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Abstract. A mobile laboratory was used to measure on-
road vehicle emission ratios during the MCMA-2003 field
campaign held during the spring of 2003 in the Mexico City
Metropolitan Area (MCMA). The measured emission ratios
represent a sample of emissions of in-use vehicles under
real world driving conditions for the MCMA. From the rel-
ative amounts of NOx and selected VOC’s sampled, the re-
sults indicate that the technique is capable of differentiating
among vehicle categories and fuel type in real world driv-
ing conditions. Emission ratios for NOx, NOy, NH3, H2CO,
CH3CHO, and other selected volatile organic compounds
(VOCs) are presented for chase sampled vehicles in the form
of frequency distributions as well as estimates for the fleet av-
eraged emissions. Our measurements of emission ratios for
both CNG and gasoline powered “colectivos” (public trans-
portation buses that are intensively used in the MCMA) indi-
cate that – in a mole per mole basis – have significantly larger
NOx and aldehydes emissions ratios as compared to other
sampled vehicles in the MCMA. Similarly, ratios of selected
VOCs and NOy showed a strong dependence on traffic mode.
These results are compared with the vehicle emissions inven-
tory for the MCMA, other vehicle emissions measurements
in the MCMA, and measurements of on-road emissions in
U.S. cities. We estimate NOx emissions as 100 600±29 200
metric tons per year for light duty gasoline vehicles in the
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MCMA for 2003. According to these results, annual NOx
emissions estimated in the emissions inventory for this cate-
gory are within the range of our estimated NOx annual emis-
sions. Our estimates for motor vehicle emissions of benzene,
toluene, formaldehyde, and acetaldehyde in the MCMA in-
dicate these species are present in concentrations higher than
previously reported. The high motor vehicle aldehyde emis-
sions may have an impact on the photochemistry of urban
areas.

1 Introduction

Emissions from mobile sources in megacities represent a ma-
jor contribution to the degradation of air quality at local and
regional scales. They contribute to a primary and secondary
air pollutant burden that can threaten human health, damage
ecosystems and influence climate (Molina and Molina, 2004;
Molina et al., 2004).

Mobile emissions are generally quantified in emissions in-
ventories based on activity factors estimated from a vehicle
census or traffic counts, and emissions factors obtained from
vehicle exhaust measurements, input into individual vehicle
or fleet emission models (NARSTO, 2005). Despite the sig-
nificance of mobile emissions in large urban environments,
their estimation is highly uncertain for most species, mainly
due to the large inter-vehicle variability of the parameters that
affect emission rates. Similarly, there are numerous factors
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that affect the variability in emissions across different vehi-
cles types. These include factors that affect the internal com-
bustion efficiency in the vehicle, and therefore its engine’s
emission characteristics, such as engine type and size, fuel
composition, and combustion temperature and pressure. The
character and maintenance of fuel delivering and emission
control systems (or lack thereof) significantly affect which
engine emissions exit the tailpipe. Traffic modes, road con-
ditions, vehicle maintenance practices, driving behavior and
other vehicle operating conditions can significantly affect ve-
hicle emissions (Popp et al., 1999). The influence of all these
factors highlights the need for measurement techniques that
capture real-world vehicle emissions to validate emission in-
ventories.

Several techniques have been developed to measure ve-
hicle emissions both in laboratory testing and in real world
driving conditions. These include measurement techniques
using chassis dynamometer studies (Whitfield et al., 1998;
Yanowitz et al., 1999), traffic tunnel integration studies
(Kirchstetter et al., 1999), cross-road remote-sensing studies
at tunnels and other fixed sites (Bishop et al., 1989; Jiménez
et al., 2000; Schifler et al., 2005), and Portable Emission
Measurement System (PEMS) methods (Cadle et al., 2002).
Real-world driving emissions measurement techniques may
differ from dynamometer based testing techniques in several
ways. Carefully controlled, but limited environmental con-
ditions and driving patterns are typically used in chassis dy-
namometer studies and typically a relatively small number of
vehicles are tested.

Real world emission measurement techniques typically
sample a much larger number of vehicles, but may do so un-
der a limited range of driving states. Tunnel studies sample
hundreds to thousands of vehicles, but are typically limited
to fleet average emission values, although some differentia-
tion between light duty and heavy duty vehicle emissions can
be obtained when data for tunnel tubes that exclude heavy
duty vehicles are compared with comparable mixed traffic
tunnel data. Remote sensing measurement techniques typi-
cally sample emissions from vehicles with a wide range of
ages, models, maintenance and operational histories, but the
sampling time is relatively short (∼0.1 s) and the range of
driving states sampled is usually limited. On-board or trailer
mounted PEMS instrumentation can characterize some emis-
sions over a full range of on-road driving states, but are typi-
cally deployed on a small number of vehicles in any study.
Detailed descriptions of these techniques and a review of
their strengths and limitations for determining mobile emis-
sion factors are given elsewhere (e.g. Wenzel et al., 2000).
As mobile emission inventories should accurately represent
real world vehicle fleets and driving conditions, on-road mea-
surement techniques that interrogate a wide range of vehicles
over a full complement of drive states can make important
contributions to this goal.

In recent years, additional techniques for the measurement
of vehicle emissions under real-world driving conditions us-

ing fast response measurements in on-road mobile laborato-
ries have been applied in urban areas (Kittelson et al., 2000;
Vogt et al., 2003; Kolb et al., 2004; Canagaratna et al., 2004;
Herndon et al., 2005a, b; Shorter et al., 2005; Pirjola et al.,
2004; Giechaskiel et al., 2005). In the chase technique, a
mobile laboratory repeatedly samples the emissions of a tar-
get vehicle. Our implementation of this technique makes use
of the fast time response and high sensitivity of laser spec-
troscopic instruments and other fast response trace gas mea-
surement techniques for repeatedly intercepting and measur-
ing the turbulent exhaust plume of the target vehicle. Similar
to the traditional remote sensing studies, ratios of a given
species to CO2, used as a tracer of combustion, are obtained
during the analysis and the results indicate the number of
molecules of the pollutants of interest per CO2 molecules
emitted. In addition to the chase technique, which focuses
on a series of selected individual vehicles within a given ve-
hicular class, fleet average on-road emissions can be obtained
by processing randomly intercepted vehicle plumes from sur-
rounding traffic (both co-flowing and opposing lanes). In this
fleet average mode, even merged plumes from multiple vehi-
cles can be processed and included.

In this study, emission ratios for selected individual vehi-
cles as well as fleet average fuel-use-based vehicle exhaust
emissions from mobile laboratory data are deduced from on-
road measurements. In the fleet average mode the mobile
laboratory measured on-road ambient air mixed with emis-
sions of the surrounding vehicles. Successful application of
this method requires a large sample size of these mixed emis-
sion periods and a sampling time long enough such that the
number of sampled vehicles is large enough to include a rep-
resentative number of high emitters. Care must also be taken
to avoid situations where the intercepted plumes are domi-
nated by a few nearby vehicles for significant portions of the
sampling period. On the basis of the central limit theorem,
the emission averages should then be normally distributed if
the samples are unbiased and sufficiently large.

MCMA-2003 was an extensive field campaign held dur-
ing the spring of 2003 in the Mexico City Metropolitan
Area (MCMA) designed to enhance the understanding of
the physico-chemical transformations of emissions at the ur-
ban scale and improve air quality modeling validation ac-
tivities (Molina et al., 2002). The five-week campaign in-
cluded a Supersite at the National Center for Environmen-
tal Research and Training (Centro Nacional de Investigación
y Capacitacíon ambiental, CENICA), near the center of the
city, as well as continuous sampling at other peripheral sites.
Measurements were obtained for most important meteoro-
logical variables (de Foy et al., 2005, 2006a, b), ground level
and vertical profiles of several chemical species in gas and
aerosol phases and samplings at boundary sites for a bet-
ter characterization of the background concentration levels
(Barnard et al., 2005; Johnson et al., 2005; Salcedo et al.,
2006; Shirley et al., 2006; Volkamer et al., 2005). A pre-
liminary two week deployment in February 2002 of an older
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version of the mobile laboratory was used to make initial on-
road measurements in Mexico City in order to develop vehi-
cle exhaust measurement techniques and survey the emission
levels of selected pollutants as well as their ambient back-
ground concentrations.

The MCMA-2003 field campaign featured the use of a
new mobile laboratory equipped with fast time response in-
strumentation to measure the emissions from on-road, in use
vehicles in the MCMA. This version of the mobile lab and
the measurement modes used during MCMA-2003 have been
detailed in Kolb et al. (2004). In this work we present the
analysis of the emission ratios obtained with chase and fleet
average measurement modes during the MCMA-2003 field
campaign. We present the analysis of mobile emission ra-
tios for NOx, NOy, NH3, H2CO, CH3CHO, and other se-
lected VOCs for chase sampled vehicles and fleet averaged
emissions. The results are compared with the corresponding
emissions inventory for the MCMA, other vehicle emissions
measurements in the MCMA, and measurements of on-road
emissions in U.S. cities.

2 Experimental methods

The mobile laboratory deployed during the MCMA-2003
field campaign was equipped with several high time resolu-
tion and high sensitivity instruments (Kolb et al., 2004). As
described in Table 1, these included Tunable Infrared Laser
Differential Absorption Spectrometers (TILDAS) for mea-
suring selected gaseous pollutants, a Proton Transfer Reac-
tion Mass Spectrometry (PTR-MS) for measuring selected
volatile organic compounds (VOCs), a commercial NO/NOy
chemiluminescent detector modified for fast response mea-
surements, and a Licor Non-Dispersive Infrared (NDIR) in-
strument for CO2. Other instruments on board the mobile
laboratory included a Global Positioning System (GPS), a
sonic anemometer attached close to the laboratory sampling
port to detect “tailwind” conditions that might create sampled
air volumes contaminated with the mobile lab’s engine or on-
board generator exhaust and a video camera used to obtain
the target vehicle information. The mobile laboratory’s ve-
locity and acceleration were measured and recorded contin-
uously during the experiment along with local atmospheric
parameters including pressure, temperature, and relative hu-
midity.

VOCs emissions are of particular interest in this study; all
the reported VOCs were measured with the PTR-MS sys-
tem, except for H2CO that was measured with the TILDAS
instrument. TILDAS instruments have been successfully em-
ployed in several field campaigns for measuring trace gas
species (Zahniser et al., 1995; Jiménez et al., 1999, 2000)
and for measuring emissions from passenger buses using
the chase technique (Herndon et al., 2005a; Shorter et al.,
2005). H2CO and NO2 were measured using a lead salt tun-
able diode lasers TILDAS instruments and NH3 measure-

ments were obtained using a quantum cascade laser in the
TILDAS system. The PTR-MS system (Ionicon Analytic
GMBH) was applied for measuring vehicle emissions during
on-road chase events for the first time during this study. It
was used to measure selected oxygenated, olefinic, and aro-
matic VOCs with proton affinities larger than water vapor via
ionization through their reaction with H3O+. The resulting
ions are detected by mass spectrometry at high time resolu-
tion and selectivity. Data processing and validation meth-
ods for VOCs measured with the PTR-MS system during
the MCMA-2003 field campaign are reported in Rogers et
al. (2006). NO and NOy measurements were obtained with
a chemiluminescent instrument using a molybdenum oxide
converter modified for high frequency NOy sampling (Dun-
lea et al., 2004). Although in principle the measured NOy
captures all reactive nitrogen oxides species, the contribution
from reservoir and terminal species such as PAN, HNO3, and
organic nitrates, is likely minimal to the overall fresh emitted
NOy concentration due to the short time (few seconds) be-
tween the emissions of NO and NO2 and their sampling by
the mobile laboratory.

High time resolution instrumentation provides invaluable
information on the emission exhaust characteristics of indi-
vidual on-road vehicles. Indeed, this is the property that al-
lows the chasing technique to capture the variability from
the turbulent exhaust plumes that are quickly diluted in the
surrounding air. In the chasing technique, the high time
response instruments are used to measure the emission ex-
hausts of the targeted vehicle through a sampling port local-
ized at the driver’s front side of the mobile lab. The sam-
pled air is then delivered to the various instruments on board.
Figure 1 shows an example of a sampling period during the
chase of a gasoline vehicle. The sampled signals are corre-
lated with CO2, a combustion tracer, if they are emitted by
a target vehicle’s exhaust. An emission ratio is obtained by
scaling the measured species to the exhaust CO2 measured
immediately behind the chased vehicle. As an example of
this procedure, Fig. 1 also shows the obtained correlation ob-
tained for the sampled species with CO2 for the same period.

This sampling technique interrogates vehicle exhaust
plumes diluted with on-road background air; respective
amounts of exhaust plume and background pollutant con-
centrations are determined by comparing background pol-
lutant concentrations measured just before and after plume
encounters with those inside exhaust plumes. In this work,
we assume equal dilution for all of the different measured
species. Therefore, the dilution experienced by a given emit-
ted species will be equal to the dilution experienced by CO2,
and it cancels in the ratio of excess pollutant (plume - back-
ground) divided by excess CO2 (plume – background). The
equal dilution assumption is a very good approximation for
the gaseous species in general but may not hold for very
short-lived species (less than∼1 s) due to the potential chem-
ical transformations occurring before sampling.

www.atmos-chem-phys.net/6/5129/2006/ Atmos. Chem. Phys., 6, 5129–5142, 2006



5132 M. Zavala et al.: Characterization of on-road vehicle emissions in Mexico City

Table 1. Instrumentation on board the Aerodyne mobile laboratory used during the MCMA 2002 and MCMA-2003.

Instrumentation Measures Detection level Sampling
frequency

Proton Transfer Reaction Mass Spectrometer (PTR-
MS)a

Methanol, acetaldehyde, benzene,
toluene, MTBE, etc.

1–5 ppb ∼1 s

Tunable Infrared Laser Differential Absorption Spec-
troscopy (TILDAS)b

NO 1.1 ppb 1 s

NO2 700 ppt 1 s
H2CO 1.2 ppb 1 s
NH3 600 ppt 1 s

Aerosol Mass Spectrometer (AMS)c Nitrate 0.04µg m−3 4 s
Sulfate 0.06µg m−3 4 s
Ammonium 0.2µg m−3 4 s
Organics 0.8µg m−3 4 s
Chloride 0.04µg m−3 4 s

Non-Dispersive Infrared instruments (NDIR) unit
(LICOR)d

CO2 0.2 ppm 1 s

Aethalometer (Magee Scientific AE-16) Black carbon 0.1µg m−3 1 min
Photoemission aerosol sensor (EcoChem PAS 2000) Particulate PAH 10 ng m−3 10 s
Chemiluminescence NOx, NOy 0.4 ppb 1 to 10 s
Aerosol photometer (TSI DustTrak) PM2.5 1µg m−3 1 s
Condensation Particle Counter (CPC) 10–100 nm particle number density 0.01 part/cm3 2–3 s

a Only those components having proton affinities greater than water are detected using this technique which includes most oxygenated and
unsaturated hydrocarbons.
b H2CO was detected using a pair of absorptions lines at 1774.67 and 1774.83 cm−1. Two relatively weak water lines bracket these features,
and a very small water line is present in the gap between. The diode used for NO2 was operated at approximately 1606 cm−1 and NO at
approximately 1900 cm1. As operated during these measurements, the 1 s rms precisions for H2CO (diode 1) was normally less than 1.2 ppbv.
For NO2 (diode 2) the 1 s rms precision was 0.8 ppbv. NH3 was operated with a quantum cascade laser at approximately 960 cm−1.
c The detection limits from individual species were determined by analyzing periods in which ambient filtered air was sampled and are
reported as three times the standard deviation of the measured mass concentration during those periods.
d The Licor-6262 non-dispersive infrared absorption instrument detects CO2 absorption in the 4.3µm band. Additional details regarding
its performance in this application can be found elsewhere (Herndon et al., 2004). The measured response time of the Licor instrument to
flooding the inlet tip with CO2 free nitrogen gas during these experiments resulted in a 1/e time of 0.9 s.

The challenge then becomes to clearly distinguish between
sampled emission exhaust and background concentrations,
as well as to distinguish and discount emissions from other
non-targeted vehicles. The identification of emission plumes
from the data is accomplished by analyzing the multiple, syn-
chronized, instruments on board the mobile laboratory. In
addition to the pollutant sensors, these include 1) the read-
ings from the sonic anemometer that allow consideration of
the direction and speed of the incoming wind at the sam-
pling port, 2) the images obtained with the video camera for
observing the targeted vehicle, and 3) the real-time data log
notes written by the researchers on-board the mobile labo-
ratory. The use of these tools together with the analyses of
the measured species signals are used to elucidate the pres-
ence of background air and emissions related to the targeted
vehicle. Similarly, the emissions from the mobile laboratory
(vehicle exhaust plus generator exhaust) itself were flagged
out in our database using the same discriminants described
above, plus the fact that the generator emitted characteris-

tic high levels of methanol. As described in Fig. 1, the sig-
nals are correlated as long as they are part of the combustion
products. When chasing a target vehicle, the instruments on
board measure background and in-plume pollutant concen-
trations and their correlation is obtained using CO2 as the
combustion plume tracer. This technique is made possible
by the high time resolution and sensitivity of the instrumen-
tation that is capable of capturing and quantifying the rapidly
changing emission concentrations.

In our analysis, we considered a chase event useful when
the duration of the chase was at least 5 min, in order to char-
acterize the emissions with a sufficient number of plume in-
tercept measurements. After quality assurance procedures, a
dataset of about 110 h containing valid 1-s data points for
various species was obtained covering a wide area of the
city. A total of 345 events with valid emission ratios were
obtained with the procedure described above. Table 2 spec-
ifies the sample size and types of vehicles measured during
the experiment. We estimated fleet average emission ratios
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Table 2. Chase and fleet average vehicle emissions experiments.

Event or chase
type

Sample size MCMA fleet sizec Description

LDV 119 2 700 000 Fleet averaged emissions of Light Duty Vehiclesa

HDT 61 75 000 Heavy Duty Trucks (e.g. heavy trucks, tractor trailers)
COL 71 32 000 Colectivosb

URB 37 30 000 Urban busesb

CHR 34 22 000 Inter-city buses or charters
Othersd 23 620 000 Includes combis, motorcycles, pickups, and non LDV vehicles≤3 tons

a Includes events classified as SAG, “Stop and Go” (sampling size 12), TRA “Traffic state” (sampling size 19), and CRU, “cruising at high
speed” (sampling size 21), see text for details.
b Colectivos are medium-size very popular public transport vehicles in the MCMA (for transporting about 25 people) powered by gasoline
fuel. Colectivos powered by CNG or LPG are denominated here as COLg (sampling size 26). Urban buses are intra-city diesel buses. See
text for details.
c Rounded values from the 2002 MCMA Emissions Inventory (SMA, 2004). Number of charters obtained from “Pasaje del Sevicio Publico
Federal de Autotransporte” in GDF (2000).
d For our measurements, “Others” mean isolated emission plumes, fixed sampling or in specific places.

for light duty vehicles using the sampling periods when the
mobile lab was surrounded by light duty gasoline vehicles
under three different traffic conditions. We considered “Stop
and Go” (SAG) situations when the mobile lab was in very
heavy traffic conditions, with vehicle speeds lower than 16
(±8) km/h for 5 min or more. TRA events represent heavy
traffic conditions with prevailing moderate speed, less than
40 (±16) km/h, for 5 or more minutes, this is the most preva-
lent traffic mode in the MCMA. Finally, CRU conditions rep-
resent sampling periods with prevailing cruising at moderate
and high speed in the city, higher than 56 km/h, for 5 min
or more. These traffic conditions accounted for 52 classified
fleet averaged traffic mode events. As shown in Table 2, 67
other measurements of light duty gasoline vehicle emissions
were considered but they were not classified within these cat-
egories. In those cases, the classification was not possible ei-
ther because the vehicle speed was not within a given vehicle
speed category for more than 5 min (changing from one cat-
egory to another, producing a combination of emission traf-
fic modes) or because there was a strong influence from the
emissions of an individual vehicle nearby (therefore biasing
the fleet averaged sample).

Similar to the procedure used by Stedman et al. (1997), on
the basis of the central limit theorem, the averaged emission
ratios obtained should be approximately normally distributed
if the samples were unbiased and sufficiently large. There-
fore, the estimation of fleet average emission ratios with this
method relies on the collection of average values represent-
ing large, unbiased samples of fleet emission measurements
of light duty vehicles surrounding the mobile lab. Heavy duty
trucks and the other public transport vehicles that were indi-
vidually sampled, as reported in Table 2, are intrinsically eas-
ier to measure with the chasing technique due to the strength
of their emission signal and to the ease of following them
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Fig. 1. Time series of benzene, H2CO, and NOy in ppb units show-
ing correlation with CO2 in ppm units. Estimated emission ratios in
right-hand panels are in ppb/ppm units.

while driving (Herndon et al., 2005a). The mobile laboratory
also obtained information from other two types of events: 1)
stationary periods when the mobile laboratory was located
along a busy road or near a specific emission source, and 2)
well-identified individual exhaust plumes for target vehicles
but for shorter periods of time (less than 5 min). We do not
include the analysis of such periods here.
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2.1 Data processing procedure

The procedure for processing the data is described in the fol-
lowing paragraphs. Consider the general case of a target ve-
hicle whose concentration at the emission exhaust location
is given byCe

i for a given speciesi while Ca
i represents the

ambient or background concentration for the same speciesi.
In this way, the vehicle’s emission and background concen-
trations for CO2 would be given byCe

CO2 andCa
CO2, respec-

tively. Let the dilutionf be defined as the volume fraction
of the exhaust plume for a given sampled volume in the mea-
surement period (∼1 s). If the superscriptm refers to the
measured concentration:

f =
Cm

i − Ca
i

Ce
i − Ca

i

. (1)

We can solve forCm
i as:

Cm
i = (1 − f )Ca

i + f Ce
i . (2)

If f =1, this implies that a pure exhaust is being measured and
whenf =0, strictly ambient levels are being sampled. Now
we make use of the equal dilution assumption for the species
i and for our tracer species CO2, from Eq. (1):

Cm
i − Ca

i

Ce
i − Ca

i

=
Cm

CO2 − Ca
CO2

Ce
CO2 − Ca

CO2
. (3)

We are interested measuring the emission ratio for the species
i defined in this context as:

ERi =
Ce

i

Ce
CO2

. (4)

We can obtain this quantity from Eq. (3) after a series of
simplifications. For example, with a typical concentration
of CO2 in an engine exit plume in excess of 2% and ambient
levels generally below 400 ppm, the following approxima-
tion is good to better than 2%.

Ce
CO2 − Ca

CO2
∼= Ce

CO2. (5)

Similarly, for other species it is common to observe
Ca

i /Ce
i values smaller than 0.05. Equation (4) simplifies to

the intuitive expression,

ERi =
Ce

i

Ce
CO2

∼=
Cm

i − Ca
i

Cm
CO2 − Ca

CO2
. (6)

If the concentrationCm
i is plotted againstCm

CO2 a very simple
diagnostic arises, which resembles a locus of points around
the ambient concentrations ofi and CO2 with rays extending
toward higher concentrations of CO2 when a plume is sam-
pled. The slope of the correlation plot is indicative of the
Emission Ratio for speciesi under the conditions in which
the partially sampled plume was emitted.

3 Results

The measured emission ratios for the event types described
above are shown in Table 3. Except for the fleet averaged
light duty gasoline vehicles (SAG, TRA and CRU), the re-
ported emission ratios correspond to the averaged values of
the emissions from individual vehicle classes. Since the basis
of the analytical procedure uses the covariance of the emit-
ted species concentration to the emitted CO2 concentration
under an equal dilution assumption, and therefore avoiding
having to resolve the highly transient plume dilution behav-
ior, we have excluded emission ratios for species measured
with the relatively lower sampling frequency instruments de-
scribed in Table 1. In that way, we avoid the uncertainties
resulting from correlating a low frequency signal with high
frequency signals. An alternative approach to estimating fleet
average emissions of pollutants measured with the slower re-
sponse instrument instruments on-board the Aerodyne Mo-
bile Laboratory during MCMA-2003, is presented by Jiang
et al. (2005).

The video camera images were used during the analysis
process to discriminate target vehicle plumes from other po-
tential sources. During the chasing experiments, the target
vehicle’s license plate was recorded so registration data could
be accessed for additional information. The number of vehi-
cles for which valid history information was available was
too small to further classify the results by vehicle age and
model.

Due to their large size, high exhaust volume, and relatively
slow average speeds, public transport vehicles were sampled
through individual chase events and were classified in this
work as “colectivos” (COL), urban buses (URB), and char-
ter buses (CHA). Colectivos are medium-size buses, with ca-
pacity for transporting about 25 people, and are very popular
and intensively used throughout the MCMA. Colectivos are
mainly gasoline-powered, although a small but growing frac-
tion of them (∼5%) are powered by CNG or LPG (CAM,
2004). By choosing a route used by colectivos fueled with
CNG, we were able to sample 26 of this colectivo sub-class,
classifying them as COLg. The URB category refers to intra-
city urban buses with capacity for transporting about 50 peo-
ple; these buses were randomly selected as the mobile lab
encountered them during on-road operations and a variety
of transportation routes (and bus companies) were sampled.
Charter buses, inter-city buses with a larger transport capac-
ity than colectivos or urban buses, were sampled near the
major bus terminal in the city. Here, the mobile lab chased
the charter buses on a looped circuit as they were entering
or leaving the facility. Sampled heavy-duty trucks (HDT) re-
fer to large trucks such as tractor trailers, food supply and
construction vehicles.

Ratios of emitted species reported in Table 3, such as
aromatic VOCs/NOy and H2CO/CH3CHO, for each vehicle
or fleet type classification were obtained from the ratios of
one-second measurements primary data as opposed to using
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Table 3. Measured emission ratios in [ppb/ppm] during the MCMA-2003 field campaign.

Medium vehicles Light duty vehicles Heavy duty vehicles
Pollutant COLd

(SD)c
COLg
(SD)

LDV
(SD)

SAG
(SD)

TRA
(SD)

CRU
(SD)

URB
(SD)

CHR
(SD)

HDT
(SD)

NO 7.8
(3.0)

10.6
(4.1)

4.7
(2.4)

3.2
(1.0)

5.1
(2.0)

5.1
(1.6)

6.0
(1.5)

6.5
(1.9)

7.2
(3.0)

NO2 0.62
(0.4)

0.66
(0.32)

0.53
(0.45)

0.45
(0.42)

0.43
(0.33)

0.71
(0.30)

0.60
(0.26)

0.78
(0.33)

0.70
(0.35)

NO 6.88
(3.4)

9.40
(3.8)

4.14
(2.4)

2.92
(0.9)

4.58
(2.2)

4.33
(1.7)

5.33
(1.6)

6.22
(1.9)

6.67
(3.2)

H2CO 0.33
(0.12)

0.34
(0.13)

0.25
(0.11)

0.23
(0.06)

0.23
(0.07)

0.20
(0.07)

0.11
(0.07)

0.07
(0.05)

0.12
(0.08)

CH3CO 0.04
(0.02)

0.06
(0.01)

0.04
(0.02)

0.04
(0.02)

0.04
(0.02)

0.04
(0.01)

0.02
(0.02)

0.02
(0.02)

0.03
(0.02)

H2CO/CH3CHOa 8.1
(2.3)

6.4
(1.1)

6.7
(2.9)

6.2
(1.3)

6.2
(2.0)

6.4
(1.8)

7.2
(2.4)

4.9
(3.2)

5.1
(2.3)

Benzene 0.08
(0.04)

0.03
(0.01)

0.13
(0.08)

0.14
(0.04)

0.10
(0.03)

0.10
(0.04)

0.04
(0.05)

0.02
(0.02)

0.03
(0.03)

Toluene 0.14
(0.07)

0.04
(0.02)

0.25
(0.12)

0.28
(0.07)

0.18
(0.06)

0.18
(0.08)

0.05
(0.05)

0.02
(0.02)

0.04
(0.04)

C2-Benzene 0.19
(0.09)

0.05
(0.04)

0.32
(0.16)

0.32
(0.11)

0.22
(0.09)

0.19
(0.09)

0.06
(0.06)

0.03
(0.04)

0.05
(0.05)

C3-Benzene 0.16
(0.08)

0.03
(0.02)

0.24
(0.15)

0.24
(0.09)

0.15
(0.05)

0.15
(0.08)

0.05
(0.06)

0.03
(0.05)

0.05
(0.06)

m/z57e 0.26
(0.21)

0.03
(0.07)

0.38
(0.23)

0.39
(0.10)

0.29
(0.12)

0.28
(0.10)

0.09
(0.07)

0.04
(0.04)

0.09
(0.08)

NH3 NDc ND 0.12
(0.07)

0.09
(0.05)

0.09
(0.06)

0.11
(0.07)

0.04
(0.03)

ND 0.06
(0.04)

Aromatics/NOa,b 0.09
(0.08)

0.02
(0.01)

0.30
(0.27)

0.31
(0.10)

0.14
(0.07)

0.11
(0.05)

0.03
(0.03)

0.02
(0.02)

0.03
(0.03)

a Obtained from individual emission ratios, see text for details, units in ppb/ppb.
b For “aromatic VOCs” we considered the sum of Benzene, Toluene, C2-Benzene (sum of xylene isomers, ethylbenzene, and benzaldehyde)
and C3-Benzene (sum of C9H12 isomers and C8H8O isomers).
c SD: 1-standard deviation; ND: Non determined
d See Table 2 and text for definition of vehicle chasses.
e m/z57 represents the sum of MTBE and butenes for gasoline vehicles. Neutral components have not been assigned to this mass for CNG
and diesel vehicles.

averaged ratios. In Fig. 2 we present the frequency distri-
butions of measured emission ratios for various species and
ratios of emitted species. The frequency distributions were
obtained using all valid emission measurements for all the
sampled species and vehicle categories. Similarly, frequency
distributions for ratios of emitted species were also obtained
from the ratios of individual, one-second, measurements.

4 Discussion

An important aspect of the analysis of the data collected is to
determine how representative it is of the vehicle fleet emis-
sions in the MCMA. Given the large population of the vehi-
cle fleet, the presence of various driving modes and the vari-
ability of all other parameters that play a role in the emission

process in real world driving conditions, this is certainly an
important issue to consider for any emission measurement
technique. As shown in Table 2, the large size of the vehi-
cle fleet in the MCMA for all vehicle categories predisposes
a large sample size for any estimate attempt for a sample to
be representative with traditional sampling techniques. Nev-
ertheless, current estimations of emission factors for LDVs
in the Emissions Inventory for the MCMA are based on
a very small number of measurements performed in 1999
with laboratory-controlled conditions of individual vehicles
(CAM, 2004). Furthermore, current estimates of emission
factors for HDTs in the same inventory are entirely based
on modeling estimates using a modified version of Mobile5,
the U.S. Environmental Protection Agency’s motor vehicle
emission inventory model.

www.atmos-chem-phys.net/6/5129/2006/ Atmos. Chem. Phys., 6, 5129–5142, 2006
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Fig. 2. Frequency distributions of measured emission ratios [ppb/ppm] during the MCMA.

a (m/z57)/CO2 represents MTBE + butenes for gasoline vehicles.

In this work, we have extended the analysis procedure for
the chase technique by considering measurements for both
fleet averaged and individual in-class vehicle emissions. As
described above, we estimated fleet LDV average emissions
by analyzing the sampling periods when the mobile labora-
tory is measuring the mixed background air with the emis-
sions of the surrounding vehicles for sustained periods of
time. The assumption in this procedure is that the sampled
emissions from a multitude of sources are sufficiently well
mixed before arriving to the mobile lab sampling port. Since
this condition is not totally controlled a priori for the experi-
ment, it has to be determined from the analysis of the emis-

sion signals, the anemometer readings and the video camera.
We have further classified such periods by driving state as
SAG, TRA and CRU with the velocity criteria previously de-
scribed. On the basis of the central limit theorem, the ob-
tained fleet averages for each driving state should also be ap-
proximately normally distributed if the samples are unbiased
and sufficiently large. In such case, symmetric confidence
intervals around the average could be established for fleet
emissions estimates.

The variability in the emission estimates can be observed
in the form of standard deviations reported in Table 3. Except
for NO2, the results for fleet vehicle estimates show standard
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deviations that are significantly smaller than the observed av-
eraged emission values. This is expected for fleet average
estimates using the central limit theorem. NO2 is a difficult
species to measure with this technique due to its high reac-
tivity and to potential ambient production via the reaction of
NO with oxidizing species, such as ozone, that can be sig-
nificant in a highly polluted atmosphere. In some cases, the
sum of the NO and NO2 emission ratios is greater than the
NOy emission ratio. Although this is not physically possible
for an individual vehicle, it may occur for the average values
of groups of vehicles.

Due to the relatively small sample size and the lack of
vehicle model year information, in the case of the individ-
ual chase mode emission measurements of HDT and pub-
lic transport vehicles the observed variability may not rep-
resent the true variability of the population of emissions for
these vehicle categories. The larger observed variability in
these cases is likely the result of the large range of vehicles
models, the variety of engine, fuel delivery, and emission
control technologies, distribution of vehicle age and mainte-
nance quality, and the variability of other parameters affect-
ing emissions in real world driving conditions. As such, the
averages and confidence intervals for these categories may
not be representative of the entire fleet. Unless there is a sig-
nificant increase of the sampling size, however, at this point
the question of how much the obtained frequency distribu-
tions would change by increasing the sampling size is un-
solved.

In order to further reduce any systematic bias in the mea-
sured emission ratios from individual chasing events reported
in Table 3, during the experiment we intentionally did not fol-
low a given vehicle class on the basis of the visible strength
and blackness of its exhaust. That procedure helped to avoid
over sampling of high emitting vehicles in the sampling pop-
ulation. Similarly, since the mobile laboratory followed dif-
ferent driving routes each day during the campaign through-
out the city, the sampled emissions are most likely not biased
by spatial differences in vehicle populations.

The obtained emission frequency distributions shown in
Fig. 2 provide us with some interesting insights into the mo-
bile emission characteristics in the MCMA. Different from a
smoothed distribution, a pronounced cityscape type of graph
may indicate the need for a larger sampling size population
in our measurements. This is especially evident in the NH3
emission distribution, which was constructed from about
25% of the sample size for the other species. The smaller
sample size for NH3 was due to the need to divert a LiCOR
CO2 instrument periodically to a shorter sampling inlet de-
signed to avoid surface losses of NH3 as well as some in-
strumental problems characteristic of a first field deployment.
Nevertheless, to our knowledge, this represents the first field
deployment of a quantum cascade TILDAS on-board any
mobile laboratory.

We define aromatic VOCs as the sum of benzene, toluene,
C2-benzene (sum of xylene isomers, ethylbenzene, and ben-

zaldehyde) and C3-benzene (sum of C9H12 isomers and
C8H8O isomers) as described in Rogers et al. (2006). Fig-
ure 2 shows that these aromatic VOC/CO2 emission ratios
tend to have higher frequency around a mean value but are
also severely skewed towards high values of emission ratios.
Although this behavior is often seen with VOC emission dis-
tributions, we observe that the reported distributions of the
ratios benzene/toluene and H2CO/CH3CHO tend to be nor-
mally distributed, indicating the co-emission nature of these
species in real world driving conditions.

The measured aromatic VOCs/NOy ratio presented in
Fig. 2 shows a highly skewed but smoothly continuous hy-
perbola type distribution. Since the detected aromatic VOC
content of the emissions from the CNG colectivos are very
low and close to the instrumental and analytical uncertainty,
we have excluded them from the plotted aromatic species
distributions. Therefore, an explanation for the behavior of
the aromatic VOCs/NOy distribution may rely on the emis-
sion characteristics of the vehicle fleet sampled (populations
of vehicles with low versus high aromatic VOCs/NOy emis-
sions) and on the fact that the two major fuel types, gaso-
line and diesel, are included in the sample. To investigate
which of these two aspects has a greater impact on the aro-
matic VOCs/NOy distribution we included in Fig. 2 the cor-
responding frequency distributions of gasoline and diesel ve-
hicles that were sampled. The comparison of these distribu-
tions reveals that within the gasoline vehicle fleet low and
high emitting aromatic VOCs/NOy vehicles can be distin-
guished. As long as the frequency distribution is represen-
tative of the aromatic VOCs/NOy ratio in the vehicle fleet,
this result has important implications for the design of air
quality control strategies by allowing the possibility to direct
air quality emission reduction strategies towards controlling
the aromatic VOCs/NOy ratio in different parts of the vehicle
fleet and/or ranges of driving modes.

Public transport colectivos and buses are a very important
part of the transport system in the MCMA (Gakenheimer et
al., 2002). As an example, colectivos represent only about
1% of the vehicle fleet in the MCMA but, together with the
other small popular public transport vehicle called “combis”,
they account for almost 60% of the trips per person per day
(CAM, 2004). Results presented in Table 3 indicate that, on
a mole per mole basis, colectivos showed the highest NOx
emissions ratios among the sampled vehicles, especially for
colectivos fueled with CNG. The higher NOx emissions ra-
tios for CNG colectivos is in accordance with their corre-
sponding higher CH3CHO/H2CO ratio as compared to gaso-
line fueled colectivos. The higher aldehyde emission ratios
found in this work agree with dynamometer studies for CNG
heavy duty vehicles performed by Huai et al. (2003) and
Kado et al. (2005).

The quantification of high aldehyde emissions from
MCMA vehicles may have important impacts on the photo-
chemistry in urban areas (Garcı́a et al., 2005) and the gen-
erally high emissions of aromatic and aldehyde air toxics
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Fig. 3. Comparison of NOx emission factors obtained in this work (box plots) with estimates from the official 2002 MCMA Emissions
Inventory (EI) (solid bars) and other studies (light lines) for panels:(a) colectivo buses,(b) Ligth duty Gasoline Vehicle (LDGV), and(c)
Heavy Duty Diesel Trucks (HDDT). Box plots represent the 10, 25, 75, and 90 percentiles along with the mean of our measurements. Filled
bars represent the minimum and the maximum EI estimates for the corresponding vehicle category. Rf. a: Schifter et al. (2005); Rf. b:
Schifter et al. (2004); Rf. c: Schifter et al. (2000).

a For this comparison, we used fuel densities of 0.75, 0.85 and 0.41 kg/l for gasoline, diesel ad CNG fuels, respectively. Similarly, we
considered 70.3, 72.5 and 62.5 moles of C per kg of fuel for gasoline, diesel ad CNG, respectively. Fuel economies were assumed as follows:
10, 2.1 and 1.6 km/l for gasoline, diesel and CNG fleets, respectively.

may have important health implications. H2CO/CH3CHO
ratios showed a value of 6.2±1.8 [ppb/ppb] averaged over all
gasoline vehicle fleet emission measurements and the driv-
ing mode did not significantly affect this ratio. Measured
emissions indicate that the emitted species that are most in-
fluenced by driving mode are NOx, aromatic VOCs and their
aromatic VOCs/NOy ratio. That effect was only investigated
in the fleet average gasoline vehicle fleet and not in the indi-
vidual chase emission measurements. As such, the observed
variability within individual vehicle categories may be due to
internal variability of the specific power of the vehicles, vehi-
cle age and model, and emission control technology, among
others. Nevertheless, the observed variability within driving
modes for averaged vehicle fleet emissions indicates that this
type of analysis for ratios of selected VOC to NOx species
should be considered during the design of air quality control
strategies that are based on the modification of the driving
patterns, or modes, within the city.

An important aspect of this work lies in the comparison of
the obtained results with the estimates for emission factors
used in the official emissions inventory as well as with other
measurements performed in the MCMA and other cities.
The emissions inventory in the MCMA has been revised or
updated every two years since 1994 and with homogenous
methodologies since 1998. For comparisons with our re-
sults, we use the 2002 official Emissions Inventory (EI) for
the MCMA considering the categories of light duty vehicles,
colectivos and heavy duty trucks for NOx emission factors.
We present the comparison of our results with other estima-
tions of emission factors in Fig. 3. The box plots represent
the 10th percentile, 1st quartile, mean, 3rd quartile, and 90th

percentile of our measurements for each category whereas
the thinner adjacent colored bars represent the range of emis-
sion factors used in the emissions inventory. Light bars rep-
resent the estimations of emission factors using other tech-
niques. In order to compare the obtained emission ratios
in ppb/ppm units with other measurements performed with
different sampling techniques it is necessary to make use of
fuel properties and stoichiometric combustion assumptions.
Data considered for this purpose are presented in the notes
for Fig. 3.

Figure 3 shows that NOx emissions factors used in the
emissions inventory for light duty vehicles are within the
range of our measurement results and that a similar range
of values are obtained with other techniques for this category.
Note however that in Fig. 3 the range for the emission factors
used in the emissions inventory considers the minimum and
the maximum values, which are related to newest and old-
est vehicle model years, and does not represent vehicle fleet
estimates. However, Schifter et al. (2005) represents values
taken from the minimum and maximum averaged emission
factors for light duty vehicles from a remote sensing study
performed in 2000 in the MCMA. The other two references
shown for comparison of LDV emission factors in Fig. 3,
Schifter et al. (2004) and Schifter et al. (2000), represent lab-
oratory dynamometer studies with prescribed driving cycles.
Interestingly, the reported emission factors among the differ-
ent techniques are similar. Nevertheless, the reported values
are not weighted by the number of vehicles or any other ac-
tivity parameter that may indicate their relative importance
on the estimation of NOx emissions.
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Table 4. Comparison of emissions (in tons/year) estimated in this work with emissions estimated in other studies for the MCMA and other
U.S. cities.

This workf 2002 EIa Jiang et al. (2005)d Schifter et
al. (2000)b

Schifter et
al. (2005)c

Los Angelese

NOx 100 600±29 200 92 500 120 000±3000 ND 100 200±23 500 280 000
Benzene 4090±850 NDh 3800±100 1590 ND 2290
Toluene 10 100±2200 ND ND ND ND ND
H2CO 3020±720 ND ND 397 ND 1900
CH3CHO 770±230 ND ND 167 ND 605
NH3 900±500 3120 ND ND ND 8800–10 600g

a Considers the emissions from the gasoline vehicle fleet: private vehicles, taxis, combis, colectivos and pickups.
b Based on a laboratory study of around 50 vehicles (ages from 1984 to 1999) tested under a FTP cycle.
c Based on a remote sensing study in 2000 for the MCMA.
d Considers the total vehicle fleet, LDVs and HDVs.
e Total on-road gasoline mobile emissions estimates for 2004 in the South Coast Air Basin. Source: CARB, 2005.
f Uses gasoline fuel consumption by the transport sector alone estimated for 2002 in the MCMA Emissions Inventory and the fuel properties
reported in Fig. 3 of this document.
g Data includes all NH3 on-road mobile emissions taken from Fraser and Cass, 1998.
h ND: A value Non Determined in the study.

A similar comparison of our results with the NOx emission
factors used in the MCMA emissions inventory for public
transport vehicles indicates a possible overestimation in the
gasoline-powered colectivos category. Similarly, our results
indicate a possibly severe underestimation of NOx emission
factors for CNG-powered colectivos. The emissions inven-
tory uses the same NOx emission factors for our classified
vehicle categories of URB, CHR and HDT, and their range
falls within our results. However, in contrast to the com-
parison with the light duty vehicle fleet, these results corre-
spond to individual vehicle measurements and therefore the
observed variability may or may not be representative of a
given vehicle category. Note, however, that in the case of
the CNG colectivos, the range estimated in the emissions in-
ventory is too small compared to the range of the observed
variability. Therefore, assuming that the observed variabil-
ity is real, this may be indicative of a real underestimation
of NOx emission factors used in the emissions inventory for
this category.

The analysis of a possible under/over estimation of emis-
sion factors is only a part of the validation of an emissions in-
ventory. Since the emissions inventory is based on assumed
values for activity parameters (e.g. distances traveled) that
may introduce further uncertainty in the estimation of mo-
bile emissions, the final estimation of emissions is not triv-
ial. A possible way to circumvent this difficulty is to con-
sider the use of fuel based emission factors together with es-
timates of fuel consumption in a given region (Singer and
Harley, 2000). We have followed this approach transforming
our measured emission ratios to units of grams per unit of
fuel consumed using the previously described assumptions of
fuel properties and vehicle fuel efficiency. In the transforma-

tion of the emission factors we only considered the gasoline
vehicle fleet averaged estimates.

Table 4 shows the comparison of our emission estimates
for the MCMA with other studies. The results indicate that
NOx emissions estimated for LDVs in the emissions inven-
tory are within the range estimated using the fuel based emis-
sion factors in this work of 100 600±29 200 metric tons per
year. The upper and lower limits correspond to 1 standard
deviation obtained from the observed emission factor for the
LDV category. Although Table 4 shows that the comparisons
for the total NOx emissions for light duty vehicles between
the emission inventory and this work may be within the con-
fidence intervals, the possible under/over estimation of emis-
sion factors for individual vehicles ages and models may still
be present in the emissions inventory. The application of the
chase technique for systematically comparing emission fac-
tors by vehicle age and model would then be desirable to
address this question.

Our results indicate larger emission estimates for ben-
zene, toluene, formaldehyde and acetaldehyde than Schifter
et al. (2000), which was based on a limited sample of vehicles
tested in controlled laboratory conditions. The emissions in-
ventory does not provide estimates of speciated hydrocarbon
emissions and therefore, no comparison is possible for these
species. In Table 4 we also show the comparison of estimated
toxic VOC emissions between Los Angeles and the MCMA.
The results indicate that the annual estimates of benzene, ac-
etaldehyde and formaldehyde LDV emissions in the MCMA
are similar or higher than the corresponding estimated toxic
VOC emissions in Los Angeles. For the year of compar-
ison (2003), the vehicle fleet in the Los Angeles area was
3.2 times higher than the entire fleet in the MCMA and the

www.atmos-chem-phys.net/6/5129/2006/ Atmos. Chem. Phys., 6, 5129–5142, 2006



5140 M. Zavala et al.: Characterization of on-road vehicle emissions in Mexico City

annual gasoline consumption was 3.3 times higher (Molina et
al., 2004). Besides the larger size of the vehicle fleet and the
corresponding higher fuel consumption in the Los Angeles
area, two other important aspects of the comparison are the
older vehicle fleet composition and the smaller fraction of
vehicles with emission control technologies in the MCMA.
For example, only about 30% of the vehicle fleet count with
Tier (0 and 1) control emission technologies in the MCMA
as compared to 91% in Los Angeles (Molina and Molina,
2002). This indicates that an aged vehicle fleet and a smaller
fraction of vehicles with efficient emission control technolo-
gies may have a significant impact on the overall burden of
toxic VOC emissions in the MCMA. Bishop et al. (2001) has
reported a slight but statistically significant increase of NO
with increased altitude for heavy duty trucks. Nevertheless,
reasons for the altitude relationship are unclear and may be
subject to particular characteristics and composition of the
sampled vehicle fleet.

As noted above, the sampling size of the measured on-
road NH3 emissions was significantly smaller than the rest
of the reported species due to the lack of a dedicated fast re-
sponse CO2 monitor on the short, fast flow inlet necessary
for NH3 measurements and some QC-TILDAS instrument
problems characteristic of a first field deployment. As such,
the NH3 emission estimate in Table 4 has large confidence
intervals and may not be fully representative of the LDV ve-
hicle fleet. Nevertheless, the entire range estimate is signif-
icantly smaller than the vehicle NH3 emissions estimated in
the current model based emissions inventory for the MCMA
and than the on-road NH3 emission estimate in Los Ange-
les. Given the median age of the MCMA vehicle fleet, this is
not surprising since NH3 emissions are dominated by newer
gasoline powered vehicles equipped with NOx reduction cat-
alysts. In our measurements, NH3 emissions for MCMA
LDVs seem to be much higher for newer vehicles, which
are presumably equipped with reduction catalysts for NOx
and appear to be relatively independent of driving state. NH3
emitted from on-road vehicles may react rapidly with acid
vapors to form high burdens of secondary particulate matter
near heavily traveled roadways, impacting fine particle expo-
sure levels for travelers and near by residents. The level of
NH3 emissions from newer LDV vehicles in the MCMA do
appear to be significantly higher than the emissions of simi-
lar vehicles in the U.S. (Herndon et al., 2005b). The impact
of vehicular NH3 emissions on the MCMA NH3 emission
inventory will be addressed more thoroughly in a separate
publication (Shorter et al., 20061).

1Shorter, J. H., Herndon, S. C., Zahniser, M. S., et al.: At-
mospheric Ammonia in Mexico City during MCMA-2003, Atmos.
Chem. Phys. Discuss., to be submitted, 2006.

5 Conclusions

In this work, we have extended the analysis procedure for
the on-road mobile laboratory measurements by considering
measurements of both fleet averaged emission measurements
and individual vehicle emissions. The measured emission ra-
tios represent a sample of emissions of in-use vehicles under
real world driving conditions for the MCMA. From the rel-
ative amounts of NOx and selected VOC’s sampled, the re-
sults indicate that the technique is capable of differentiating
among vehicle categories and fuel type in real world driving
conditions. We have further classified our results by vehi-
cle categories and driving mode using pre-established veloc-
ity criteria in our analysis. Our measurements of emission
ratios for both CNG and gasoline powered “colectivos” in-
dicate that – in a mole per mole basis – have significantly
larger NOx and aldehydes emissions ratios as compared to
other sampled vehicles in the MCMA. Similarly, ratios of se-
lected VOCs and NOy showed a strong dependence on traffic
mode. The potential implications of these results are impor-
tant for the design of air quality control strategies based on
the modification of the driving modes and the retrofitting of
public transport vehicles.

By using a fuel consumption based approach together with
the measured emission factors in this work, we estimate
NOx emissions as 100 600±29 200 metric tons per year for
LDGVs in the MCMA for 2003. According to these results,
annual NOx emissions estimated in the emissions inventory
for this category are within the range of our estimated NOx
annual emissions. However, we did not explore the classi-
fication of emissions by vehicle age and under/over estima-
tions of NOx emissions for individual vehicle age categories
can still exist in the emissions inventory. We also have esti-
mated annual emissions for benzene, toluene, formaldehyde
and acetaldehyde in the MCMA for the first time following
a fuel-based procedure. The results indicate that the annual
estimates of benzene, acetaldehyde and formaldehyde LDV
emissions in the MCMA may be greater than previously re-
ported and that their magnitudes are similar or higher than the
corresponding estimated toxic VOC emissions in Los Ange-
les and other U.S. cities. Vehicle age fleet composition and
the relatively small fraction of vehicles with emission control
technologies in the MCMA may significantly contribute for
these large toxic emissions. Finally, ammonia emitted from
newer reductive catalyst equipped LDVs may react rapidly
with air vapors to form high burdens of secondary particu-
late matter near heavily traveled roadways.

Acknowledgements.The authors gratefully acknowledge the
Mexican Metropolitan Environmental Commission, the U.S.
National Science Foundation (ATM-0308748 and ATM-0528227)
and the Department of Energy (Award DE-FG02-05ER63980 and
DE-FG02-05ER3982) for financial support. Funding for the PTR-
MS instrument was provided by the National Science Foundation
Major Research Instrumentation Program, Murdock Charitable
Trust and Montana State University. M. Zavala is a Molina Fellow

Atmos. Chem. Phys., 6, 5129–5142, 2006 www.atmos-chem-phys.net/6/5129/2006/



M. Zavala et al.: Characterization of on-road vehicle emissions in Mexico City 5141

at MIT. We thank J. Sarmiento for providing the emissions in-
ventory data and to N. Rodrı́guez for the gasoline sales information.

Edited by: U. P̈oschl

References

GDF (Gobierno del Distrito Federal): Agenda estadistica del dis-
trito federal-Transporte, Gobierno de México, México, available
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denas, B., Bernabé, R. M., Márquez, C., Gaffney, J. S., Marley,
N. A., Laskin, A., Shutthanandan, V., Xie, Y., Brune, W., Lesher,
R., Shirley, T., and Jimenez, J. L.: Characterization of ambient
aerosols in Mexico City during the MCMA-2003 campaign with
Aerosol Mass Spectrometry: results from the CENICA Super-
site, Atmos. Chem. Phys., 6, 925–946, 2006,
http://www.atmos-chem-phys.net/6/925/2006/.
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