Atmos. Chem. Phys., 5, 2532545 2005 y —* .

www.atmos-chem-phys.org/acp/5/2539/ Atmospl‘]erlc
SRef-ID: 1680-7324/acp/2005-5-2539 Chemls_try
European Geosciences Union and Phys|cs

A Lagrangian Stochastic Model for the concentration fluctuations

L. Mortarini 13 and E. Ferrero?3

Dipartimento di Fisica Generale, Univegsii Torino, v. P. Giuria 1, 10125, Torino, Italy
2Dipartimento di Scienze e Tecnologie Avanzate, Univ. del Piemonte Orientale, Via Bellini, 25/G 15100 Alessandria, Italy
3ISAC-CNR, Corso Fiume 4, 10133, Torino, Italy

Received: 21 July 2004 — Published in Atmos. Chem. Phys. Discuss.: 2 June 2005
Revised: 13 September 2005 — Accepted: 13 September 2005 — Published: 23 September 2005

Abstract. A Lagrangian Stochastic Model for the two-  Many numerical models have been developed based on
particles dispersion, aiming at simulating the pollutant con-this fundamental work aiming to simulate the dispersion of
centration fluctuations, is presented. Three model versionpollutants in the atmospheric boundary layer in different sta-
(1-D, 2-D and 3-D) are tested. Firstly the ability of the bility conditions (see for instanceuhar and Britter 1989
model to reproduce the two-particle statistics in a homoge-Hurley and Physick199% Tinarelli et al, 1994 Du et al,
neous isotropic turbulence is discussed, comparing the model994). These models are able to account for higher order
results with theoretical predictions in terms of the probabil- turbulence moments of the atmospheric PDF and complex
ity density function (PDF) of the particles separation and itsturbulence flow dynamicsFerrero et al.2003, and have
statistics. Then, the mean concentration and its fluctuationslemonstrated to be able to accurately reproduce the mean
are considered and the results presented. The influence of thmncentration field of the dispersed tracer.

PDF of the particle separation on the concentration fluctua- It should be stressed that the one-particle model is only
tions is shown and discussed. We found that the separatioable to describe the absolute dispersion and to predict the
PDF in the inertial subrange is not gaussian and this fact infmean concentration fields. When one is interested in the rel-
fluences the predicted concentration fluctuations. ative dispersion and fluctuation concentration field, a two-
particle model should be developed and applied.

Many authors attempt to extend the results obtained with
the single particle dispersion models to those for the parti-
1 Introduction cle pairs suggesting heuristic modeBugbin, 198Q Saw-

ford, 1984 Kaplan and Dingr1989. However, more re-
Lagrangian Stochastic Models (LSM) are based on thecently, Thomson(1990 andBorgas and Sawfor(994) fol-
Langevin equation, which allows describing the temporallowing a more rigorous approach, based on the stochastic
evolution of the velocity of pollutant particles in a turbu- processes theory, prescribed a complete three dimensional
lent field. The solution of the Langevin equation is a con- model for two-particles dispersion in homogeneous isotropic
tinuous stochastic Markov process. In fact, particle positionturbulence.
and velocity, in a turbulent flow, can be considered a bivari- ~ An important advantage of the two-particle model is the
ate Markov process in the range of the spectrum betweenbility to include second order chemical reactio@sdne et
the Kolmogorov time scale and the velocity correlation La- al., 1999 van Dop 2001). Unfortunately a unique solution
grangian time scale T of the Fokker-Planck equation does not exist for the two-

Thomson(1987 provides a complete theory of the LSM particle model, even in one dimension and in isotropic tur-
based on the concept of the Markovian process. In that papdsulence Sawford 1993.
he introduced the so called “well mixed condition” as a basic A two-particles LSM for relative dispersion in homoge-
constraint in order to assess the validity and physical consisneous and isotropic turbulence is presented. In particular,
tency of a dispersion model. He also demonstrated that thishe behavior of the separation and barycentre of the parti-

condition is satisfied by his model. cles positions generated by the model are analysed and com-
pared with theTaylor (1921) theory for the Lagrangian dis-
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separation PDF’s is also investigated and compared with thevhere £ (A) is the longitudinal velocity correlation function
classical theoryRichardson1926. Finally the mean con- which is prescribed as ifihomson(1990.
centration and the concentration fluctuations predicted by It can be noted that only the equation fara
the 1-D, 2-D and 3-D versions of the model are compared(6) accounts for the particle—particle interaction
with those predicted by analytical formulas assuming differ- (uAqu%(u% — 2uqup + u%)). On the contrary the non
ent PDFs and experimental data. linear term in thexy Eq. (7) does not depend on this effect
(uzua=3w?-u3)). As a matter of factThomson(1990
has pointed out that the model does not satisfy the “reduction
to one particle” condition: fixing the initial position of the
first particle of a pair, the ensemble of the trajectories of this
particle does not depend on the initial position of the second
particle.

It should be also stressed that, in order to overcome the

2 The model

In order to obtain a model for particle pairs, the Eulerian
PDF should depend on the particle relative separation (
The simplest choice is to assunfg (A, u) to be Gaussian,

depending on a six-dimensional velocity covariance tensor.
P 9 y Iack in simulating the molecular diffusion which acts at the

The PDF is completely determined if all the components are ery small scale, the model requires a finite initial distance
known. These components are determined, in homogeneo%: y ' q

isotropic turbulence, followinghomson(1990 and depend etween the particles.
on the correlation function®rbin, 1980.

The general equations of the model are: 3 Relative dispersion
du;(t) =ai(u,t)dt—|—8ij\/ COGde (1)

In order to test the model, firstly we compared its results with
dxi(1) = u;(t)dt (2)  the theoretical predictions prescribedBgrgas and Sawford

wherei=1, .., 6 corresponds to the three coordinates for each(1993). They proposed the following trend for the particles

of the particles of a couple is the Kolmogorov constant, Separation mean square in a_moving set of coordinates inde-

¢ the dissipation rate of the turbulent kinetic energy/; is ~ Pendent from the initial velocity:

a Gaussian white noise and

1 3
o? a1, 10V At ifcoet s e (®)
ai(u,t) = T_LV” i+ ZVU B—Xkujuk (3) 5(Co — y)et <Kt KTy
whereo is the turbulent velocity field standard deviatidh, ~ Wheret, is the Kolmogorov length scale angldepends on
is the Lagrangian time scale afdis the initial separatiomo:
@Pu?y @ Pu'?) fo = (A2/e)3. )
V=) =\ @,0, <u<2)u{2>> (4)
ir =y A It represents the time at which the motion of the particles
where 1, 2 indicate the particlé (', i”, j’=1, 2, 3). becomes independent from the initial separatBat¢helor
Following Thomson(1990, we introduce the new coordi- 1952.
nates: separation and the barycentre, The presence of the additional tegmis due to the cross-
correlation terms in the correlation tensor (Bofgas and
_x D — x@ Sawford 1991), whose effect appears only for lager separa-
V2 tion.
*D 4 x@ ©) Figurel shows the separation standard deviation as a func-
Y= T tion of time predicted by the 3-D model compared with the

theoretical prediction (8). It demonstrates the presence of an
Equation (1) can be replaced by the Langevin equations fointermediate sub-range inside the inertial range, whose am-
the separation and barycentre velocities, which can be founglitude depends on the initial separation of the particles. For
by solving the corresponding Fokker-Planck equation. Withtime greater tham the separation mean square grows with a
the aim of assessing the possibility to use simplified versionsiifferent trend according to Eqg. (8).
of the complete 3-D model in simulating relative dispersion  This behavior can be interpreted as follows. Immediately
we derived the 1-D and 2-D solution. Inthe 1-D caSerfero  after the releasér<rg) the separation of the particles in-

and Mortarinj 2009 we have: duced by the turbulent eddies is less than the initial separa-
1/Coe df undt t?on (Ap) of the particles of the pair. Only Whep the separa-
dup = 5 ozt Ay + v CoedW (6)  tion becomes greatér1g) the effect of the particle correla-

tion can be observed. For great initial separation the particles
1 (Coe daf uxdt are already uncorrelated at the beginning of the simulation
<_ ) 1+ f(A) +CoedW (7) and hence follow the single particle dynamics.
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Fig. 1. Separation’s standard deviation vs normalised time. Solid
line: model; dashed line: first of Eqg. (8) square root; dash-dotted
line: second of Eq. (8).
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Fig. 2. Barycentre’s standard deviation vs normalised time. Solid
line: model; dashed line: first of Eq. (10) square root; dash-dotted
line: second of Eq. (10).
A similar formula can be derived for the barycentre’s mean A
square: oA

1.3
<3¥2-= %COH 3 fy <1 <o (10) Fig. 3. P(A, s|t) produced by the models (dots) in the intermedi-
5(Cot+yler® <Kt K7L ate range in the (from top) 1-D, 2-D and 3-D cases. Dashed line:

. ) o Gaussian; dash-dotted line: Richardson; solid line: Eq. (13).
The comparison between theoretical prediction (10) and the

3-D model results is shown in Fig.

It can be seen that the barycentre is insensitive to theo the model failing of theeduction to one particleriteria
particle-particle interaction and it follows the same trend in (Thomson 1990, if the barycentre standard deviation slope
all the inertial range. doesn’t balance the separation’s one, the single particle stan-

As we stated in a previous articlegrrero and Mortarini  dard deviation can not follow the theoretical prediction as
2009, the different behaviour between the separation and theéong as:
barycentre standard deviations (Egs. 8 and 10) is due to the

non linear terms in the Langevin Egs. (6) and (7) respectively. x?) = 1 ((AZ) + (22>) ) (11)
As a matter of fact, the termau in (6) contains the inter- 2
action of the particlesiuy, while the termuauy in (7) lacks While the single particle position and barycentre PDF’s

this part. When the intial separation memory is lost, the cor-are generally accepted to be Gaussian, there is no definitive
relation between the particles influences only the separatiotheory on the shape of the separation PDF within the inertial
and not the barycentre. This unbalanced behaviour is dusubrange.Richardson(1926 proposed a form for the pair
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Fig. 4. Comparison between mean concentrations predicted by therig. 5. Comparison between concentration fluctuations predicted

1-D (A), 2-D (x) and 3-D(0) models and theoretical prediction

by the 1-D(A), 2-D (x) and 3-D(0) models and theoretical pre-

(contonous lines) for different source sizes, where the intial meandiction based on the Richardson (solid line) and Gaussian (dashed

concentration is inversely proportional to the source size.

separation PDF, whose one-dimensional expression is:

9a2/3
Ant

9
4w

wheren depends on the Richardson constgréand on the
rate of dissipation of turbulent kinetic energythrough the
relation: n=(2g3ge) 3.

A different form of the PDF was suggested biiomson
(2990 following (Monin and Yaglom1975 p. 384) charac-

terized by a less sharp maximum and small tails:

P(Alx, 1) = (1) ~3%e” (12)

P(Alx, 1) ~a — BAZ® (13)

where« is the variance of the hypothetical concentration
field andg is proportional to its rate of dissipatioftjom-
son 1990.

line) PDFs.

not Gaussian. Thus the 2-D and 3-D models are not able to
predict very small particle separations.

For time smaller tham the PDF can be considered Gaus-
sian. This result agrees with the theoretical predictions by
Batchelor(1952 andRichardsor(1926.

We found that the separation PDF is Gaussian at small
times, fort« and outside the inertial subrange{T,),
but it departs from Gaussianity in the intermediate subrange
(fokt<kTy). In this range the PDF agrees, at least for
small separation, with those proposed by Thomson (Eq. 13)
(Thomson 1990 Monin and Yaglom1975. In the case of
the 1-D model it agrees with the Richardson PDF (Eq. 12),
(Ferrero and Mortarini, 2005).

4 Concentrations

It can be easily noticed that Thomson PDF (Eq. 13) is the
first order expansion of the Richardson PDF (Eq. 12) andWe have shown that the PDF of the separation is not the same
that is not a proper PDF as long as does not tend to zero foalong all the inertial range, so using the Gaussian PDF for
A—00, but can be considered as a theoretical trend of thecalculating the concentration and the concentration fluctua-
particle PDF separation when the particles are very closetions can not always be correct. We derived a new formula
This approximated expression should fit the PDF only forbased on the Richardson PDF and we compared this formula
small separations in the inertial subrange. with that proposed byrhomson(1990 based on the Gaus-
Looking at the modelled PDF for the 1-D, 2-D and 3-D sian PDF.
cases, we see that, in the first case it fits the Richardson pre- The mean concentrations and the concentration fluctua-
diction, while, increasing the dimensions of the space wherdions predicted by the model are compared with the analyti-
the particles move and hence their degrees of freedom, theal formulas based on the single particR (y, s|x, 7)) and
PDF becomes less sharp and show a good agreement ontwo particles separationPb(y1, y2, s, s|x1, x2, t, 1)) PDFs,
with the first order expansion (Eq. 13) of the Richardsonrespectively.

PDF, which departs from the Gaussian statistic as well.
The separation PDFs in the intermediate range:<<T.
for the 1-D, 2-D and 3-D cases are shown in RigThe PDF

produced by the 1-D model has a more sharp maximum and
agrees better with the Richardson PDF. In the 2-D and 3-D c _ 1
cases the PDFs show a smoother maxima but still they aré (x,0) = V27 o1(st)

Atmos. Chem. Phys., 5, 2539545 2005

In order to calculate the mean concentrations and concen-
tration fluctuations we adopted tiSawford(1993 approxi-
mation, obtaining the following expressions

_a=y?

e A S(y)dy

(14)
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Fig. 6. Comparison between model simulations (lines) and experimental data (symbols) for different sourca)sizd3;model,(b): 2-D
model,(c): 3-D model.

)2 . . .
) S e Concerning the mean concentration fluctuations we de-
(C(x, 1)) = | P(A,s|t)———e % . . e
V27 o5 (s|t) rived the following expression:
S(y1)S(y2)dy1rdy2 (15) a2
. . 3e 0)22(’)“’3
whereS(y) is the amount of tracer released per unit volume, <c2(x, 1)) = Ay, 00, 1) (18)
P(A s|t) the separ_ati_on PDE;l_ is the single particle po- 2625/652 /z7n(o§ @) +o§)
sition standard deviation angk, is the barycentre standard
deviation. Mean concentrations predicted by the models for an area
For the sake of simplicity, we consider a discrete Gaussiarsource were calculated and compared with the predictions
area source (whewg represents the source size): based on the Gaussian PDF (Eq. 17) see &id.he results
) obtained with all the three models agree with the theoretical
1 353 predictions. It can also be observed that the mean concen-
S(y) = e “0, (16) : .
V2100 trations corresponding to the three models follow the same

) ) ) _ behavior and, after about 0.1 integral time saalé/¢), the
which gives the following expressions for the mean concen-pregictions, for sources with different size, collapse on the

tration: same curve. This demonstrates that the characteristics of the
1 — x2 , source influence the dispersion only at the shortest times.
(C(x, 1)) = e 2oiGIntoq) a7 Concerning the concentration fluctuation, the 1-D, 2-D
\/271 (Ulz(s [t) + og) and 3-D models give different results, according to the differ-

ent shapes of the separation PDF. In Bighe model results
are compared with the theoretical predictions obtained from
Eqg. (18) and those from the analogous formula based on the
Gaussian PDFThomson 1990. The curve corresponding

www.atmos-chem-phys.org/acp/5/2539/ Atmos. Chem. Phys., 5, 25392005
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to Eq. (18) slightly differs in the cases of 1-D, 2-D and 3-D References
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of the models is considered. As long as the differences ar
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