = 0, t) =
1

2
ln

[
exp(2µ)−

2

3
Gs

−2/3
r t

]
.

(24)

3.1 Test case

As a test case we will use a three component aerosol with
diffusion-controlled growth. Of the three components the
first condenses, the second evaporates and the third is in-
volatile:

G1s
−2/3
r = 0.5, G2s

−2/3
r = −0.2, G3s

−2/3
r = 0.,

giving a total growth rate:

Gs
−2/3
r = 0.3.

This case is similar to the actual PSC system we will be mod-
elling, and so represents conditions which the model may
have to deal with.

Our initial mass distribution consists of a single square
mode:

p0(µ) =

0, µ < −3,
10, −3 ≤ µ ≤ 3,
0, 3< µ.

Betweenµ = −3 andµ = 3, the masses of the individual
components are given by:

p0
3 = 1,

p0
1 =

p0
− p0

3

2
+
µ

2
,

p0
2 =

p0
− p0

3

2
−
µ

2
.

To ensure thatp2 remains positive the test run is analysed
until t = 1.0 (tlim = 2.09), allowing us to use Eq. (16). The
test case is modelled in MADVEC using 100 size bins over
the range−6 ≤ µ ≤ 6.

Figures 1a and b illustrate the evolution of the total mass
and the second component respectively.

The MADVEC model copes well with this square mode
test, the analytical solution is reproduced almost exactly
away from the edges of the mass distribution. Some numer-
ical diffusion occurs at the discontinities, however these are
minimal for both the VANLEER and SUPERBEE limiters
(see appendix for details of the TVD limiters). Both solu-
tions are positive throughout the size domain and integration
time.

4 Physical test case

The physical components of MADVEC also require testing.
To do this we will use the simple test case used by Meilinger
et al. (1995) to demonstrate that significant concentration
gradients can exist across the size distribution in a gravity-
wave-induced PSC.

Meilinger et al. (1995) used a trajectory box model to sim-
ulate the evolution of STS particles. Growth and evapora-
tion were calculated using a Lagrangian scheme in radial

Atmos. Chem. Phys., 3, 29–38, 2003 www.atmos-chem-phys.org/acp/3/29/



D. Lowe et al.: Liquid PSC box model 33

−6 −4 −2 0 2 4 6
0

5

10

15

20

25

µ

p

(a)

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

µ

p 2

(b)

Fig. 1. Evolution of (a) the total mass distribution, and(b) the mass distribution of the second (evaporating) component, for the analytical
test case. The black lines indicate the analytical solution at times: (−·−·) t = 0, (−−−−) t = 0.5, and ( —— )t = 1.0. The small asterisks
indicate the distributions given by MADVEC att = 1.0, the colours indicate TVD limiter: red for VANLEER, and blue for SUPERBEE.

space, reducing numerical diffusion. The partial pressure and
vapour pressures were calculated from Luo et al. (1995).

The test case simulates a mild lee wave cooling event
(Fig. 2). The air mass initially cools adiabatically at a steady
rate of 6 K hr−1 from 196 K to 190 K, remains at 190 K for
an hour, then increases back to 196 K at the previous rate.
Of the three components, H2SO4 is considered non-volatile,
while the total mixing ratios of H2O and HNO3 are 5 ppmv
and 10 ppbv respectively, initial air pressure is 65 mbar. The

starting particle distribution is lognormal, with total particle
number densityN = 10 cm−3, mode radius̄r = 0.08 µm
and widthσ = 1.8. The physical test case is modelled in
MADVEC using 50 size bins logarithmically distributed over
the radius ranger = 1.6 nm tor = 30µm. Of these 50 bins,
at any one time 30–40 bins will contain particles. The WAF
scheme is controlled using the vanleer TVD limiter. To en-
able comparision with MADVEC, Meilinger et al.’s data has
been transposed onto the same fixed radius grid.
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Fig. 2. Temperature profile of the adi-
abatic cooling event used by Meilinger
et al. (1995).

Figures 3a and b show the development of HNO3 mass
fractions during the test run for Meilinger et al. and MAD-
VEC, respectively.

In both models particles smaller than 0.6µm have a com-
position close to a pure HNO3/H2O solution, however in
MADVEC the HNO3 content of the larger particles (∼

2µm) remains fairly constant, whereas in Meilinger et al. it
increases to about 20%.

The HNO3 mass fractions for particles of radius 0.16µm
are shown in Fig. 4. As the temperature drops the HNO3
mass fractions of the models increase at the same rate.
However at 190 K, the HNO3 mass fractions determined by
MADVEC are approximately 3% lower than those reached
by Meilinger et al.. As the temperature increases again so do
the HNO3 mass fractions, as the particle composition follows
the binary HNO3/H2O liquid curve. The maxima reached by
MADVEC occurs earlier and is approximately 4% smaller
than that of Meilinger et al..

The difference in HNO3 mass fractions between our re-
sults and those of Meilinger et al. (1995) is not sensitive to
the resolution of MADVEC (tested by doubling the resolu-
tion of MADVEC relative to that used to produce Figs. 3b
and 4). Neither is there any indication of significant numeri-
cal diffusion when MADVEC is tested against the analytical
solution (Figures 1a and b; but see also the discussion below).
It is likely, therefore, that the difference between the models
is due to small differences in physical parameters such as
vapour pressure, density, surface tension, etc.

At high temperatures (above 193 K), the size of STS par-
ticles is controlled by their H2SO4 content. Because H2SO4
is treated as inert the particle distribution should return to
the original distribution upon returning to initial conditions.

However for mass-conserving schemes, like the one used
in MADVEC, the mass of all components is mixed, which
may lead to an unrealistic dispersion of mass in radius space.
We combined three of the adiabatic cooling events described
above into one single twelve hour run. The initial mass dis-
tribution, and the mass distributions after each hour spent at
196 K are plotted in Fig. 5.

Numerical dispersion occurs throughout the 12 hour run.
While both ends of the distribution gain mass, the gain is
more sustained in the smaller radius bins. The mass distri-
bution also develops a skew towards the smaller radius bins,
which, while there is no significant gain in mass, does result
in an increase in particle number over the 12 hour run.

5 Conclusions

We have built a multi-component liquid aerosol box model
with fixed size bins. The numerical methods used have been
tested against analytical aerosol solutions, and been proven
to work. The model physics have been tested using the test
case published by Meilinger et al. (1995), and the results
compared with those obtained by Meilinger et al. On the
whole MADVEC reacts to changes in conditions in a sim-
ilar manner to Meilinger et al.’s model, although the maxi-
mum HNO3 mass fractions reached by MADVEC are lower.
At these maxima the aerosol particles practically have a bi-
nary HNO3/H2O composition. Heterogeneous freezing of
HNO3/H2O particles close to the NAT stoichiometry (≈

54%) may occur at temperatures above the ice point (Bog-
dan et al., submitted manuscript). This could be a possible
mechanism of formation for the large HNO3-containing par-
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Fig. 3. Nitric acid mass fractions for(a) Meilinger et al.’s model, and(b) MADVEC, during the cooling event shown in Fig. 2. The scale bars
on the left indicate the mass fraction (%). Note that the mass distribution produced by MADVEC has been cutoff at a minimum of 1 pgm−3.

ticles which have been detected in the Arctic (Fahey et al.,
2001).

Longer model runs have demostrated the stability of
MADVEC, with little numerical diffusion occuring. Due
to the fixed size distribution, MADVEC is suitable for use
within global and mesoscale CTMs. However full non-
equilibrium modelling of PSC particles will require high res-
olution parameterisation of mountain waves and of the PSCs
created by them. Mesoscale models can, at high resolution,
capture the larger scale features of mountain waves (Leut-

becher and Volkert, 2000). However these models still fail
to capture the smaller scale fluctuations (with wavelengths
of a few km), which have a large effect on the composition
of STS particles (Voigt et al., 2000). Sedimentation of par-
ticles from PSCs, a proposed source of “NAT-rocks”, also
require higher vertical resolutions than those currently avail-
able (Fueglistaler et al., 2002). Further development of the
parameterisation of these small-scale features is needed.

The four-hour test case used in this paper takes approxi-
mately 1000 CPU seconds on a Sparc IIi 248 MHz proces-
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Fig. 4. Comparision of nitric acid mass
fractions between Meilinger et al.’s
model (green line) and MADVEC (blue
line) for the radius bin of size 0.16µm.
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Fig. 5. Evolution of the total mass dis-
tribution over the period of 12 h. Each
distribution is taken after the model has
spent an hour at a temperature of 196 K.

sor. Reducing the resolution of the model (i.e. the number of
size bins) can decrease the cost of the model by upto 30%.
It is envisaged that particles will be transported between grid
cells using an adaption of the scheme used to advect trace
gases. This would result in [number of components * num-
ber of size bin] tracers, thus at the resolution of 50 size bins
the transport of 150 tracers would be required, while a 20-bin
model would require 60 tracers. This will be expensive, but
is achievable for the mesoscale modelling of mountain waves
for a few days at a time.

Appendix: The WAF Equations

The WAF approach is a second-order implementation of the
first-order Godunov method. The improvement on the order
of accuracy is achieved by using a weighted average of the
upwind and downwind contributions to the flux. The former
controls the stability while the latter increases the order of
accuracy.

Higher-than-first order schemes are not monotone and this
will result in the appearance of spurious oscillations near
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high gradients. These can be eliminated by locally reduc-
ing the contribution of the downwind flux. This is achieved
by introducing TVD functions into the WAF scheme.

The flux of mass between two size bins,j andj + 1, in
µ-space is given by

f
waf

j+ 1
2

=
1

2
(1 + c)

(
a
j+ 1

2
p
j
i

)
+

1

2
(1 − c)

(
a
j+ 1

2
p
j+1
i

)
, (25)

wherea
j+ 1

2
is the wave propagation speed, calculated as an

average of the total growth rates for any two adjacent mass
bins, andpji is the mass of componenti in size binj . c is the
Courant-Friedrichs-Lewy (CFL) number, given by

c =

a
j+ 1

2

1µ/1t
. (26)

The CFL number can be thought of as the ratio of two speeds,
the wave propagation speed and the grid speed,1µ/1t ,
which is defined by the discretisation of the domain. This
scheme is stable providing that the following condition is ful-
filled

0 ≤ |c| ≤ 1 . (27)

Flux limiting is achieved by introducing a new parameter
φ, and Eq. (25) is rewritten as

f
j+ 1

2
=

1

2
(1 + φ)

(
a
j+ 1

2
p
j
i

)
+

1

2
(1 − φ)

(
a
j+ 1

2
p
j+1
i

)
, (28)

where

φ
j+ 1

2
= φ

j+ 1
2

(
r
j+ 1

2
, |c|

)
(29)

andr
j+ 1

2
is a measure of the gradient of the advected quan-

tity. It is used to adjustφ depending on local conditions in
the data, and is defined as the ratio of the upwind change to
the local change

r
j+ 1

2
=
1upw

1loc
, (30)

where

r
j+ 1

2
=


p
j
i −p

j−1
i

p
j+1
i −p

j
i

if a
j+ 1

2
> 0,

p
j+2
i −p

j+1
i

p
j+1
i −p

j
i

if a
j+ 1

2
< 0.

(31)

The WAF limiter function,φ
j+ 1

2
(r
j+ 1

2
, |c|), is related to

any given conventional flux limiter,ψ
j+ 1

2
(r) by

φ
j+ 1

2
(r
j+ 1

2
, |c|) = 1 − (1 − |c|)ψ

j+ 1
2
(r). (32)

In this work we will use two standard flux limiter func-
tions, given below with subscripts removed for brevity: SU-
PERBEE is given by

ψsb(r) =


0 if r ≤ 0,
2r if 0 ≤ r ≤

1
2,

1 if 1
2 ≤ r ≤ 1,

r if 1 ≤ r ≤ 2,
2 if r ≥ 2,

(33)

and VANLEER is given by

ψvl(r) =

{
0 if r ≤ 0,
2r

1+r
if r ≥ 0.

(34)
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