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Abstract. A Lagrangian Stochastic Model for the two-
particles dispersion, aiming at simulating the pollutant con-
centration fluctuations, is presented. Three model versions
(1-D, 2-D and 3-D) are tested. Firstly the ability of the
model to reproduce the two-particle statistics in a homoge-
neous isotropic turbulence is discussed, comparing the model
results with theoretical predictions in terms of the probabil-
ity density function (PDF) of the particles separation and its
statistics. Then, the mean concentration and its fluctuations
are considered and the results presented. The influence of the
PDF of the particle separation on the concentration fluctua-
tions is shown and discussed. We found that the separation
PDF in the inertial subrange is not gaussian and this fact in-
fluences the predicted concentration fluctuations.

1 Introduction

Lagrangian Stochastic Models (LSM) are based on the
Langevin equation, which allows describing the temporal
evolution of the velocity of pollutant particles in a turbu-
lent field. The solution of the Langevin equation is a con-
tinuous stochastic Markov process. In fact, particle position
and velocity, in a turbulent flow, can be considered a bivari-
ate Markov process in the range of the spectrum between
the Kolmogorov time scale and the velocity correlation La-
grangian time scale TL .

Thomson(1987) provides a complete theory of the LSM
based on the concept of the Markovian process. In that paper
he introduced the so called “well mixed condition” as a basic
constraint in order to assess the validity and physical consis-
tency of a dispersion model. He also demonstrated that this
condition is satisfied by his model.
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Many numerical models have been developed based on
this fundamental work aiming to simulate the dispersion of
pollutants in the atmospheric boundary layer in different sta-
bility conditions (see for instanceLuhar and Britter, 1989;
Hurley and Physick, 1991; Tinarelli et al., 1994; Du et al.,
1994). These models are able to account for higher order
turbulence moments of the atmospheric PDF and complex
turbulence flow dynamics (Ferrero et al., 2003), and have
demonstrated to be able to accurately reproduce the mean
concentration field of the dispersed tracer.

It should be stressed that the one-particle model is only
able to describe the absolute dispersion and to predict the
mean concentration fields. When one is interested in the rel-
ative dispersion and fluctuation concentration field, a two-
particle model should be developed and applied.

Many authors attempt to extend the results obtained with
the single particle dispersion models to those for the parti-
cle pairs suggesting heuristic models (Durbin, 1980; Saw-
ford, 1984; Kaplan and Dinar, 1989). However, more re-
cently,Thomson(1990) andBorgas and Sawford(1994) fol-
lowing a more rigorous approach, based on the stochastic
processes theory, prescribed a complete three dimensional
model for two-particles dispersion in homogeneous isotropic
turbulence.

An important advantage of the two-particle model is the
ability to include second order chemical reactions (Crone et
al., 1999; van Dop, 2001). Unfortunately a unique solution
of the Fokker-Planck equation does not exist for the two-
particle model, even in one dimension and in isotropic tur-
bulence (Sawford, 1993).

A two-particles LSM for relative dispersion in homoge-
neous and isotropic turbulence is presented. In particular,
the behavior of the separation and barycentre of the parti-
cles positions generated by the model are analysed and com-
pared with theTaylor (1921) theory for the Lagrangian dis-
persion and its extension to the relative dispersion (Lee and
Stone, 1983; Borgas and Sawford, 1994). The form of the
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separation PDF’s is also investigated and compared with the
classical theory (Richardson, 1926). Finally the mean con-
centration and the concentration fluctuations predicted by
the 1-D, 2-D and 3-D versions of the model are compared
with those predicted by analytical formulas assuming differ-
ent PDFs and experimental data.

2 The model

In order to obtain a model for particle pairs, the Eulerian
PDF should depend on the particle relative separation (1).
The simplest choice is to assumePE(1, u) to be Gaussian,
depending on a six-dimensional velocity covariance tensor.
The PDF is completely determined if all the components are
known. These components are determined, in homogeneous
isotropic turbulence, followingThomson(1990) and depend
on the correlation functions (Durbin, 1980).

The general equations of the model are:

dui(t) = ai(u, t)dt + δij

√
C0εdWj (1)

dxi(t) = ui(t)dt (2)

wherei=1, .., 6 corresponds to the three coordinates for each
of the particles of a couple,C0 is the Kolmogorov constant,
ε the dissipation rate of the turbulent kinetic energy,dWj is
a Gaussian white noise and
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σ 2
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whereσ is the turbulent velocity field standard deviation,TL

is the Lagrangian time scale andV is
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where 1, 2 indicate the particle (i′, j ′, i′′, j ′′
=1, 2, 3).

FollowingThomson(1990), we introduce the new coordi-
nates: separation and the barycentre,

1 =
x(1)

− x(2)

√
2

6 =
x(1)

+ x(2)

√
2

(5)

Equation (1) can be replaced by the Langevin equations for
the separation and barycentre velocities, which can be found
by solving the corresponding Fokker-Planck equation. With
the aim of assessing the possibility to use simplified versions
of the complete 3-D model in simulating relative dispersion
we derived the 1-D and 2-D solution. In the 1-D case (Ferrero
and Mortarini, 2005) we have:

du1 = −
1

2

(
C0ε

σ 2
+

df

d1
u1

)
u1dt

(1 − f (1))
+

√
C0εdW (6)

du6 = −
1

2

(
C0ε

σ 2
−

df

d1
u1

)
u6dt

(1 + f (1))
+

√
C0εdW (7)

wheref (1) is the longitudinal velocity correlation function
which is prescribed as inThomson(1990).

It can be noted that only the equation foru1

(6) accounts for the particle–particle interaction
(u1u1=

1
2(u2

1 − 2u1u2 + u2
2)). On the contrary the non

linear term in theu6 Eq. (7) does not depend on this effect
(u6u1=

1
2(u2

1−u2
2)). As a matter of fact,Thomson(1990)

has pointed out that the model does not satisfy the “reduction
to one particle” condition: fixing the initial position of the
first particle of a pair, the ensemble of the trajectories of this
particle does not depend on the initial position of the second
particle.

It should be also stressed that, in order to overcome the
lack in simulating the molecular diffusion which acts at the
very small scale, the model requires a finite initial distance
between the particles.

3 Relative dispersion

In order to test the model, firstly we compared its results with
the theoretical predictions prescribed byBorgas and Sawford
(1991). They proposed the following trend for the particles
separation mean square in a moving set of coordinates inde-
pendent from the initial velocity:

< 12 >=

{
1
3C0εt

3 tη � t � t0
1
3(C0 − γ )εt3 t0 � t � TL

(8)

wheretη is the Kolmogorov length scale andt0 depends on
the initial separation10:

t0 = (12
0/ε)

1
3 . (9)

It represents the time at which the motion of the particles
becomes independent from the initial separation (Batchelor,
1952).

The presence of the additional termγ is due to the cross-
correlation terms in the correlation tensor (4) (Borgas and
Sawford, 1991), whose effect appears only for lager separa-
tion.

Figure1 shows the separation standard deviation as a func-
tion of time predicted by the 3-D model compared with the
theoretical prediction (8). It demonstrates the presence of an
intermediate sub-range inside the inertial range, whose am-
plitude depends on the initial separation of the particles. For
time greater thant0 the separation mean square grows with a
different trend according to Eq. (8).

This behavior can be interpreted as follows. Immediately
after the release(t�t0) the separation of the particles in-
duced by the turbulent eddies is less than the initial separa-
tion (10) of the particles of the pair. Only when the separa-
tion becomes greater(t>t0) the effect of the particle correla-
tion can be observed. For great initial separation the particles
are already uncorrelated at the beginning of the simulation
and hence follow the single particle dynamics.
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Fig. 1. ∆ Separation’s mean square vs normalised time. Solid line: model; dashed line: first of equations (8); dash-dotted line: second of
equations (8)

A similar formula can be derived for the barycentre’s mean
square:

< Σ2 >=

{
1
3C0εt

3 tη << t << t0
1
3 (C0 + γ)εt3 t0 << t << TL

(10)

The comparison between theoretical prediction (10) and
model results is shown in figure 2.

figure
As it can be seen, the barycentre is insensitive to the

particle–particle interaction and it follows the same trend in
all the inertial range.

The different behaviour of separation and barycentre
makes the model not completely satisfactory because it does
not satisfy the reduction to one particle criteria (Thomson,
1990).

While the single particle position and barycentre PDF’s
are generally accepted to be Gaussian, there is no definitive
theory on the shape of the separation PDF within the inertial
subrange. Richardson (1926) proposed a form for the pair
separation PDF, whose one–dimensional expression is:

P (∆|x, t) =
9

4
√

π
(ηt)−3/2e−

9∆−3/2
4ηt (11)

where η depends on the Richardson constant g and on the
rate of dissipation of turbulent kinetic energy ε through the
relation: η = (243

560gε)1/3.
A different form of the PDF was suggested by Thomson

(1990) following Monin and Yaglom (1975) (pag.384) char-
acterized by a less sharp maximum and small tails:

P (∆|x, t) ' α− β∆2/3 (12)

where α is the variance of the hypothetical concentration
field and β is proportional to its rate of dissipation (Thomson,

1990). This approximated expression should fit the PDF only
for small separations in the inertial subrange.

The separation PDFs in the intermediate range t0 <<
t << TL for the 1D, 2D and 3D cases are shown in fig-
ure 3. The PDF produced by the 1D model has a more sharp
maximum and agrees better with the Richardson PDF. In the
2D and 3D cases the PDFs show a smoother maxima but still
they are not Gaussian. Thus the 2D and 3D models are not
able to predict very small particle separations.

figure
For time smaller than t0 the PDF can be considered Gaus-

sian. This result agrees with the theoretical predictions by
Batchelor (1952) and Richardson (1926).

We found that the separation PDF is Gaussian at small
times, for t << t0 and outside the inertial subrange (t >>
TL), but it departs from Gaussianity in the intermediate sub-
range (t0 << t << TL). In this range the PDF agrees, at
least for small separation, with those proposed by Thomson
(equation 12) (Thomson (1990), Monin and Yaglom (1975)).
In the case of the 1D model it agrees with the Richardson
PDF (equation 11).

4 Concentrations

We have shown that the PDF of the separation is not the same
along all the inertial range, so using the Gaussian PDF for
calculating the concentration and the concentration fluctua-
tions can not always be correct. We derived a new formula
based on the Richardson PDF and we compared this formula
with that proposed by Thomson (1990) based on the Gaus-
sian PDF.

The mean concentrations and the concentration fluctua-
tions predicted by the model are compared with the analyti-
cal formulas based on the single particle (P1(y, s|x, t)) and

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–8, 2005

Fig. 1. Separation’s standard deviation vs normalised time. Solid
line: model; dashed line: first of Eq. (8) square root; dash-dotted
line: second of Eq. (8).4 L.Mortarini E.Ferrero: A Lagrangian Stochastic Model for the concentration fluctuations

Fig. 2. Σ Barycentre’s mean square vs normalised time. Solid line: model; dashed line: first of equations (10); dash-dotted line: second of
equations (10)

two particles separation (P2(y1, y2, s, s|x1, x2, t, t)) PDFs
respectively.

In order to calculate the mean concentrations and concen-
tration fluctuations we adopted the Sawford (1993) approxi-
mation, obtaining the following expressions

〈C(x, t)〉 =
∫

1√
2πσ1(s|t)

e
− (x−y)2

2σ2
1(s|t) S(y)dy (13)

〈C2(x, t)〉 =
∫

P (∆, s|t) 1√
2πσΣ(s|t)

e
− (x

√
2−Σ)2

2σ2
Σ(s|t)

S(y1)S(y2)dy1dy2

(14)

where S(y) is the amount of tracer released per unit volume
and P (∆, s|t) the separation PDF.

For the sake of simplicity, we consider a discrete Gaussian
area source:

S(y) =
1√

2πσ0

e
− y2

2σ2
0 , (15)

which gives the following expressions for the mean con-
centration:

〈C(x, t)〉 =
1√

2π(σ2
1(s|t) + σ2

0)
e
− x2

2(σ2
1(s|t)+σ2

0) (16)

figure
figure
Concerning the mean concentration fluctuations we de-

rived the following expression:

〈C2(x, t)〉 = A(η, σ0, t)
3e

− x2

σ2
Z

(t)+σ2
0

2625/6π2
√

t7η(σ2
Z(t) + σ2

0)
(17)

Mean concentrations predicted by the models for an area
source were calculated and compared with the predictions
based on the Gaussian PDF (equation 16) see 4. The results
obtained with all the three models agree with the theoretical
predictions. It can also be observed that the mean concen-
trations corresponding to the three models follow the same
behavior and, after about 0.1 integral time scale (σ2/ε), the
predictions, for sources with different size, collapse on the
same curve. This demonstrates that the characteristics of the
source influence the dispersion only at the shortest times.

Concerning the concentration fluctuation, the 1D, 2D and
3D models give different results, according to the differ-
ent shapes of the separation PDF. In figure 5 the model re-
sults are compared with the theoretical predictions obtained
from equation (17) and those from the corresponding formula
based on the Gaussian PDF (Thomson, 1990). The curve
corresponding to equation (17) slightly differs in the cases of
1D, 2D and 3D models. As a matter of fact the value of η
depends on which of the models is considered. As long as
the differences are not significative, in figure 5 we only plot
the curve corresponding to the 1D model.

In the 1D case the calculated values agree with the the-
oretical prediction based on the Richardson PDF, while the
2D and 3D models show small differences from the Gaus-
sian behavior only at shorter times (more pronounced for the
2D model).

A comparison of the model results with measured data is
shown in figure 6. The experiment was conducted in a wind
tunnel by Fackrell and Robins (1982). A continuous line
source is compared with an instantaneous area source, so in
the 1D case two coupled equations were considered.

The results show that concentration fluctuations predicted
by the three models are different and depend on the separa-
tion PDF. It can be observed that the highest values are pre-
dicted by the 1D model while the 3D model gives the lowest

Atmos. Chem. Phys., 0000, 0001–8, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 2. Barycentre’s standard deviation vs normalised time. Solid
line: model; dashed line: first of Eq. (10) square root; dash-dotted
line: second of Eq. (10).

A similar formula can be derived for the barycentre’s mean
square:

< 62 >=

{
1
3C0εt

3 tη � t � t0
1
3(C0 + γ )εt3 t0 � t � TL

(10)

The comparison between theoretical prediction (10) and the
3-D model results is shown in Fig.2.

It can be seen that the barycentre is insensitive to the
particle-particle interaction and it follows the same trend in
all the inertial range.

As we stated in a previous article (Ferrero and Mortarini,
2005), the different behaviour between the separation and the
barycentre standard deviations (Eqs. 8 and 10) is due to the
non linear terms in the Langevin Eqs. (6) and (7) respectively.
As a matter of fact, the termu1u1 in (6) contains the inter-
action of the particlesu1u2, while the termu1u6 in (7) lacks
this part. When the intial separation memory is lost, the cor-
relation between the particles influences only the separation
and not the barycentre. This unbalanced behaviour is due

L.Mortarini E.Ferrero: A Lagrangian Stochastic Model for the concentration fluctuations 5

Fig. 3. P (∆, s|t) produced by the models (dots) in the intermediate range in the (from top) 1D, 2D and 3D cases. Dashed line: Gaussian;
dash-dotted line: Richardson; solid line: equation 12

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–8, 2005

Fig. 3. P(1, s|t) produced by the models (dots) in the intermedi-
ate range in the (from top) 1-D, 2-D and 3-D cases. Dashed line:
Gaussian; dash-dotted line: Richardson; solid line: Eq. (13).

to the model failing of thereduction to one particlecriteria
(Thomson, 1990), if the barycentre standard deviation slope
doesn’t balance the separation’s one, the single particle stan-
dard deviation can not follow the theoretical prediction as
long as:

〈X2
〉 =

1

2

(
〈12

〉 + 〈62
〉

)
. (11)

While the single particle position and barycentre PDF’s
are generally accepted to be Gaussian, there is no definitive
theory on the shape of the separation PDF within the inertial
subrange.Richardson(1926) proposed a form for the pair

www.atmos-chem-phys.org/acp/5/2539/ Atmos. Chem. Phys., 5, 2539–2545, 2005
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Fig. 4. Comparison between mean concentrations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction (contonous
lines) for different source sizes, where the intial mean concentration is inversely proportional to the source size.
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Fig. 5. Comparison between concentration fluctuations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction
(solid line) based on the Richardson (solid line) and Gaussian (dashed line) PDFs
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Fig. 4. Comparison between mean concentrations predicted by the
1-D (4), 2-D (×) and 3-D(2) models and theoretical prediction
(contonous lines) for different source sizes, where the intial mean
concentration is inversely proportional to the source size.

separation PDF, whose one-dimensional expression is:

P(1|x, t) =
9

4
√

π
(ηt)−3/2e

−
912/3

4ηt (12)

whereη depends on the Richardson constantg and on the
rate of dissipation of turbulent kinetic energyε through the
relation:η=(243

560gε)1/3.
A different form of the PDF was suggested byThomson

(1990) following (Monin and Yaglom, 1975, p. 384) charac-
terized by a less sharp maximum and small tails:

P(1|x, t) ' α − β12/3 (13)

whereα is the variance of the hypothetical concentration
field andβ is proportional to its rate of dissipation (Thom-
son, 1990).

It can be easily noticed that Thomson PDF (Eq. 13) is the
first order expansion of the Richardson PDF (Eq. 12) and
that is not a proper PDF as long as does not tend to zero for
1→∞, but can be considered as a theoretical trend of the
particle PDF separation when the particles are very close.
This approximated expression should fit the PDF only for
small separations in the inertial subrange.

Looking at the modelled PDF for the 1-D, 2-D and 3-D
cases, we see that, in the first case it fits the Richardson pre-
diction, while, increasing the dimensions of the space where
the particles move and hence their degrees of freedom, the
PDF becomes less sharp and show a good agreement only
with the first order expansion (Eq. 13) of the Richardson
PDF, which departs from the Gaussian statistic as well.

The separation PDFs in the intermediate ranget0�t�TL

for the 1-D, 2-D and 3-D cases are shown in Fig.3. The PDF
produced by the 1-D model has a more sharp maximum and
agrees better with the Richardson PDF. In the 2-D and 3-D
cases the PDFs show a smoother maxima but still they are
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Fig. 4. Comparison between mean concentrations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction (contonous
lines) for different source sizes, where the intial mean concentration is inversely proportional to the source size.
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Fig. 5. Comparison between concentration fluctuations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction
(solid line) based on the Richardson (solid line) and Gaussian (dashed line) PDFs
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Fig. 5. Comparison between concentration fluctuations predicted
by the 1-D(4), 2-D (×) and 3-D(2) models and theoretical pre-
diction based on the Richardson (solid line) and Gaussian (dashed
line) PDFs.

not Gaussian. Thus the 2-D and 3-D models are not able to
predict very small particle separations.

For time smaller thant0 the PDF can be considered Gaus-
sian. This result agrees with the theoretical predictions by
Batchelor(1952) andRichardson(1926).

We found that the separation PDF is Gaussian at small
times, for t�t0 and outside the inertial subrange (t�TL),
but it departs from Gaussianity in the intermediate subrange
(t0�t�TL). In this range the PDF agrees, at least for
small separation, with those proposed by Thomson (Eq. 13)
(Thomson, 1990; Monin and Yaglom, 1975). In the case of
the 1-D model it agrees with the Richardson PDF (Eq. 12),
(Ferrero and Mortarini, 2005).

4 Concentrations

We have shown that the PDF of the separation is not the same
along all the inertial range, so using the Gaussian PDF for
calculating the concentration and the concentration fluctua-
tions can not always be correct. We derived a new formula
based on the Richardson PDF and we compared this formula
with that proposed byThomson(1990) based on the Gaus-
sian PDF.

The mean concentrations and the concentration fluctua-
tions predicted by the model are compared with the analyti-
cal formulas based on the single particle (P1(y, s|x, t)) and
two particles separation (P2(y1, y2, s, s|x1, x2, t, t)) PDFs,
respectively.

In order to calculate the mean concentrations and concen-
tration fluctuations we adopted theSawford(1993) approxi-
mation, obtaining the following expressions

〈C(x, t)〉 =

∫
1

√
2πσ1(s|t)

e
−

(x−y)2

2σ2
1 (s|t) S(y)dy (14)
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Fig. 6. Comparison between model simulations (lines) and experimental data (symbols) for different source sizes; a: 1D model, b: 2D model,
c: 3D model
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Fig. 6. Comparison between model simulations (lines) and experimental data (symbols) for different source sizes;(a): 1-D model,(b): 2-D
model,(c): 3-D model.

〈C2(x, t)〉 =

∫
P(1, s|t)

1
√

2πσ6(s|t)
e
−

(x
√

2−6)2

2σ2
6

(s|t)

S(y1)S(y2)dy1dy2 (15)

whereS(y) is the amount of tracer released per unit volume,
P(1, s|t) the separation PDF,σ1 is the single particle po-
sition standard deviation andσ6 is the barycentre standard
deviation.

For the sake of simplicity, we consider a discrete Gaussian
area source (whereσ0 represents the source size):

S(y) =
1

√
2πσ0

e
−

y2

2σ2
0 , (16)

which gives the following expressions for the mean concen-
tration:

〈C(x, t)〉 =
1√

2π(σ 2
1 (s|t) + σ 2

0 )

e
−

x2

2(σ2
1 (s|t)+σ2

0 ) (17)

Concerning the mean concentration fluctuations we de-
rived the following expression:

〈C2(x, t)〉 = A(η, σ0, t)
3e

−
x2

σ2
6

(t)+σ2
0

2625/6π2
√

t7η(σ 2
6(t) + σ 2

0 )

(18)

Mean concentrations predicted by the models for an area
source were calculated and compared with the predictions
based on the Gaussian PDF (Eq. 17) see Fig.4. The results
obtained with all the three models agree with the theoretical
predictions. It can also be observed that the mean concen-
trations corresponding to the three models follow the same
behavior and, after about 0.1 integral time scale(σ 2/ε), the
predictions, for sources with different size, collapse on the
same curve. This demonstrates that the characteristics of the
source influence the dispersion only at the shortest times.

Concerning the concentration fluctuation, the 1-D, 2-D
and 3-D models give different results, according to the differ-
ent shapes of the separation PDF. In Fig.5 the model results
are compared with the theoretical predictions obtained from
Eq. (18) and those from the analogous formula based on the
Gaussian PDF (Thomson, 1990). The curve corresponding
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to Eq. (18) slightly differs in the cases of 1-D, 2-D and 3-D
models. As a matter of fact the value ofη depends on which
of the models is considered. As long as the differences are
not significative, in Fig. 5 we only plot the curve correspond-
ing to the 1-D model.

In the 1-D case the calculated values agree with the the-
oretical prediction based on the Richardson PDF, while the
2-D and 3-D models show small differences from the Gaus-
sian behavior only at shorter times (more pronounced for the
2-D model).

A comparison of the model results with measured data is
shown in Fig.6. The experiment was conducted in a wind
tunnel byFackrell and Robins(1982). A continuous line
source is compared with an instantaneous area source, so in
the 1-D case two coupled equations were considered.

The results show that concentration fluctuations predicted
by the three models are different and depend on the sepa-
ration PDF. It can be observed that the highest values are
predicted by the 1-D model while the 3-D model gives the
lowest concentration fluctuations.

It should be stressed that the results depend on the choice
of the constantC0, in the simulation here presented we set
C0=4. However, a higher value of<C2> can be obtained
by decreasing this value.

5 Conclusions

In this paper we show the results obtained by using a La-
grangian Stochastic Model for the particle pairs dispersion,
developed followingThomson(1990). The comparison of
the separation and barycentre mean squares with the theo-
retical behaviour, agrees with the Richardson t3-law and fur-
thermore seems to confirm the presence of the intermediate
subrange fort0�t�TL , wheret0 is determined by the parti-
cles initial separation as suggested byBatchelor(1952) and
Borgas and Sawford(1991). Even with the 3-D model the
barycentre mean square trend does not agree with the theoret-
ical prediction, Eq. (10), as shown in the 1-D case byFerrero
and Mortarini(2005), confirming the different role played by
the non linear terms in the two Langevin equations.

Regarding the PDF of the separation we found that for
t�t0 and t�TL it is Gaussian, confirming the (Batchelor,
1952) results, while in the intermediate subrange (t0�t�TL)
it departs from the Gaussian distribution. The 1-D model
gives a Richardson PDF for the separation in the intermedi-
ate range (Ferrero and Mortarini, 2005), while in the case
of the 2-D and 3-D models the separation PDF shows a
less sharp maximum reproducing the asymptotic behavior for
small separation suggested byThomson(1990).

The different separation PDFs provide different concen-
tration fluctuations and the Gaussian approximation seems
to be not applicable particularly at the short times.

Edited by: L. M. Frohn
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