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Abstract. The recent important developments in satellite
measurements of the composition of the lower atmosphere
open the challenging perspective to use such measurements
as independent information on sources and sinks of atmo-
spheric pollutants. This study explores the possibility to im-
prove estimates of gridded NOx emissions used in a conti-
nental scale chemistry transport model (CTM), CHIMERE,
by employing measurements performed by the GOME and
SCIAMACHY instruments. We set-up an original inverse
modelling scheme that not only enables a computationally
efficient optimisation of the spatial distribution of seasonally
averaged NOx emissions (during summertime), but also al-
lows estimating uncertainties in input data and a priori emis-
sions. The key features of our method are (i) replacement
of the CTM by a set of empirical models describing the rela-
tionships between tropospheric NO2 columns and NOx emis-
sions with sufficient accuracy, (ii) combination of satellite
data for tropospheric NO2 columns with ground based mea-
surements of near surface NO2 concentrations, and (iii) eval-
uation of uncertainties in a posteriori emissions by means of a
special Bayesian Monte-Carlo experiment which is based on
random sampling of errors of both NO2 columns and emis-
sion rates. We have estimated the uncertainty in a priori
emissions based on the EMEP emission inventory to be about
1.9 (in terms of geometric standard deviation) and found the
uncertainty in a posteriori emissions obtained from our in-
verse modelling scheme to be significantly lower (about 1.4).
It is found also that a priori NOx emission estimates are prob-
able to be persistently biased in many regions of Western Eu-
rope, and that the use of a posteriori emissions in the CTM
improves the agreement between the modelled and measured
data.
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1 Introduction

As a result of recent impressive developments in the satellite
measurements of the atmosphere (see, e.g. Burrows, 1999;
Bovensmann et al., 1999; Levelt, 2000), this type of mea-
surements provides now plentiful and novel information also
on the composition of the lower atmosphere. In particu-
lar, tropospheric column amounts of several important trace
gases such as NO2, CH4, SO2, BrO, HCHO (e.g., Velders et
al., 2001; Richter and Burrows, 2002; Buchwitz et al., 2004;
Eisinger and Burrows, 1998; Wagner and Platt, 1998) have
been derived from these observations. In view of these devel-
opments, one of the challenging opportunities is to use satel-
lite data for the estimation of sources of atmospheric gases
by means of inverse modelling. It seems reasonable to ex-
pect that the almost global satellite measurements performed
with fairly high spatial and temporal resolution bear much
more information on sources of trace gases than the observa-
tional data that could be provided by relatively sparse ground
based networks.

This study examines the possibility to use satellite data
for tropospheric NO2 columns in order to improve existing
estimates for the spatial distribution of emissions of nitro-
gen oxides (NOx). The tropospheric NO2 columns derived
from satellite measurements have already been used for the
estimation of NOx emissions on the global scale (Leue et
al., 2001; Martin et al., 2003; M̈uller and Stavrakou, 2005;
Toenges-Schuller, 2005). However, since satellite measure-
ments are available in much higher spatial resolution than the
typical resolution of global models, the information provided
by satellite observations cannot be fully exploited by global
models. Moreover, finer spatial scales than those typically
considered in the global models are addressed in air quality
studies. Accordingly, there is a challenging perspective to
use satellite measurements in order to improve emission data
which are employed in air quality models. In this study, we
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use the satellite data from the GOME and SCIAMACHY in-
struments together with a continental scale chemistry trans-
port model (CTM) CHIMERE that has been originally de-
signed for simulations of photo-oxidant pollution.

Oxides of nitrogen, being very reactive gases, play an
important role in the chemistry of both the boundary layer
and free troposphere (e.g., Kley et al., 1999; Bradshaw et
al., 2000) and contribute to radiative forcing of the climate
(Solomon et al., 1999; Velders et al., 2001). Accordingly, the
knowledge of NOx sources is required both for an adequate
description of the present and future state of the atmospheric
composition. Inverse modelling offers a way to validate and
improve the existing emission estimates provided by tradi-
tional emission inventories.

Inverse modelling of sources of atmospheric gases is a
well-established area of atmospheric research, which is now
treated in numerous publications (see, e.g., Enting, 2002, for
an overview). The main idea of the inverse modelling is that
improved source estimates can be derived by optimisation
of emission parameters using available observations as con-
straints to the model output. However, the practical imple-
mentations of this idea meet some general problems (Enting,
2002). One of the major problems concerns the estimation
and treatment of uncertainties in input data and output re-
sults. While this kind of problems is rather common for nat-
ural science in general, it is especially important in inverse
modelling studies, because the uncertainties in the observa-
tional data and errors of a model tend to be amplified in the
derived emission estimates. The reason for this amplification
is that, due to the discrete character of measurements and
due to irreversible mixing in the atmosphere, the informa-
tion provided by real observations of trace gases, is usually
insufficient for unambiguous retrieval of their sources.

The common way to handle this problem is to use a prob-
abilistic approach, which enables minimization of uncertain-
ties in obtained estimates via the optimal combination of ob-
servational and a priori information (Tarantola, 1987). In or-
der to implement this approach, one has to quantify uncer-
tainties in input data (observations and a priori estimates of
emissions) and also the part of model uncertainties which is
not caused by emission uncertainties. It is recognised that
these uncertainties are crucial parameters of inverse mod-
elling schemes (Kaminski, 1999; Heimann and Kaminski,
1999). However, even if the uncertainties in observations
may, to some degree, be known (for example, when they
are performed by in situ methods), generally only crude esti-
mates for uncertainties in the model and in a priori emission
data can be made. If uncertainties are evaluated inaccurately,
the weight (confidence) attributed either to observations or to
a priori information may be wrong and results may be biased.

Another major problem of inverse modelling studies is
their large computational demand. Optimisation of param-
eters is much more costly as simple forward runs, even if it
is performed using special methods such as adjoint models
(Giering, 2000). The computational demand becomes even

much larger when non-linearity between observational data
and emissions is allowed, since then evaluating uncertainties
necessitates multiple reiterations of the optimisation proce-
dure (Müller and Stavrakou, 2005).

While the majority of inverse modelling studies performed
so far dealt with chemically inert (CO2) or slowly react-
ing (CO, CH4) species (e.g., Kaminski, 1999; Petron et al.,
2002; Houweling et al., 1999) inverse modelling of such re-
active species as nitrogen oxides is a rather new area of re-
search. The most relevant earlier studies have already been
mentioned above. Specifically, Leue et al. (2001) have pio-
neered the inverse modelling of NOx emissions on the global
scale using data from satellite (GOME) measurements. They
derived the estimates of NOx emissions for several large re-
gions of the world by assuming a constant NOx lifetime of
27 h. Martin et al. (2003) have performed more accurate in-
verse modelling of NOx emissions on the global scale using
GOME data together with a global CTM. They used NOx
lifetime estimated independently for each model grid cell un-
der the assumption that the transport of NO2 between neigh-
bouring grid cells could be neglected. They also reduced
the uncertainties of their “top-to-down” emissions estimates
by combining them with the data of “bottom-to-up” NOx
emission inventories. More recently, Müller and Stavrakou
(2005) have performed the coupled inversion of CO and NOx
emissions aggregated for several regions of the world using
GOME NO2 data together with data of CO ground based
measurements. Finally, Toenges-Schuller (2005) has per-
formed a systematic statistical analysis and comparison of
different data sources relative to the global distribution of
NOx emissions (EDGAR data, night-time lights as a proxy
for NOx emissions and NOx emission estimates derived from
GOME measurements assuming the direct relationships be-
tween NOx emissions and NO2 columns in each grid cell).
The important novel feature of her study is an attempt to es-
timate uncertainties in different emission data by considering
their covariations.

In our study we perform inverse modelling of NOx emis-
sions for Western Europe, taking advantage of the higher
spatial resolution typical for a continental scale CTM (1/2
deg.). The main objective of our study is to explore the pos-
sibility to improve the current knowledge of the spatial struc-
ture of NOx emissions by using satellite data. The key ques-
tions that should be answered in order to reach a valid con-
clusion concern the uncertainties in satellite data, in model
outputs, and in available “bottom-up” emissions inventories.
For example, if the available emission estimates were suf-
ficiently accurate but the satellite data were very uncertain,
then the satellite measurements would be essentially use-
less for improving emissions. Unfortunately, all uncertain-
ties mentioned above are essentially unknown. In particular,
the satellite data for tropospheric NO2 columns are obtained
as a result of rather complex procedure that involves not only
measured characteristics but also a number of assumptions
and model results. Even if the level of uncertainty of a single
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retrieval can, in principal, be roughly estimated by means of
the error propagation analysis (Boersma et al., 2004), it still
remains unknown to which degree these uncertainties can be
reduced when one considers NO2 columns averaged over a
period of several months. Similarly, although the uncertain-
ties of NOx emission inventories have been evaluated for cer-
tain types of sources and certain countries (e.g., Kühlwein
and Friedrich, 2000; K̈uhlwein et al., 2002), practically no
reliable information is yet available on uncertainties in the
gridded emissions used in continental scale CTMs.

One of the main ideas in this study is to set up a spe-
cial procedure to obtain independent estimates for the above
mentioned uncertainties. To this purpose, additional obser-
vational data is considered in parallel to satellite observa-
tions, i.e. near surface NO2 concentrations gathered within
the EMEP network. As a result, our inverse modelling pro-
cedure involves only a minimum of unavoidable assumptions
concerning general statistical error properties.

Another important feature of our study is the original
method that is employed in order to reduce the computa-
tional demand of the considered problem. It is shown that
it is possible to replace the original CTM by a set of simple
statistical models that describe a linear relationship between
relative perturbations of NO2 columns and NOx emissions.
Note that, in contrast to Martin et al. (2003) and Toenges-
Schuller (2005), we take into account to a certain extent NO2
transport between different model grid cells because it plays
a significant role on the scales considered in our study.

The paper is organised as follows. A brief description of
the CHIMERE CTM and an overview over observational and
modelled data are given in Sect. 2. Section 3 describes our
inversion scheme and presents some tests with synthetic data.
Results obtained with real data are presented and discussed
in Sect. 4. The concluding section summaries our main find-
ings.

2 Model and data description

2.1 Chemistry transport model CHIMERE

CHIMERE is a Eulerian multi-scale CTM designed for
studying various air pollution related issues. An in-
detail model description, a technical documentation and
source codes are available on the web (http://euler.lmd.
polytechnique.fr/chimere/) and can also be found in literature
(see, e.g., Schmidt et al., 2001; Vautard et al., 2001, 2003;
Beekmann and Derognat, 2003; Bessagnet et al., 2004). Ac-
cordingly, only the major model features and those specific
for the present study are outlined below.

The CHIMERE domain used in this study covers most of
Western Europe (from 10◦ W to 20◦ E and from 40◦ N to
55◦ N) with a horizontal resolution of 0.5×0.5◦ and includes
1800 grid cells. In the vertical, the model has 8 layers defined

by hybrid coordinates. The top of the upper layer is fixed at
the 500 hPa pressure level.

Meteorological input data are calculated off-line using the
non-hydrostatic meso-scale model MM5 (http://www.mmm.
ucar.edu/mm5/) that is run on a regular grid with horizontal
resolution of 100×100 km. MM5 is initialized and driven
with NCEP Re-Analysis-2 data (http://www.cpc.ncep.noaa.
gov/products/wesley/ncepdata/).

The chemical scheme used in this study (Schmidt et al.,
2001; Derognat, 2002) was derived from the more complete
MELCHIOR chemical mechanism (Latuatti, 1997) using the
concept of chemical operators (Carter, 1990; Aumont et al.,
1997). It includes 44 species and about 120 reactions. Lateral
boundary conditions are specified using monthly average val-
ues of a climatological simulation of the second generation
MOZART model (Horowitz et al., 2003).

Photolysis rates are calculated using the tabulated outputs
from the Troposphere Ultraviolet and Visible model (TUV,
Madronich and Flocke, 1998) and depend on altitude and
zenith angle. Radiation attenuation due to clouds is taken
into account under the assumption that the processes consid-
ered in the model take place below the top of the cloud layer.
Accordingly, the clear sky photolysis rates are scaled with a
radiation attenuation coefficient that is calculated as a func-
tion of cloud optical depth.

The anthropogenic emissions for NOx, SO2, CO, and non-
methane volatile organic compounds (NMVOC) are speci-
fied using the 2001 EMEP yearly data distributed to 11 Se-
lected Nomenclature for Air Pollution (SNAP) sectors (see
EMEP-CORINAIR Emission Inventory Guidebook (2005)
for sector definitions) and gridded with horizontal resolu-
tion of 50×50 km. The data provided by IER, University of
Stuttgart (GENEMIS, 1994) are used to define daily, weekly,
and seasonal variations of emissions. Note that the model
does not take into account emissions from aircrafts. Such
emissions are believed to provide rather insignificant fraction
(1–2%) of total anthropogenic emissions both on the global
and European scales (e.g., Lee et al., 2005; Tarassón et al.,
2004).

The evaluation of biogenic emissions of isoprene, ter-
penes and NO is based on methodologies and data pre-
sented in respectively Simpson et al. (1999) and Stohl et
al. (1996). The NOx emissions from lightning are not in-
cluded. While lightning is believed to provide important
contribution of NOx in tropical regions (e.g., Labrador et
al., 2005), this source of NOx is on the average much
smaller for Europe. Specifically, in accordance to estimates
by Boersma et al. (2005), the lightning produced average
NO2 column amount over Europe in summer season is likely
less than 8×1013 (molecules/cm2), while the total NO2 col-
umn amount over Europe (this study) is, on the average,
2.9×1015 (molecules/cm2). Emission rates from anthro-
pogenic and biogenic sources calculated in CHIMERE are
shown in Fig. 1. In accordance to these calculations, anthro-
pogenic emissions tend to be dominating over most parts of
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Fig. 1. The anthropogenic(a) and biogenic(b) emission rates
(in molecules×cm−2

×s−1
×108) specified in CHIMERE. The data

shown are averages over three summer months (June–August) of
2001.

Western Europe, although there are some regions (for exam-
ple, in France), where the anthropogenic and biogenic emis-
sions (during the warm season) are of the same order of mag-
nitude.

In this study, CHIMERE is used to simulate tropospheric
NO2 column amounts and near surface concentrations for the
summer months (June–August) of 2001. The choice of sum-
mer months has been motivated by the fact that CHIMERE
is designed, primarily, for simulating photo-oxidant pollu-
tion during the warm season. Besides, the shorter lifetime
of NOx during the warm season facilitates a technical solu-
tion of the inverse modelling problem. In order to be con-
sistent with satellite data, which will be described in the
next section, the modelled NO2 columns for each model grid
cell are taken between 10 and 11 h of local solar time and
only on days with insignificant cloud cover. Since the to-
tal cloud cover is not used in the CHIMERE simulation, we

use a selection criteria based on a threshold value of the ra-
diation attenuation coefficient. Specifically, we disregarded
days on which reduction of solar radiation due to clouds was
larger than 30%. Although this selection criterion does not
insure the exact agreement between the selected days and
the days on which the data of satellite observations were ac-
tually available, a possible inconsistency is expected to be
small, particularly because we perform averaging of the se-
lected data for three summer months (June-August). Such
averaging enables compensating of random inconsistencies
between GOME and CHIMERE on different days. This ex-
pectation is confirmed by results of special tests in which the
sensitivity of simulated seasonally average NO2 columns to
the day selection criterion has been found to be insignificant.

The potential uncertainties in simulated tropospheric NO2
columns due to omission of the upper troposphere have been
considered in Konovalov et al. (2005). In particular, it has
been shown that the spatial variability of tropospheric NO2
above 500 hPa pressure level contributes only very insignif-
icantly to the spatial variability of total tropospheric NO2
columns. The respective systematic bias in simulated NO2
columns is more significant (about 19 percent on the aver-
age). However, as it is argued below, the results of this study
are not sensitive to systematic uncertainties in the measured
and simulated data.

2.2 Satellite data

We used the data for tropospheric NO2 columns derived
from measurements performed by Global Ozone Monitor-
ing Experiment (GOME) spectrometer on board of the sec-
ond European Research Satellite (ERS-2) and the Scanning
Imaging Absorption spectroMeter for Atmospheric Chartog-
rapHY (SCIAMACHY) on board of the Envisat satellite.
These data are scientific products of the University of Bre-
men.

The GOME instrument is a grating pseudo double
monochromator covering the wavelength range from 280 to
790 nm with the spectral resolution of 0.2–0.4 nm (Burrows
et al., 1999). NO2 concentrations are retrieved from irradi-
ances in a spectral window from 425 to 450 nm. The typical
ground pixel size is 320 km across the track of the satellite
(i.e., in West-East direction), and 40 km along the track. The
orbit of ERS-2 is sun-synchronous near-polar orbit with an
equator crossing time of 10:30 LT in the descending node.
The nearly total coverage of measurements is reached in
three days.

SCIAMACHY is a passive remote sensor designed to de-
tect electromagnetic radiation in the spectral range from 240
and 2380 nm with a spectral resolution between 0.2 and
1.5 nm (Bovensmann et al., 1999). The NO2 columns have
been retrieved using measurements in the spectral window
from 425 to 450 nm where the resolution of the instrument is
about 0.4 nm. SCIAMACHY operates in both nadir and limb
modes. Only measurements performed in the nadir mode
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have been used to retrieve NO2 columns for this study. The
typical horizontal resolution of the instrument in the nadir
mode is about 30×60 km2. ENVISAT flies in a sun syn-
chronous near polar orbit with the equator crossing time in
the descending node at 10:00 a.m. of local time. Global cov-
erage is achieved after 6 days.

The methods of retrieval of tropospheric NO2 columns
from the irradiance spectrum measured by satellite instru-
ments have been discussed in numerous papers (see, e.g.,
Richter and Burrows, 2002; Martin et al., 2002; Boersma et
al., 2004; Heue et al., 2005). The algorithms used in different
studies follow the same principles, although they may differ
in details. Specifically, tropospheric NO2 columns are ob-
tained in several steps, including the retrieval of slant column
amounts by means of DOAS (Differential Optical Absorp-
tion Spectroscopy) method (Richter, 1997), the estimation of
the stratospheric part of the slant columns and the evalua-
tion of tropospheric air mass factors (AMF) that describe the
light path in the troposphere and are used to convert the tro-
pospheric slant columns to vertical columns. The evaluation
of AMF involves estimations of the vertical distribution of
NO2 in the troposphere and the surface albedo as well as as-
sumptions regarding scattering and absorption of the light on
aerosols and clouds.

The GOME NO2 columns utilized in this study have been
retrieved with the same method as those used in our earlier
study (Konovalov et al., 2005), in which the tropospheric
NO2 columns derived from GOME measurements were anal-
ysed together with NO2 columns simulated by CHIMERE.
The distinctive features of this method are (1) the estimation
of a stratospheric part of the slant columns based on simula-
tions with the global CTM SLIMCAT (Chipperfield et al.,
1999), (2) the use of NO2 vertical distributions simulated
by the global CTM MOZART (Horowitz et al., 2003) and
(3) the use of cloud parameters and surface albedo obtained
from GOME measurements using the algorithms discussed
by Koelemeijer et al. (2001) and Koelemeijer et al. (2003).
A very similar method has been used to derive tropospheric
NO2 columns from SCIAMACHY measurements (Richter
et al., 2005). Note that the use in the retrieval procedure
of NO2 vertical distributions simulated by MOZART (rather
than CHIMERE itself) allows us to assume that the random
part of uncertainties in NO2 columns derived from satellite
measurements and in those modelled by CHIMERE are sta-
tistically independent. This assumption is explicitly used in
our inversion procedure. In this study, we use a combined
set of NO2 columns derived from GOME measurements and
SCIAMACHY. We used GOME data because they are con-
current with EMEP data for near-surface concentrations of
NO2 available for summer 2001. The use of data for near-
surface concentrations in parallel with the data for tropo-
spheric column amounts is an important feature of our study.
However, the horizontal resolution of GOME in west-east di-
rection (about 300 km) is weak for our model grid (1/2 deg.
resolution). Therefore, we used SCHIAMACHY data with a

resolution of the model grid to deconvolute GOME data (as
explained below). Unfortunately, EMEP and SCIAMACHY
data were not available for the same year.

The idea of our method of deconvolution is to superimpose
on the GOME data the fine spatial structure of some data of
higher resolution. The deconvoluted GOME columns,c

(dc)
g ,

are defined as

ci(dc)
g =

ci
h

c
i(conv)
h

ci
g, (1)

wherech are the data for NO2 columns of higher spatial res-
olution, i is the index of a CHIMERE grid cell and

cconv
h(i) =

2m∑
j=0

ch(i−m+j) exp

(
−

[j − m]
2

m2

)
(2)

are artificially convoluted high resolution data. This artificial
convolution is intended to replicate the convolution of real
NO2 columns within the GOME window. Here, we approx-
imate the shape of the GOME window on the longitudinal
plane by the Gauss function with an efficient widthm, which
is assumed to be equal to three grid cells of CHIMERE. We
assume also that a signal outside of the range of seven (i.e.,
2m+1) cells is negligible. A value ofm is chosen as three,
because then 2m+1=7 corresponds to the approximate longi-
tudinal resolution of GOME (7*0.5

◦

≈280 km at 45◦ N). As
the source of high-resolution data we could use either NO2
columns derived from SCIAMACHY or those simulated by
CHIMERE itself. The GOME data deconvoluted using NO2
columns from SCIAMACHY are obviously preferable as
they are more observationally based. The SCIAMACHY
data that we use in this study have been retrieved from the
measurements performed in 2004. We use the SCIAMACHY
data for 2004 rather than for 2003 because the summer of
2003 was exceptionally hot, so that meteorological condi-
tions of 2004 were likely to be more similar to those of 2001.

2.3 Comparison of measured and simulated data for NO2
columns

Figure 2 presents distributions of tropospheric NO2 columns
derived from different sets of satellite data (GOME with
different deconvolutions, SCIAMACHY), and also NO2
columns from CHIMERE. It is seen that all these distribu-
tions are rather similar. CHIMERE gives slightly smaller
values but this is mostly due to the fact that it does not take
into account the upper troposphere. Strongly elevated mag-
nitudes of NO2 columns over Great Britain, Netherlands,
Belgium, North-West of Germany, and the Ile-de-France re-
gion are seen both in observations and simulations. Figure 3
shows scatter plots with different versions of satellite data
versus NO2 columns from CHIMERE for each model grid
cell, as well as scatter plots that allow comparing different
sets of satellite data. The correlation between the modelled
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Fig. 2. Tropospheric NO2 columns for different versions of satellite data in comparison with lower tropospheric NO2 columns (below
500 hPa) calculated by CHIMERE. Blank areas designate the pixels for which the SCIAMACHY data have been missing.

and satellite data is rather high in all cases. It is notewor-
thy, however, that the distribution of points across the line of
the linear fit is not quite symmetric. In particular, the data
points corresponding to the largest range of magnitudes of
NO2 columns tend to be grouped on the upper side of the fit.
This could be due to partial “blindness” of satellite instru-
ments over highly polluted areas that could be caused by the
presence of large amounts of aerosols.

The average values of the measured and simulated NO2
columns are also given in Fig. 4. It is seen that systematic dif-
ference between them is about 8×1014 cm−2. As it has been
noted in Sect. 2.1, a considerable part of this bias may be due
to omission of the upper troposphere in CHIMERE. If we
admit that the mean column amount of NO2 above 500 hPa
pressure level is about 8×1014 m−2 (Konovalov et al., 2005),
then the residuary part of the bias is about 10 percent. It re-
mains unknown whether this bias is due to some systematic
errors in the model, in emissions, or in the satellite data. In-
deed, although several studies have already undertaken quan-

tification of uncertainties in NO2 columns derived from satel-
lite measurements (e.g., Martin et al., 2003; Boersma et al.,
2004; Heue et al., 2005), up to our knowledge there have yet
been no publications characterizing uncertainties in satellite
data in terms of random and systematic errors (in the spatial
sense). Moreover, since different research groups performing
retrieval of tropospheric NO2 columns from satellite mea-
surements employs different radiation models, it is probable
that uncertainties for different sets of satellite data are also
different. Possible uncertainties in NO2 columns simulated
by CHIMERE are also essentially unknown.

The correlation between GOME data deconvoluted using
CHIMERE and NO2 columns from CHIMERE itself is, as it
should be expected, higher than in the case with GOME data
deconvoluted with SCIAMACHY, but the difference in cor-
relation is rather small. The agreement between different sets
of satellite data is also rather good although not perfect. This
is encouraging given the differences in the data sets (type of
instrument, year, deconvolution procedure).
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Scatterplots of satellite and simulated data for NO2 columns. Satellite data have been preliminarily projected to the CHIMERE grid.
Each point represents one grid cell of the model.

2.4 The data of ground based measurements

We use data for near-surface NO2 concentrations from the
EMEP ground based monitoring network (http://www.nilu.
no/projects/ccc/emepdata.html) for the year 2001. The loca-
tions of EMEP sites are shown in Fig. 4. This figure also

presents the seasonally average concentrations measured by
the EMEP stations in comparison with those simulated by
CHIMERE. The important advantages of EMEP measure-
ments are the common standards of quality control and that
they are intended to reflect regional background conditions
relatively unaffected by local emissions. The use of data
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Fig. 4. (a) Observed EMEP and(b) modelled NO2 concentra-
tions (µg/m3) averaged over three summer months (June–August)
of 2001.

from several other monitoring networks (urban, regional,
etc.) would pose serious methodological problems concern-
ing criteria of data selection and treatment of uncertainties.
However, an obvious disadvantage of the EMEP network is
that it is rather sparse. In particular, data are missing entirely
for France and Great Britain.

The differences between the modelled and observed data
are, in general, rather large. In particular, the mean bias (ob-
served minus modelled concentrations) and the mean abso-
lute bias are found to be−0.8µg/m3 and 1.1µg/m3, respec-
tively, while the mean measured concentration is 1.9µg/m3.
The differences between the modelled and measured concen-
trations are larger than a factor of 2 at 8 stations out of 21
considered. A significant part of all these discrepancies may
be due to representativeness and measurement errors (Aas
et al., 2000). NO2 measurements are subject to interference
with other nitrogen species, however the negative bias in ob-
servations (compared to the model) suggests that this is not
a major problem. Large representativeness errors may be

caused by insufficient resolution of the model’s grid in case
of such reactive species as NO2 with spatially heterogeneous
emission sources. Another part of discrepancies between the
model and observations may be due to uncertainties of emis-
sions. These uncertainties are discussed in Sect. 4. Note
that based on comparison between measured and modelled
data one station (out of 22 within the considered domain,
for which data were available) situated in Poland (Sniezka,
not shown) has been excluded from our analysis as an out-
lier: the concentration measured there was more than 6 times
larger than the modelled one.

3 Inversion method

3.1 Problem definition

Let E, C andS be vectors of the gridded anthropogenic NOx
emission rates, tropospheric NO2 columns, and near surface
concentrations of NO2. While the true values of these char-
acteristics are unknown, we have at our disposal the esti-
mates of emission rates obtained from emission inventories
Ea , which will be referred to as the a priori emissions, as
well as the tropospheric NO2 columns derived from satellite
measurements,Co, and the data of near surface concentra-
tions,So, for a limited number of sites. Using available esti-
mates of emission rates, we can also evaluate NO2 columns
and near surface concentrations by means of a chemistry-
transport model, which provides a functional relationships
between emissions, columns, and concentrations,Cm(E)
andSm(E).

In the following, we consider the columns, concentrations
and emissions averaged over three summer months. Be-
sides, areas where anthropogenic emissions contribute less
than a half to the tropospheric NO2 column are excluded
(calculated from the difference in a reference simulation and
one with zero anthropogenic emissions). The excluded pix-
els (see Sect. 4) correspond mainly to sea areas, so in ac-
cordance to our calculations the tropospheric NO2 column
amounts over Western Europe are determined mostly by an-
thropogenic emissions (and only to a minor extent by bio-
genic emissions and advection across the boundaries).

The problem is to correct the a priori emissions using the
observational data such that the a posteriori emissions would
be closer to the true values than the a priori ones. We fol-
low the probabilistic approach, which is commonly used in
geophysical inverse modelling studies (see, e.g., Tarantola,
1987), including inverse modelling of sources of atmospheric
trace gases (e.g., Enting, 2002). Accordingly, we treat all
considered characteristics as random values which, however,
satisfy certain restrictions. Specifically, we assume that their
errors are multiplicative and satisfy lognormal probability
distributions. We assume also that the errors in different grid
cells are statistically independent and have the same standard
deviations. In accordance to these assumptions, we can relate
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the estimates and true values of the considered characteristics
as follows,

ea = e+ 1e,

co = c + 1c,

so = s+ 1s (3)

wheree, c ands are natural logarithms ofE, C andS, re-
spectively, and errors1e, 1c, and1s satisfy the normal dis-
tribution with non-zero means in the general case.

The assumption regarding the multiplicative character of
errors seems to be appropriate in case of emissions because
the standard methods used for evaluations of emissions in-
volve multiplying several different factors, each of which
may contribute to the total uncertainty of emission inventory
data (see, e.g., K̈uhlwein and Friedrich, 2000). Our previous
analysis (Konovalov et al., 2005) has shown that the uncer-
tainties in tropospheric NO2 columns derived from GOME
measurements and calculated by a CTM for Western Eu-
rope are also predominantly of multiplicative character. The
lognormal distribution for errors appears to be the optimal
choice in a case of strictly positive physical characteristics
(Mosegaard and Tarantola, 2002). The use of the lognormal
distribution is especially justified in our study due to large
relative uncertainties of NO2 columns and NOx emissions.

3.2 Overview of the inverse modelling scheme

Our method is discussed in detail in the next sections. Here,
we provide a brief overview of its key features. The basic
principle of our method is similar to that used in many re-
cent atmospheric inverse modelling studies. It includes the
equations defining optimal (maximum likelihood) a poste-
riori estimate for emissions as a function of measurement
data, a priori emission estimates and several parameters de-
scribing uncertainties in a model, in measurements and in a
priori emissions. As already noted in the Introduction, the
most important distinctive feature of our method is that the
uncertainty parameters are defined in the framework of the
inversion procedure self-consistently. In other words, these
uncertainties are internal, rather than external parameters of
our inversion scheme. The estimation of uncertainties (quan-
tified in terms of the respective standard deviations) proceeds
in several steps. First, we utilize ground-based observations
of near surface NO2 concentrations in attempt to find the
ratio of optimal estimates of the standard deviations of the
columns and emissions. The idea is that the emission rates,
which are obtained using the most reliable uncertainty es-
timates, are expected to provide the best agreement of the
model output with the ground-based data. In parallel, we
use the variance of the difference between the measured and
simulated NO2 columns as an estimate of the upper limit of
total random uncertainties in NO2 columns. We employ also
a modelled relationship between uncertainties in NOx emis-
sions and respective uncertainties in NO2 columns for sep-

arating a part of uncertainties in NO2 columns due to un-
certainties in emissions. As a result, we obtain estimates of
the standard deviation of NO2 columns (which characterises
the total uncertainty in NO2 columns due to both errors in
the model and in measurement data), and the standard de-
viation of a priori emissions. We obtain then the maximum
likelihood estimates for the a posteriori emissions taking into
account the estimated magnitudes of the uncertainty parame-
ters. The a posteriori estimates are uncertain to some degree
due to uncertainties in measured data and model errors, but
also due to uncertainties in our estimates of the standard de-
viations of NO2 columns and a priori emissions.

We estimate the uncertainties in our results by means of a
special Monte-Carlo experiment. This experiment involves
generating a number of synthetic datasets of tropospheric
NO2 columns, near surface NO2 concentrations and NOx
emissions with randomly sampled errors and analysing the
differences between the a posteriori estimates obtained with
synthetic and real data. The Monte Carlo experiment pro-
vides some more information on the statistical properties of
our estimates and this information is used to improve the es-
timates.

Another important aspect of our method is to find an
approximation for the modelled relationship between NOx
emissions and NO2 columns and concentrations. To this pur-
pose, we take advantage of the relatively short transport dis-
tance of freshly emitted NOx in the lower atmosphere due
to the relatively short lifetime of NOx during summer. This
drastically reduces the computational demand and allows the
practical realisation of our method.

3.3 Maximum likelihood estimates

3.3.1 Basic formulations

In accordance to Bayes’s theorem and the assumptions re-
garding the statistical properties of the errors, which have
been formulated in Sect. 3.1, we have the following con-
ditional probability distribution function (pdf) for the loga-
rithms of the a posteriori emission rates:

p(e|co ) ∝

exp

{
−

N∑
i=1

[
(ci

o − ci
m(e) − δi

c)
2

2σ 2
c

+
(ei

− ei
a)

2

2σ 2
e

]}
, (4)

whereN is the total number of grid cells,σc andσe are the
the uncertainties (in terms of standard deviations) of loga-
rithms of NO2 columns and NOx emissions, andδc is the
difference between the mathematical expectations ofc0 and
cm, or, in other words, it is the difference between their sys-
tematic errors. We assume that it may depend on the magni-
tude of NO2 columns in a given grid cell. The evaluation of
δc is discussed below in the next section.

The varianceσ 2
c represents here both the model and mea-

surement errors and is equal to the sum of the variances of
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errors of the model and the observations taken separately
(see, e.g., Tarantola, 1987; Enting, 2002). By subtracting
δc defined as the difference between the mathematical ex-
pectations ofc0 andcm we accept that our method does not
correct any systematic errors in a priori emissions. The cor-
rection of systematic errors is not possible, because, as noted
above, it is impossible to know to which extent to attribute
δc either to systematic errors in emissions, in the model and
in observations. Accordingly, in this study we try to estimate
and correct only the random part (in the spatial sense) of the
uncertainties in the a priori emissions, and the standard devi-
ationsσc andσe represent here only the random parts of the
uncertainties in the respective characteristics. Whenσc, σe

andδc are known, the distributionp(e|c0) (Eq. 4) provides
the complete solution of the inverse problem. But in prac-
tice, it is much more convenient to deal with the results of
inverse modeling expressed in terms of a posteriori estimates
and their uncertainties, rather than statistical distributions.
Our analysis is based on the maximum-likelihood estimate
ê, which provides the minimum of the function

G(e) =

N∑
i=1

[
(ci

o − ci
m(e) − δi

c)
2

2σ 2
c

+
(ei

− ei
a)

2

2σ 2
e

]
(5)

and satisfies to the following set of equations:

N∑
i=1

[
(ci

o − ci
m(ê) − δi

c)
∂ci

m(ê)
∂ej

]
+ ϕ2(êj

− e
j
a) = 0,

j = 1, . . ., N. (6)

It is important to note that̂e does not depend separately on
σc andσe, but only on their ratio,

ϕ =
σc

σe

. (7)

Unlike most other inverse modelling studies, we do not as-
sign values to the error variances “by definition”, because in
our case they are essentially unknown. Rather, we consider
them as random variables and try to obtain their optimal es-
timates by using available measurements. The main idea is
to consider first̂eas a function ofϕ and to optimise the latter
by comparing model results with independent observations.
In this study, we employ surface measurements of NO2 as a
source of independent observational information. We expect
that the best estimate forϕ should yield the best agreement
between the observed and modelled data for surface concen-
trations of NO2. Formally, we can assign the conditionalpdf
for ϕ using Bayes’s theorem:

p(ϕ |so ) ∝

exp

{
−

L∑
i=1

[
(si

o − si
m

(
ê[ϕ]

)
− δi

s)
2

2σ 2
s

]}
pa(ϕ), (8)

wheres0 and sm are observed and modelled NO2 concen-
trations,δs is the difference between their systematic errors,

σ 2
s is the total variance of the random errors,L is a num-

ber of stations considered, andpa(ϕ) is the a prioripdf for
ϕ, which reflects our a priori knowledge on the value ofϕ.
Ideally, it would be reasonable to assume thatpa(ϕ) is ho-
mogeneous. This option would reflect the lack of a priori
knowledge about the true value ofϕ. However, in order to
obtain a numerical solution of the problem, we assume thatϕ

is distributed uniformly within a very broad but nevertheless
limited interval [0.01, 10] and cannot take any value outside
of this interval.

The maximum-likelihood estimate ofϕ, which is denoted
below asϕ̂, can be obtained after resolving the following
minimization problem which has to be solved together with
the Eqs. (6):

J (ϕ̂) = min {J (ϕ)};

J (ϕ) =

L∑
i=1

[
(si

o − si
m

(
ê[ϕ]

)
− δi

s)
2
]
. (9)

It is noteworthy thatϕ̂ does not depend on the unknownσ 2
s .

As a result, we obtain the optimal a posteriori estimatesê(ϕ̂)

under the given values of observed NO2 columns and con-
centrations.

3.3.2 Evaluation of the systematic errors

We represent the difference between systematic errors of
NO2 columns calculated by CHIMERE and those derived
from satellite measurements as a function of magnitude of
the measured columns using a running window technique.
This approach allows us, in particular, to take into account
differences in the systematic biases of NO2 columns for more
and less polluted regions (see Sect. 2.3). Specifically, we
arrange the measured NO2 columns in ascending order and
evaluateδc as the average difference between measured and
modeled NO2 columns within the “window”:

δi
c

∼=
1

N i
w

N i
w∑

j=1

(
c
i(j)
o − c

i(j)
m (ea)

)
, (10)

whereNw is the number of data points in the window. This
number should be sufficiently large, so that uncertainties in
estimates ofδc due to random errors would be much smaller
than the random errors themselves, and yet it should be suf-
ficiently small so that the existing differences in systematic
errors for different magnitudes of NO2 columns would not
be suppressed by averaging. We have definedNw for each
grid cell separately based on the simple criterion that max-
imum relative changes of magnitudes NO2 columns inside
a window should not exceed 50%. On the average, the win-
dows include about 300 data points. The results of inversions
proved to be rather insensitive to the choice of window pa-
rameters as long as they satisfy to the qualitative criteria out-
lined above. As it already has been noted in Sect. 2.3, a sig-
nificant part of systematic differences between the modeled
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and simulated NO2 columns is due to omission of the upper
troposphere in CHIMERE. This limitation of our model is
reflected also in magnitudes of the differencesδc. The mean
of absolute values ofδc calculated with original data from
CHIMERE is 0.4, but it drops to 0.2 when the estimated up-
per tropospheric NO2 (5×1014 cm−2) is taken into account.

The difference in systematic errors of measured and mod-
elled NO2 concentrations is estimated in a similar way as
above for NO2 columns. The only difference is that because
of the limited statistics we disregard a possible dependence
of this error on the magnitudes of measured concentrations.
Accordingly, we have:

δs
∼=

1

L

L∑
i=1

(
si
o − si

m(ea)
)
. (11)

This difference is−0.1.

3.3.3 Model approximation

Finding the exact solution of the problem defined by Eqs. (6)
and (9) by means of iterative numerical methods of the non-
linear optimization would be computationally extremely ex-
pensive, even if we used the adjoint model approach. Instead,
we use an original approach that reduces the computational
demand and allows us to find an approximate but yet suffi-
ciently accurate solutions. The idea is to simplify the calcu-
lation of the modeled relationships between NOx emissions
and NO2 columns or concentrations by substituting the orig-
inal model by a set of linear relations describing the consid-
ered relationships approximately. We take into account that
the typical range of transport of freshly emitted NOx is rather
limited. Accordingly, our statistical models are defined (in
the case of the columns) as follows:

Ci(E) :=

Ci(Ea)

1 +

(2M+1)2∑
j=1

αi
j (E

i
j − Ei

aj )/E
i
aj

 , (12)

whereαi
j are regression coefficients, which represent the sen-

sitivity of the NO2 column in the grid celli to a perturbation
of emission rate in the grid cell j, andM is the number of
layers of grid cells around the “central” celli: the larger
is M, the more distant transport of NOx is taken into ac-
count. Because the CHIMERE grid has a constant resolu-
tion of 0.5◦, the actual distance of transport, which is taken
into account, depends on latitude and direction. For the ref-
erence, one degree of latitude corresponds to about 111 km,
while one degree of longitude varies from 85 km in South
of the domain to 65 km in North. The statistical models are
built using results of a sufficiently large number of model
runs with pre-specified small random perturbations of emis-
sions in each of the model grid cells. Accordingly, the coef-
ficientsαi

j are obtained by solving a set of linear equations

for relative perturbations of emissions and corresponding re-
sponses of NO2 columns. Technically, the respective equa-
tions are solved using the SVD (Singular Value Decomposi-
tion) method (Press et al., 1992). Similar models are built for
the relationships between NOx emissions and near-surface
concentrations. While our statistical models are formulated
initially in terms of relative perturbations of NOx emissions
and NO2 columns, we have to reformulate them for the log-
arithmic variables:

ci(e) := ci(ea) +

ln

1 +

(2M+1)2∑
j=1

αi
j

[
exp(ei

j − ei
aj ) − 1

] ,

i = 1, ..., N. (13)

The optimal number of “random” model runs depends on the
desired accuracy, the effective distance of transport, and the
nonlinearities in the real relationships between emissions and
columns, but, importantly, it does not depend on the total
number of grid cells as soon the dimensions of the model
domain exceed the typical range of NO2 transport. In situa-
tions relevant for this study, the performance of the statistical
models has been found to improve gradually as the number
of forward runs of an original CTM with randomly perturbed
emissions is increased but reaches saturation when this num-
ber approaches 100. Accordingly, all the results discussed
below have been obtained with the number of CHIMERE
runs equal 100. Note that although this number is not small,
it is, nevertheless much smaller than the number of the emis-
sion parameters to be optimised (∼1600 in this study), and,
therefore, our method is very beneficial in terms of the com-
putational demand when compared with the direct variational
approach. The optimal choice of a value of the parameterM

is discussed in Sect. 3.3.4. The results presented below have
been obtained withM equal 2, unless another value is indi-
cated.

Note finally that although we use linear models, it would
be possible to built similar nonlinear statistical models, such
as, for example, nonlinear regressions based on neural net-
works (e.g., Gardner and Dorling, 1998; Hornik et al., 1989;
Konovalov, 2002). The use of nonlinear models would en-
able reducing the uncertainties but at the expense of a larger
computational cost.

3.3.4 Numerical scheme

The solution of the problem defined by Eqs. (6) and (9) is
found using standard numerical methods (Press et al., 1992).
Specifically, making some random initial guess for a value of
ϕ, we minimise the functionG(e) (see Eq. 5) iteratively by
means of the steepest descent method using the a priori emis-
sions as initial guess. Although the steepest descent method
is not optimal in terms of computational demand, it has been
chosen because of its robustness and stability. The evalua-
tion of partial derivatives ofG(e) with respect toei at each
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Fig. 5. Tests of the inversion scheme:(a) the target and(b–d) retrieved ratios between perturbed and a priori NOx emissions. The retrievals
are performed with the parameterM equal to (b) 1, (c) 2 and (d) 3.M is the number of CHIMERE grid cells corresponding to the maximum
distance of NOx transport taken into account in the linearized models (see Eq. 12).

iteration involves, in particular, the derivatives ofcj (e) with
respect toei that are estimated using the linear approxima-
tion (13). As soon as the minimum ofG(e) is reached, we
evaluate the functionJ (ϕ) (see Eq. 9) and correct a value of
ϕ using the golden section search method. The whole pro-
cedure is repeated iteratively until the minimum ofJ (ϕ) is
reached.

3.3.5 Test cases

The main objective of the tests described in this section is
to examine the performance of our inversion procedure de-
scribed above. The idea of the tests is to perform inversions
for synthetic data and to compare the results with the known
exact solution. The synthetic NO2 data were created using
CHIMERE with perturbed a priori emissions. Taking into
account that the accuracy of inverse modelling results may
depend on the magnitude and spatial distribution of uncer-
tainties of the a priori emissions and the observation data,
the test cases considered below have been created after hav-

ing applied the procedure to the real data. Specifically, in
order to best represent real conditions, we assigned the per-
turbations of the a priori emissions using the a posteriori
emissions found with real data (Sect. 4). The ratios between
the a posteriori and a priori emissions have been scaled so
that the standard deviation of the natural logarithms of emis-
sion perturbations was 0.6 (this is a dimensionless quantity).
This value is representative of our estimate for the standard
deviation for the uncertainties in the a priori emissions (see
Sect. 4). These emission perturbations are shown in Fig. 5,
which presents also the results of the inversion performed
with different values ofM (1, 2 and 3) in the models (12).
It is seen that the retrieved emissions capture the main fea-
tures of the target in all cases shown, although there are also
noticeable differences. The results obtained withM equal 1
and 3 are evidently least and most accurate, respectively.
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(a) (b)

Fig. 6. The root relative mean square error (RRMSE) calculated with synthetic data for NO2 columns as a function of the parameters(a)
M and(b) ϕ. M is the number of CHIMERE grid cells corresponding to the maximum distance of NOx transport taken into account in the
liberalized models (see Eq. 12), andϕ is the ratio of the presumed uncertainties (standard deviations) in the logarithms of NO2 columns and
a priori emissions (see Eqs. 4 and 7). The solid and dashed lines in the plot (a) have been obtained with perfect (“no noise”) data underϕ=0
and represent RRMSE expressed in terms of logarithmic and absolute emission rates, respectively. Different curves in the plot (b) have been
obtained withM equal 2 and correspond to different levels of noise (νc) added to the logarithms of NO2 columns.

In order to quantify the uncertainty of retrievals we con-
sider the root relative mean squared error (RRMSE),

RRMSE=


∑
i

(
êi(ϕ) − ei

t

)2
∑
i

(
ei
a − ei

t

)2


1/2

, (14)

whereea , et , andê(ϕ) are initial (unperturbed), target, and re-
trieved values of logarithms of NOx emissions, respectively.
A similar statistics has been defined for the absolute values
of emisions (E). Some results are presented in Fig. 6. It is
seen, in particular, that the RRMSE for logarithms of emis-
sions decreases strongly asM increases from 0 to 2 (see
Fig. 6a). The case withM equal to zero corresponds to
the assumption of a direct local relationship between NOx
emissions and NO2 columns in a given grid cell, whereas
in other cases the NOx transport between the (2M+1)2 clos-
est grid cells is taken into account. Therefore, this result
demonstrates the importance of the transport in our inverse
modelling problem. The RRMSE (14) expressed in terms of
absolute emissions (that is, after substituting logarithms of
emission rates for their absolute values) gives more weight
to regions more strongly polluted. This statistics drops more
rapidly to a small value of RRMSE (already for M=1), since
the NO2 columns over regions with large emissions are de-
termined mostly by their nearby sources. While the RRMSE
reaches a minimum underM equal 3, it is only very insignif-
icantly larger whenM equals 2. Since the computational
costs proved to be much smaller withM equal 2, we use this

value throughout this study. Deteriorating quality of the in-
version in the case withM equal 4 is, probably, due to the fact
that in this case the number of grid cells in the sub-domain
of the statistical model (81) is close to the number of “ran-
dom” model runs (100), so that the information provided by
these runs becomes insufficient for fixing the coefficients of
the statistical models.

While the results presented in Fig. 6a have been obtained
fixing a zero value ofϕ (no a priori information on emis-
sions has been used), the inversions performed with non-zero
ϕ can be more accurate as it is evidenced by results shown
in Fig. 6b. This figure presents the dependence of RRMSE
(for logarithmic variables) onϕ for case of M=2 and with-
out uncertainty in observations (as in Fig. 6a), but also for
two more realistic cases when the available data for NO2
columns are to some degree uncertain. The errors of loga-
rithms of the columns have been sampled from the normal
distribution with zero mean and the standard deviation equal
to either 0.1 or 0.2. In accordance to the results discussed in
Sect. 4, the uncertainty in real data is most likely to be about
20%, although this estimate is very uncertain. It is seen that
the use of non-zero value ofϕ enables improvement of the
retrievals even for the ideal case with no noise in the data.
This improvement merely reflects the obvious fact that the
model approximation (12) is not perfect. It is seen also that
in accordance with our tests, the uncertainty in a priori emis-
sions could be reduced almost up to 3 times if the data were
perfect, while the maximum reduction of uncertainty for the
case with 20% of noise in the data is about 40%. Note that
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the last result is consistent with the results obtained with real
data (see Sect. 4).

We can conclude that our approximate method is capable
of reducing uncertainties in a priori emission to a large ex-
tent. However, the actual improvement of the a priori emis-
sion estimates is likely to be limited by uncertainties in the
measured and simulated data for NO2 columns. The test re-
sults also emphasize the importance of a proper choice of the
value ofϕ, especially when the uncertainty in input data is
significant.

3.4 Estimation of uncertainties

3.4.1 Evaluation of the standard deviations of the input data

Values for the standard deviations of uncertainties in NO2
columns (σc) and NOx emissions (σe) are needed in order to
estimate uncertainty in the a posteriori solution and, besides,
they are interesting in themselves for characterizing uncer-
tainties in measurement data and emissions prescribed in the
model. The standard deviationsσc and σe under a given
value of their ratioϕ (Eq. 7) are evaluated as follows. We
assume (i) that the random uncertainties in NO2 columns de-
rived from satellite measurements (c0) and those in the NO2
columns simulated by CHIMERE (cm) are statistically inde-
pendent, and (ii) that the parts of the differences between the
measured and modeled NO2 columns due to uncertainties in
the a priori emissions and other kinds of errors are statisti-
cally independent. Accordingly, we have:

1

N

N∑
i=1

(
ci
o − ci

m(ea) − δi
c

)
2

+ 12
apr

∼=

σ 2
c +

1

N

N∑
i=1

(
ci
m(et ) − ci

m(ea)
)2

, (15)

whereet are the unknown true emission rates,1apr is the
misfit of NO2 columns calculated by the statistical models
(13). The first term in the left-hand part of Eq. (15) ap-
proximates the variance of total random uncertainties in both
NO2 columns derived from satellite measurements and in
NO2 columns calculated by CHIMERE with the a priori NOx
emissions (see a discussion of this approximation in more de-
tail in Sect. 6.1 of our earlier paper (Konovalov et al., 2005)).
If we knew values of true emissions, then we could findσc

directly from Eq. (15) and then estimateσe using Eq. (7).
However, since we do not know the true emissions, we have
to substitute them for some surrogate values. In order to pro-
vide a reliable estimate of the last term in the left-hand part of
the Eq. (15), these surrogate emissions should satisfy to the
following obvious conditions. First, the differences between
the natural logarithms of the surrogate and a priori emissions
should have the variance equal toσ 2

e (that is, the same as the
variance of the differences between the natural logarithms
of the true and a priori emissions). And second, the spa-
tial structure of the differences between the logarithms of the

surrogate and a priori emissions should be similar to the spa-
tial structure of the differences between the logarithms of the
true and a priori emissions. Taking into account that the best
available estimates of the true emissions are the a posteriori
estimateŝe, we define the surrogate emissions,es , as follows:

es =
σe(ê− ea)N

1/2[
N∑

i=1

(
êi − ei

a

)2]1/2
+ ea, (16)

Such combination of the a posteriori and a priori emissions
allows us to satisfy both conditions. Then, using the defini-
tion of ϕ (Eq. 7), we can rewrite Eq. (15) as follows:

1

N

N∑
i=1

(
ci
o − ci

m(ea) − δi
c

)2
+ 12

apr
∼=

ϕ2σ 2
e +

1

N

N∑
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(
ci
m(es[σe]) − ci

m(ea)
)2

(17)

This equation involves only one unknown variableσe and can
be solved iteratively. A value of12

apr has been estimated by
means of the test with the synthetic dataset described in the
previous section. It is found to be about 0.01. This value,
which has been used throughout this study, is much smaller
than a value of the first term in the left-hand side of Eq. (15),
which, in our case, is about 0.18.

The uncertainty (in terms of the standard deviation) in
near-surface concentrations of NO2, σs , is estimated as fol-
lows:

σ 2
s

∼=
1

L

L∑
i=1

(si
o − si

m(ea) − δs)
2. (18)

The value found forσs is 0.63. Similar toσc, σs represents
in fact a combination of the measurement and simulation er-
ror of near surface NO2. This estimate is less certain than
estimates ofσc andσe, because the number of data points
for near-surface concentrations is rather limited (about 20).
However, as soon asea is different fromet , a value ofσs

given by Eq. (18) is more likely to be overestimated than un-
derestimated, because it includes not only uncertainties in the
model and measurement data, but also the errors due to un-
certainties in emissions. From a practical point of view, an
overestimation of uncertainties in results is preferable to an
underestimation.

3.4.2 Monte Carlo experiment

While the formulations presented in Sect. 3.3 constitute the
core of our inversion scheme, the complete solution of the
inverse problem requires not only finding optimal a posteri-
ori estimates but also their uncertainties. The evaluation of
uncertainties in any estimate could be rather straightforward,
if we had an explicit expression for the a posterioripdf. In
such a case we could use any Monte Carlo algorithm, e.g.,

Atmos. Chem. Phys., 6, 1747–1770, 2006 www.atmos-chem-phys.net/6/1747/2006/



I. B. Konovalov et al.: Inverse modelling of NOx emissions on a continental scale 1761

the Metropolis’s one (Metropolis et al., 1953), that enables
sampling from a given multi-dimensional distribution. Our
situation, however, is much complicated by the fact that we
do not have an explicit expression for the a posteriori distri-
bution of emissions, since standard deviations in the statisti-
cal distribution defined by Eq. (4) are also considered as ran-
dom values satisfying to some unknownpdf. Thus, we have
to use another method, which, nevertheless, is also based on
the Monte Carlo approach.

The idea of the method employed here is described, e.g.,
in Press et al. (1992). Briefly, we use the uncertain measure-
ment data as a surrogate for the true data and generate a num-
ber of sets of synthetic data based on our best understanding
of the character of uncertainties in real data. These synthetic
data are assumed to be equivalent (in a statistical sense) to the
real measurement data and are employed to obtain a set of
the maximum-likelihood estimates of emissions, which are
used further to draw the conclusion about the uncertainty of
the best estimate. As the best a posteriori estimate, we con-
sider here the maximum likelihood estimate obtained for a
selected value ofϕ which is defined as the median of the
range of values obtained from the Monte Carlo experiment.
The a posteriori emissions obtained for a median value ofϕ

have been found to be less uncertain (based on results of the
Monte Carlo experiment) than in the case with the maximum
likelihood estimate ofϕ.

More in detail, our Monte Carlo procedure includes the
following steps.

1. Prescribe the a priori values for the standard deviations
for columns and emissions,σc andσe. We assume ini-
tially that the a priori value ofσc is homogeneously
distributed within the broad interval constrained by the
mean squared difference between the modelled and
measured NO2 columns, that is:

σc ∈

0;

{
1

N

N∑
i=1

(
ci
o − ci

m(ea) − δi
c

)2
+ 12

apr

}1/2
 (19)

The corresponding value ofσe is then evaluated us-
ing the Eq. (17) (in which the termϕ2σ 2

e is replaced
with σ 2

c ) together with the Eq. (16) involving the maxi-
mum likelihood estimates for emissions obtained using
the real data for NO2 columns and concentrations (see
Sects. 3.3.1–3.3.4).

2. Define sets of synthetic data for the a priori emissions,
NO2 columns and concentrations:

ea := ea + 1e,

co := co + 1c,

so := so + 1s, (20)

where1e, 1c, and1s are random numbers sampled
from the normal distribution.

3. Find the maximum likelihood estimate forϕ as the joint
solution of the set of the Eqs. (6) and the minimization
problem (9) using the synthetic data (20).

4. Re-estimateσc andσe with ϕ found in the previous step.
These new estimates are now constrained by ground-
based measurements and thus they should be more cer-
tain than the a priori estimates prescribed at the first
step.

5. Repeat the steps (2) and (3) using these new estimates
for σe andσc and, as a result, find the maximum likeli-
hood estimates forϕ as well as for the NOx emissions.
This step is the core of our Monte Carlo experiment.

6. Define the best a posteriori estimateϕp as the median of
all optimal ϕ from the current and previous iterations;
find the best a posteriori estimate for emissions,ep, as
well as forσe andσc as the solutions of Eqs. (6) and
(17) underϕ=ϕp.

7. Calculate the confidence intervals forep and for the best
estimates ofσe and σc that include at least 68.3% of
their closest maximum likelihood estimates from differ-
ent iterations.

These steps are performed iteratively until the convergence
of all the estimates is reached. The results presented below
have been obtained after 300 iterations.

4 Results

4.1 A posteriori emissions and uncertainty statistics

Figure 7 presents the a priori and a posteriori estimates for to-
tal (biogenic plus anthropogenic) emissions and the ratio of
logarithms of these estimates. Because we did not optimise
the biogenic emissions, their uncertainties may contribute to
the difference between the a posteriori and a priori anthro-
pogenic emissions. Therefore, it is indeed best to present
the results in terms of total NOx emissions, rather than only
their anthropogenic part. The a posteriori emissions shown
in Fig. 7 have been obtained using GOME data deconvoluted
with NO2 columns from SCIAMACHY. We consider the re-
sults obtained with this set of satellite data as the most reli-
able, and this set is referred below as “standard”. However,
in order to get an idea of the robustness of our results, we
present also the a posteriori emissions obtained with alterna-
tive datasets (see Fig. 8). In the case of GOME data decon-
voluted using CHIMERE, our procedure may give incorrect
results because these data are obviously not fully indepen-
dent of our model. As to SCIAMACHY data, they do not
correspond to the same year as input parameters of the model
and the data of ground based measurement and, accordingly,
they have been found to be more uncertain (in the sense that
they contain less retrievable information on NOx emissions
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Fig. 7. The a priori(a) and a posteriori(b) estimates for total (biogenic plus anthropogenic) emissions (in molecules×cm−2
×s−1

×108)

averaged over summer months (June–August) of 2001, and also the natural logarithms of the ratio of the a posteriori to the a priori emission
estimates(c). The a posteriori emissions have been obtained with GOME NO2 columns deconvoluted with SCIAMACHY data.

in 2001) than the GOME data. Larger uncertainty of obser-
vations leads to smaller differences between the a posteriori
and the a priori emissions. The blank areas in Figs. 7 and 8
correspond mostly to relatively unpolluted regions excluded
from analysis in accordance with the criterion specified in
Sect. 3.1 and also, for a minor part, to regions for which
SCIAMACHY data were absent (see Fig. 2).

It is evident that despite significant quantitative differ-
ences, all the datasets give qualitatively similar results. In
particular, in accordance to our results, the a priori emis-
sions are probable to be persistently overestimated over Great
Britain, a northwestern part of France, northern Germany and
Netherlands but underestimated over northern Italy, southern
France, western Germany and Spain. There is also a prob-
able strong overestimation of NOx emissions over sea areas
corresponding to major ship tracks.

Although for almost a half of grid cells (48%), correc-
tions are below 0.25 (about a factor 1.3, yellow and light
green colour in Fig. 7c), a still important number of grid cells

(26%) shows corrections larger than 0.5 (about a factor of
1.7, orange, red and blue colour). Note that on the whole,
positive and negative corrections are balanced, because sys-
tematic differences between simulated and observed columns
have been removed previously.

Table 1 presents the a priori and a posteriori emission es-
timates for several major European cities. Since the spatial
resolution of our retrievals is insufficient for estimation of
emissions exactly within official city boundaries, we present,
instead, the emission estimates averaged over four grid cells
closest to the city centre. Such kind of data is rather easy
to use for inter-comparison with similar results of future in-
verse modelling studies and emission inventories. Our re-
sults show, in particular, that the a priori emission estimates
for major cities are, on the average, relatively accurate. In-
deed, the a priori estimates are outside of the range of un-
certainty of the a posteriori emissions (in terms of the 68%
confidence level) only for 8 from 29 cities considered. The
statistically significant underestimations of NOx emissions
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Fig. 8. Natural logarithms of the ratio of the a posteriori and a pri-
ori emissions estimates in the cases with(a) GOME NO2 columns
deconvoluted with simulated NO2 columns (by CHIMERE) and(b)
NO2 columns derived from SCIAMACHY measurements in 2004.

are found in Madrid, Naples and Turin, while overestima-
tions are detected in Barcelona, Berlin, Hamburg, London
and Zagreb. It is interesting to note also that, on the whole,
the most of the cities (about 62%) have lower a posteriori
than a priori emissions.

The key aspect of the emission estimates derived using in-
verse modelling technique is their uncertainty. Specifically,
any difference between the a posteriori and a priori emissions
makes little physical sense, unless that difference is statisti-
cally significant. The random uncertainties of the a posteri-
ori (anthropogenic) emissions obtained with the “standard”
set of satellite data are depicted in Fig. 9a. The mean of un-
certainties is about 0.36, 68 percent of values are less than
0.4. The magnitudes of uncertainties for a given grid cell de-
pend, mainly, on sensitivity of the NO2 columns in nearby
grid cells to emissions changes in this cell. These sensi-
tivities depend, in turn, on magnitudes of emissions in the

Table 1. A priori and a posteriori estimates of NOx emission rates in
some European cities. The reported values represent anthropogenic
emission rates (molecules×cm−2

×s−1
×1011) averaged for three

summer months (June to August) of 2001 and over four model’s
grid cells closest to the city center. The uncertainties in the a priori
emissions are assumed to be the same for any grid of the model and
are estimated to be about 1.9 (in terms of the geometric standard
deviation), while the uncertainties in the a posteriori emissions are
given in the brackets. For some cities (as Cologne), other big cities
may contribute to the emissions.

City A priori A posteriori

Barcelona
Berlin
Bern
Birmingham
Bratislava
Brussels
Budapest
Cologne
Geneva
Hague
Hamburg
Liverpool
Ljubljana
London
Lyon
Madrid
Marseille
Milan
Munich
Naples
Paris
Poznan
Prague
Rome
Toulouse
Turin
Vienna
Zagreb
Zaragoza

2.79
2.25
0.98
5.07
1.09
5.00
2.31
5.64
1.04
7.25
2.33
3.69
1.05
7.76
1.73
2.23
1.93
3.13
2.03
1.98
4.68
0.57
2.18
3.20
0.86
1.41
1.87
1.15
1.41

1.95 (1.2)
1.56 (1.4)
1.01 (1.3)
4.56 (1.2)
1.12 (1.3)
4.83 (1.3)
2.16 (1.3)
6.18 (1.4)
1.14 (1.3)
6.84 (1.4)
1.69 (1.3)
3.37 (1.6)
1.14 (1.3)
4.75 (1.4)
1.65 (1.2)
2.73 (1.2)
1.68 (1.2)
3.37 (1.2)
1.93 (1.2)
2.25 (1.1)
3.92 (1.3)
0.69 (1.3)
2.09 (1.2)
3.28 (1.2)
0.74 (1.3)
2.29 (1.3)
1.69 (1.3)
0.88 (1.3)
1.36 (1.5)

larger number of surrounding grid cells. Accordingly, the fi-
nal picture is rather complex, but, typically, the uncertainty
is smaller for more strongly polluted regions. Figure 9b dis-
tinguishes between statistically significant and insignificant
emission corrections. It shows the ratio of the difference be-
tween the logarithms of a posteriori and a priori emissions to
the uncertainty (at the 68% confidence level) of the a posteri-
ori estimates. Dark areas correspond to statistically insignif-
icant changes. Although the uncertainties in our estimates
are rather large (due to uncertainties in data and model er-
rors), we have found that the changes in the a priori emissions
are statistically significant for the majority (58%) of the grid
cells. Finally, Fig. 9c shows the statistical significance of a
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Fig. 9. (a)The uncertainties (standard deviations) in the natural logarithms of the a posteriori anthropogenic emissions;(b) The ratio of the
difference between the natural logarithms of the a posteriori and a priori emissions to the uncertainty of the a posteriori estimates;(c) The
statistical significance of the direction of the a priori emission corrections. All the results correspond to the case of GOME NO2 columns
deconvoluted with SCIAMACHY data.

Table 2. Estimates for the uncertainties in the anthropogenic NOx
emissions and NO2 columns. The uncertainties in NOx emissions
and NO2 columns are quantified in terms of the 68.3 % confidence
level for the natural logarithms of the respective values. All values
are dimensionless. Data sets: 1) the GOME data deconvoluted with
NO2 columns from SCIAMACHY, 2) the GOME data deconvoluted
with simulated NO2 columns, 3) the NO2 columns derived from
SCIAMACHY measurements in 2004.

data set σe σc

a priori a posteriori

1 0.62 (±0.08) 0.36 0.18 (±0.17)
2 0.55 (±0.26) 0.35 0.15 (±0.14)
3 0.41 (±0.22) 0.28 0.29 (±0.13)

more robust estimate expressed in terms of the direction of
the a priori emission corrections; that is, whether the a priori
emissions should be increased of decreased. These estimates
and their uncertainty have been obtained as an independent
output of our Monte Carlo experiment. In this case, the total
fraction of statistically significant estimates is much larger
and reaches 86%. All the results presented in Figs. 7–9 are
available in the digital form upon request.

Table 2 presents our estimates for uncertainties in the nat-
ural logarithms of the a priori and a posteriori anthropogenic
NOx emissions and NO2 columns. In the Monte Carlo pro-
cedure, the standard deviations for the a priori emissions and
columns have been treated as random variables, so that we
could get not only estimates of their values but also the un-
certainties of these estimates, which are given in the brack-
ets. In particular, the uncertainty of the a priori emissions is
estimated to be about 0.62 and the uncertainty in the a poste-
riori emissions in the main case is estimated to be 42% lower
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(a) (b)

Fig. 10. The NO2 columns derived from GOME measurements and deconvoluted with NO2 columns from SCIAMACHY versus the
modelled NO2 columns calculated with(a) the a priori and(b) the a posteriori emissions. All data shown represent averages over three
summer months of 2001.

(0.36). Expressed in terms of the geometric standard devia-
tion, the uncertainties of the a priori and a posteriori emis-
sions are about 1.9 and 1.4, respectively. It is useful to note
that estimates of the standard deviation of the priori emission
in the cases of alternative datasets for NO2 columns, are not
inconsistent with the corresponding estimate for the standard
case, taking into account the large uncertainty of the esti-
mates obtained with the alternative datasets. The estimates
of the uncertainty in NO2 columns are very uncertain, but
they are always smaller than uncertainties for a priori emis-
sions. Note that the estimates of the standard deviation of
the a posteriori emissions may also be uncertain. Although
our procedure does not enable evaluation of this uncertainty,
it seems reasonable to believe that it is of the same order of
magnitude as the uncertainty of the standard deviation of a
priori emissions. If it is indeed so, actual uncertainties of
the a posteriori emissions in the cases of both SCIAMACHY
and GOME data deconvoluted with CHIMERE may be much
larger than their estimates given in Table 2.

It should be kept in mind that all the results presented
above address only a random part of the uncertainties in NOx

emissions and NO2 columns. Systematic errors are not eval-
uated in this study. Nonetheless, it seems reasonable to hy-
pothesize that they are much smaller than the random uncer-
tainties. Indeed, the procedure of derivation of the gridded
EMEP emission data involves different kinds of scaling from
the national totals to the gridded estimates (see e.g., Vestreng,
2004). Errors in emissions factors for specific activities may
have an important impact on emission estimates for specific
grid cells (where these activities are dominant), but these er-
rors likely tend to average out over the model domain. If the
hypothesis that the random errors are dominating is correct,

then the interpretation of our results is very straightforward:
the systematic errors can be simply neglected. Otherwise, it
is necessary to keep in mind that both the a priori and a pos-
teriori emissions can be uniformly biased and that our uncer-
tainty estimates do not include possible systematic errors.

4.2 Checking agreement between measured and modelled
data

The correction of emissions should lead to improvement
in the agreement between modelled and measured data, al-
though only part of the discrepancy between simulated and
observational data may be due to uncertainty in emissions.
In order to check the improvement in the agreement between
the observational and simulated data discussed above, we
have re-run CHIMERE with the corresponding new emis-
sions. The significant improvement of agreement between
the measured and modelled NO2 columns in the standard
case is demonstrated in Fig. 10. In particular, the correla-
tion coefficient has increased from 0.85 to 0.96. We have
also evaluated the debiased root mean squared error,

RMSE=

(
1

N

N∑
i=1

(
ci
o − ci

m − δi
c

)2
)1/2

, (21)

which has been reduced from 0.44 to 0.19. It is important
to note that the residual uncertainty of the NO2 columns is
in perfect agreement with its estimation (σc) obtained using
the linear statistical models (12) (see Table 2). This observa-
tion counts in favour of sufficient accuracy of our inversion
procedure.

Obviously, the improvement in agreement between the
simulated and measured NO2 columns does not necessarily
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Fig. 11. The absolute values of ratios of the “a posteriori” and “a
priori” biases defined as the differences between the average val-
ues of the modelled and observed NO2 concentrations for a given
EMEP site. The a posteriori emissions enable the reduction of bi-
ases at 15 stations out of 21.

mean that the a posteriori emissions are actually better than
the a priori ones, because these observations have been used
directly to fit the emission data. The improvement in agree-
ment between the modelled and measured near surface con-
centrations provides a more critical test for our a posteriori
emissions, since these data have not been used directly for
fitting NOx emissions. We found that the improved emis-
sions enable reduction of the biases for the near surface con-
centrations at 15 stations out of 21. The biases are defined
simply as the differences between measured and modelled
concentrations. A simple statistical test shows that if the re-
sult of inversion were equivalent to adding random errors to
the modeled NO2 concentrations, then the probability that
the biases are reduced at 15 stations from 21 would be less
than 0.1. Hence, the obtained improvement is statistically
significant with the probability of error less than 10 percent.
The absolute values of ratios of the “a posteriori” and a priori
biases are shown in Fig. 11.

The RMSE defined in terms of concentration logarithms
similar to Eq. (21) has reduced from 0.63 to 0.56. The same
numbers have been obtained using the linear approximation
(12, 13). Evidently, the reduction of RMSE in the case of
NO2 surface concentrations is much smaller than that in the
case of NO2 columns, but this may be mainly due to the
fact that uncertainties in NO2 near surface concentrations (ei-
ther measured or simulated) that are not caused by uncertain-
ties in emissions are significantly larger than uncertainties in
NO2 columns. Indeed, if errors in the logarithms of NO2
concentrations (related or not to uncertainties in emissions)
are normally distributed and independent, then squares of er-
rors are additive. Using our model we have found that if the
uncertainty of NOx emissions were about 0.6 and if other
sources of errors of NO2 concentrations were absent, the

corresponding RMSE for near surface NO2 concentrations
would be about 0.3 (instead of 0.63). Then RMSE due to
not emission related errors would be 0.55 ([0.632–0.32]0.5).
Thus the observed reduction of RMSE from 0.63 to 0.56 im-
plies that errors caused by uncertainties in the a posteriori
emissions should be very small. The RMSE corresponding
to only this part of uncertainties would be less than 0.1 (in-
stead of 0.3). This corresponds indeed to a strong reduction
in the part of error related to emissions. Therefore, we can
conclude that our inverse modelling procedure has actually
corrected the major part of the discrepancy between the ob-
served and modelled NO2 concentrations caused by uncer-
tainties of emissions.

4.3 Discussion

Since the inverse modeling of emissions is based on the use
of a chemistry transport model and involves some assump-
tions about statistical properties of the errors in the model
and in input data, the inverse modeling results are accurate
only as much as the model is correct and the underlying as-
sumptions are valid. In this sense, the inverse modeling is
rather similar to more traditional “forward” modeling, espe-
cially in those applications of the latter where the results can-
not be easily validated by comparison with available obser-
vations (for example, in sensitivity and prognostic studies).
Accordingly, any inverse modeling scheme may be regarded
as a special kind of a model that evaluates some physical
characteristics (usually those unobserved directly) given val-
ues of other (measured) characteristics. When simulated re-
sults cannot be easily verified using observations, one can
use other ways of estimating their uncertainties. One way
involves Monte-Carlo experiments and is employed in our
study. Alternatively, the uncertainties could be estimated us-
ing the methods of ensemble modeling, which are nowadays
frequently used in climatological studies (e.g., National As-
sessment Synthesis Team, 2001). In any case, since indirect
ways of estimating uncertainties of the simulated results are
based on current understanding of a considered system, pos-
sible sources of uncertainties and their properties, the esti-
mated uncertainties may be still different from the true ones.

In this study, we have attempted to get more information
on the uncertainties of input data directly from observations.
However, in doing so we have still involved the model and
made some important assumptions about statistical proper-
ties of errors, which seem to be reasonable but are difficult
to verify. In particular, we have assumed that errors of NO2
columns and near-surface concentrations are statistically in-
dependent. While the measurement errors are certainly inde-
pendent, the statistical independence of model errors is less
obvious. The positive or negative covariance between the er-
rors of modelled columns and concentration would lead to
under- or overestimation ofσc and over- or underestimation
of σe, respectively. Errors caused by inaccuracies in repre-
sentation of chemical processes and horizontal transport may
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be common for both columns and concentrations. However,
errors in vertical mixing are likely to anti-covariate, because,
for example, the overestimation of the mixing would lead to
larger columns (as discussed, e.g., by Savage et al., 2005) but
lower concentrations. It is also likely that a major part of the
discrepancy between the modeled and measured in situ NO2
concentrations is caused by insufficient spatial resolution of
CHIMERE. Otherwise, it is difficult to explain why RMSE in
the case of the ground based data is much higher than that in
the case of satellite data (see the previous section), whereas
the satellite data are expected to be less certain than the data
of ground based measurements.

Another important assumption underlying our inverse
modelling scheme is that random errors of both columns and
concentrations are independent between different grid cells.
In the lack of any prior information about spatial covariations
of the errors, such an assumption seems to be really the best
option. Nevertheless, our results are conditional on this as-
sumption. Such kind of conditioning of results of Bayesian
inference on a priori assumptions is usual and, in fact, in-
evitable. Inverse modelling (as well as any kind of the mod-
elling) is intended to improve the current (a priori) knowl-
edge by enriching it with observational information, rather
than to provide the “absolute truth”. Although our results
show (see Fig. 7c) that the errors of a priori emissions are
probable to covariate in some way, these covariations is the
new (a posteriori) knowledge that could not be used for elab-
orating the a priori assumptions.

An interesting point is why the errors of emissions may
be distributed in such semi-regular way. One plausible ex-
planation is that if different regions feature different kinds of
predominant industrial or agricultural activity, the emission
error covariations may reflect some common uncertainties
for specific types of activity. For example, in accordance to
EMEP data (Vestreng et al., 2004) the emissions attributed to
the 1st SNAP sector (combustion in energy and transforma-
tion industries) constitute 25% of total anthropogenic NOx
emissions in the United Kingdom, but only 11% in Italy. An-
other example is NOx emissions from ships in the northwest
of Europe, which, in accordance to our results, are likely to
be strongly overestimated in EMEP data. However, this ex-
planation of spatial covariations of errors in the a priori emis-
sions is only a hypothesis, which needs to be verified in fu-
ture studies. It is also not inconceivable that the covariations
of errors in a priori emissions are, in some cases, artefacts of
spatial covariations of errors in modelled or measured NO2
columns. Even if the uncertainties for a posteriori emissions
are, on the average, considerably smaller than those for a pri-
ori emissions, this may not be true for specific grid cells or
regions with covariating corrections.

The results presented above lead us to believe that the a
posteriori emission estimates are considerably more certain
than the a priori emissions prescribed in the model. Although
these new estimates cannot be regarded as a better substitute
for the data of the EMEP emission inventory (as our results

concern emission averages for three summer months rather
than their yearly averages), they can be used as an alternative
emission data set for CHIMERE and other CTMs for Western
Europe. Indeed, regional CTMs are mainly designed to simu-
late the photooxidant pollution, which is strongest during the
warm season. Similarly, although we have not estimated the
uncertainty in the yearly EMEP emissions, our estimation of
the uncertainty in the summer emissions used in CHIMERE
and other CTM’s is a useful result in itself, which can, for
example, be used in sensitivity studies.

5 Conclusions

We have studied the benefits of using tropospheric NO2 col-
umn amounts derived from GOME and SCIAMACHY mea-
surements for improving available estimates of NOx emis-
sions used in a continental scale CTM. We set-up an origi-
nal inverse modelling scheme that (1) is based on Bayesian
approach, (2) combines the data of satellite measurements
of tropospheric NO2 columns with data of ground based
measurements of near-surface NO2 concentration, (3) in-
volves a simple approximation of the modelled relationships
between NO2 columns/concentrations and NOx emissions,
which drastically reduces the computational demand of the
problem, and (4) includes a special Monte Carlo experiment.
Using this scheme, we have derived an improved spatial dis-
tribution of NOx emissions for Western Europe and for the
summer season. We have also estimated the magnitudes of
uncertainties in input and output data, using information con-
tained in measurement data. Specifically, we have found that
the the random part (in the spatial sense) of uncertainty in the
anthropogenic NOx emissions that were derived from EMEP
annual data and that are currently used in the CHIMERE
CTM is about 0.6 (in terms of the standard deviation of the
emission rate natural logarithms). The uncertainty in our a
posteriori emissions is estimated to be about 40% lower. As
it is unavoidable in inverse modelling studies, the obtained
degree of uncertainty reduction is conditional of some as-
sumptions used in the inversion algorithm. They mainly con-
cern the independence of different types of errors (emissions,
model, surface, columns and surface measurements) and the
independence for different grid cells. The distinctive feature
of our study is that we do not make any quantitative assump-
tions regarding the magnitudes of uncertainties in input data
and in a priory emission that are common in other studies.

The improved emissions enable strong reduction of the
discrepancy between measured and modelled NO2 columns
(more than two times in terms of RMSE). The reduction of
the differences between measured and modelled NO2 near-
surface concentrations is less considerable (about 10%), but
it is argued that this improvement is necessarily smaller be-
cause of the predominance of other errors sources than emis-
sions.
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We also have found that corrections in a priori emissions
are distributed rather irregularly on a large scale but tend to
covariate on smaller regional scales. In particular, in accor-
dance to our results, the a priori emissions are probable to
be persistently overestimated over Great Britain, North-West
of France, northern Germany and Netherlands but underes-
timated over northern Italy, southern France and Spain. For
these regions, corrections are typically about several tenths
of percent. It still remains unknown whether these proba-
ble inaccuracies in a priori emissions are due to uncertain-
ties in EMEP annual emission averages or due to inaccuracy
in their temporal profile assigned in the model. It is also an
open question whether uncertainties in a priori emissions can
be attributed to definite source categories. Accordingly, our
results concerning differences between a posteriori and a pri-
ori emissions only give guesses about possible inaccuracies
in emission inventories data, rather than indicating real flaws.
Nevertheless, our a posteriori emission estimates can be used
directly for assigning emission parameters in CHIMERE and
other similar CTMs for Western Europe.

Our study also showed that in spite of uncertainties in
available satellite data for tropospheric NO2 columns, they
are useful for improving our current knowledge on NOx
sources even on the relatively fine spatial scales resolved by a
typical continental scale CTM. The principal methodological
difficulty that seriously hampers further progress in inverse
modelling studies and practical utilization of their results re-
lates to insufficient information on the character and magni-
tudes of uncertainties in available emissions estimates, satel-
lite data, and model results. We have suggested that useful
information about all these uncertainties can be obtained by
combining different sources of measurement data. Note that
only random errors (in a spatial sense) could be further char-
acterised, but not systematic errors. Thus, an unavoidable
limitation of our study is not to be able to correct systematic
(again in a spatial sense) errors in emissions. However, we
have argued that systematic errors should be much smaller
than random errors which can be corrected.

In this study, we only have made the first step in the
promising direction of inverse modelling of NOx emissions
on a regional scale using satellite measurements. Future steps
could include the involvement of other sources of observa-
tional information, such as the data of ozone monitoring or
aircraft measurements of related pollutants. In addition, fu-
ture studies could put a stronger focus on the temporal evo-
lution of emissions on various time scales (type of the day,
seasonal, interannual).
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teraction avec l’́echelle ŕegionale, th̀ese de doctorat, Université
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