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Abstract. The statistical variability of globally averaged
MODIS aerosol optical thickness at 0.55µm (AOT) and top
of atmosphere CERES cloud-free shortwave radiative effect
(SWRE) is presented. Statistical variability is defined as
the robustness of globally averaged statistics relative to data
distribution. At the CERES footprint level, which we la-
bel “raw data”, both the AOT and SWRE data derived from
clear-sky CERES-SSF products show significant deviations
from a normal distribution as evidenced by high skewness
values. The spatial and temporal distribution of the data is
also not uniform, with a greater concentration of data oc-
curring in aerosol heavy-regions. As a result, globally aver-
aged AOT and SWRE are overestimated when derived from
raw data alone. To compensate, raw data are gridded into
2×2 degree grid-cells (called “gridded” data) to reduce the
effect of spatial non-uniformity. However, the underlying
non-normal distribution remains and manifests itself by in-
creasing the uncertainty of grid-cell values. Globally av-
eraged AOT and SWRE derived from a gridded dataset are
substantially lower than those derived from raw data alone.
The range of globally averaged AOT and SWRE values sug-
gests that up to a 50% statistical variability exists, much of
which is directly tied to how the data are manipulated prior to
averaging. This variability increases when analyzing aerosol
components (e.g. anthropogenic) since component AOT (and
SWRE) may not exist at all locations were AOT is present.
As a result, regions where a particular component AOT does
not exist must either not be included in the global average or
have data within these regions set to null values. However,
each method produces significantly different results. The re-
sults of this work indicate simple mean and standard devia-
tion statistics do not adequately describe global aerosol cli-
mate forcing data sets like the one used here. We demon-
strate that placing raw observations on to a uniform grid is a
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necessary step before calculating global statistics. However,
this by no means eliminates uncertainty in globally averaged
AOT and SWRE values, while adding its own set of assump-
tions. When reporting any globally averaged statistic, it is
important to report corresponding distribution and coverage
information, in the form of skewness values, probability den-
sity functions, and spatial distribution plots, to help quantify
its usefulness and robustness.

1 Introduction

The difference between top of atmosphere (TOA) clear and
aerosol skies in the shortwave (<4µm) portion of the elec-
tromagnetic spectrum for all aerosols is called the shortwave
aerosol radiative effect (SWRE). Previous studies have used
various methods to determine the global, ocean-only, TOA
SWRE (see Anderson et al., 2005, and Yu et al., 2006, for
reviews). These studies report a globally (and diurnally) av-
eraged SWRE between−4.6 and−5.4 W m−2. The negative
value indicates that over global oceans the aerosols are more
reflective than the background in contrast to the greenhouse
gas forcing values that are positive. The uncertainties asso-
ciated with this number include instrument calibration, qual-
ity of angular models for converting shortwave (SW) radi-
ance into flux, the effect of cloud contamination, assumptions
in aerosol and surface properties (Zhang and Reid, 2006),
and the assumptions made during the calculation of a clear-
sky, aerosol free SW flux background, have been well doc-
umented (Zhang et al., 2005a). These uncertainties can ac-
count for a variation in SWRE of approximately 30% in some
instances (Anderson et al., 2005; Zhang et al., 2005a).

However, one source of uncertainty (or variability) in
globally averaged values has received much less attention,
namely the implicit assumptions made when reporting a
globally averaged statistic. Both TOA SW flux and aerosol
optical thickness (AOT) vary substantially over the large
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spatial and temporal domains used by these studies. An “av-
erage” value is only representative if the source data has a
normal (or Gaussian) distribution (Wilks, 2006). In this pa-
per we will show that SWRE is not normally distributed, and
will note the importance of evaluating additional statistical
measures in describing a global data set.

Additional statistical variability originates from the man-
ner in which the data are manipulated prior to reporting the
global average. Satellite derived datasets such as that used
by Christopher and Zhang (2002) do not have a uniform spa-
tial distribution due to satellite orbit and sensor observing
characteristics. They used CERES pixel level data that has
a nominal spatial resolution of 20 km at nadir that also con-
tains the MODIS AOT convolved within the CERES pixel.
The term “raw data” refers to AOT and SWRE values derived
from individual CERES-resolution pixels. To reduce the ef-
fect of the non-uniform spatial distribution, raw data are grid-
ded (generally to a 2×2 latitude-longitude grids) that we call
“gridded data” using the assumption that each grid-cell caries
an equal weight during the calculation process. While the use
of gridded data can reduce the effect of a non-uniform spatial
distribution of these statistics (assuming some data exist for
all grid-cells), each grid-cell within the gridded data set has a
different statistical meaning. Since the raw data are not uni-
formly distributed, each grid-cell contains differing numbers
of raw pixels. Over a global domain, the number of pixels
used in each grid cell can vary from a single pixel to over a
thousand. The effect of outliers present within sparse data
regions will be magnified, increasing the uncertainty of the
SWRE reported in these regions.

Another common statistic used to describe global radiative
effect is the “aerosol radiative efficiency (Eτ )”. Eτ is defined
simply as the SWRE divided by AOT. This value can either
be calculated on a pixel-by-pixel (or grid-cell) basis or sim-
ply calculated using one global mean SWRE and AOT value.
Since this statistic is calculated by dividing a very small num-
ber (AOT) into a number two orders of magnitude greater
(SWRE), Eτ is very sensitive to small variations in AOT.
For example, Christopher and Zhang (2002) reported an av-
erage maritime AOT of 0.04 with a corresponding SWRE of
−0.9 W m−2, resulting in an efficiency of−22 W m−2τ−1.
Other research (Kaufman et al., 2005a) note a maritime AOT
of 0.06, which if used to calculateEτ would result in a value
of −15 W m−2 τ−1. Thus, even a small error in AOT can
have a large impact on reportedEτ . Eτ can also be defined
as the linear regression coefficient between SWRE and AOT.
This value is much more resilient to changes in AOT average
and provides a method to determine the uncertainty of this
statistic.

A further complication arises when analyzing SWRE as
a function of aerosol type. Using the technique developed
by Kaufman et al. (2005a, b), total aerosol optical thick-
ness can be separated into maritime, dust, and anthropogenic
components. However, this algorithm can produce negative
dust or anthropogenic AOT, which has no physical meaning.

Thus, the assumption is made that an aerosol component is
not present when its component AOT is less than or equal
to zero. This is a perfectly reasonable assumption as some
areas are dominated by certain aerosol types (e.g. dust in
the eastern Atlantic). The complication arises when com-
puting global averages of component AOT and SWRE and
determining regions where a particular aerosol component
exists. Two possibilities are examined. First, pixels where
component AOT does not exist will be ignored and global
averages computed. Another method used by Christopher et
al. (2007), set anthropogenic AOT and SWRE equal to zero
where anthropogenic aerosols are not present, though it was
not explicitly stated. The implications of this assumption will
be explored in Sects. 3 and 4.

Various averaging techniques, which are described in
Sect. 3, will be compared to document the statistical variabil-
ity in SWRE as a function of method used. Advantages and
disadvantages of each technique will be analyzed to deter-
mine which best represents global SWRE. All SWRE values
reported throughout this work will be instantaneous. No di-
urnal or sample bias adjustments (Sample bias exists when
using coarse spatial resolution data sets when compared to
higher resolution MODIS data) will be applied (Zhang et al.,
2005b). This is done to maintain focus on the statistical prop-
erties of the dataset without introducing the additional uncer-
tainties associated with the various adjustment techniques.

2 Data

2.1 Terra CERES SSF data

We utilize 12 months of the CERES Single Satellite Footprint
(SSF) FM1, Edition 2B data from the Terra polar orbiting
satellite (December 2000–November 2001) over the global
oceans between±60◦ latitude. The CERES SSF product
contains the point spread function weighted MODIS (Col-
lection 4) aerosol and cloud properties for each CERES foot-
print. The CERES SSF reports measured TOA radiances,
which are inverted to fluxes using angular dependence mod-
els (ADM’s). We use the Terra ADM’s derived by Zhang et
al. (2005b), which are a function of AOT, surface wind speed
and fine mode fraction. Use of ERBE or TRMM ADM’s in
place of Terra ADMs can affect global instantaneous SWRE
by ±1 W m−2 (Zhang et al., 2005a).

The SWRE is calculated by subtracting CERES SW flux
where aerosols are present from clear-sky flux. “Clear-sky”
is the definition used for regions that are cloud and aerosol-
free. Cloud-free CERES level pixels are defined as those
with >99% CERES clear-sky fraction and with the sepa-
rately measured MODIS cloud fraction≤1% (for viewing
and solar zenith angles<60◦). Since perfectly aerosol-free
conditions never exist, clear-sky flux values are calculated on
a CERES pixel-by-pixel basis by assuming that a linear re-
lationship exists between cloud-free AOT and TOA flux for
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τ0.55<0.4. For 6◦ solar zenith angle bins, the regression co-
efficient and constant between AOT and SW flux are com-
puted. Fclr flux is derived by subtracting the AOT*slope val-
ues from the CERES fluxes (Zhang et al., 2005a).

2.2 Dust, maritime, and anthropogenic AOT components

To determine the maritime, dust, and anthropogenic compo-
nents of the total TOA SWRE, the CERES footprint AOT
(τ0.55) is separated into three components including maritime
sea spray (τma), atmospheric dust (τdu), and anthropogenic
aerosols (τan) (Eq. 1) based on Kaufman et al. (2005a).

τ0.55 = τma + τan + τdu (1)

The maritime contribution can be estimated using surface
wind speed (W) derived from the European Centre for
Medium-Range Weather Forecasts (ECMWF) that is re-
ported within the CERES SSF product (Eq. 2).

τma = 0.007 W(ms−1) + 0.02 (2)

The MODIS total fine mode fraction (f ), can be separated
into the same three components wherefma , fdu, andfan

correspond to the fine mode fraction of maritime, dust, an-
thropogenic aerosols respectively (Eq. 3).

f = [fmaτma + fduτdu + fanτan]/τ0.55 (3)

Dust AOT can then be derived by combining Eqs. (1–3)
and solving forτdu (Eq. 4) using the assumption thatf is
bounded by: (fma ≤f ≤fan). Anthropogenic AOT are cal-
culated by subtractingτdu andτma from τ0.55, which is con-
sistent with Christopher et al. (2006).

τdu = [τ0.55(fan − f ) − τma(fan − fma)]/(fan − fdu) (4)

To calculateτdu, values forfma , fdu, andfan are required.
Kaufman et al. (2005) estimated these values for the tropical
southern Atlantic (0–30◦ S) and reported an error 10–15% in
the retrieved dust AOT (Eq. 5).

fma = 0.3 ± 0.1, fdu = 0.5 ± 0.05, fan = 0.9 ± 0.05 (5)

SWRE is then scaled by the ratio of component AOT to total
AOT to determine the SWRE for each aerosol component
(Christopher and Jones, 2007).

3 Averaging methods

3.1 Simple average

The first averaging method to be analyzed is the sample
mean, which is also the simplest and most readily used statis-
tic to describe large datasets (Wilks, 2006). The mean, or av-
erage, is defined as simply the sum of the sample data values
(xi) divided by the total sample size (n) (Eq. 6). The result-
ing average is generally thought of as a central value, which

best describes a total dataset. Information about the variabil-
ity of the data around the mean value can be determined by
calculating its standard deviation (Eq. 7). Often, error bars
are defined as ranging one or two standard deviations from
the sample mean.

x̄ =
1

n

n∑
i=1

xi (6)

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2 (7)

Unfortunately, the mean statistic is only adequate when the
source data is normally distributed, which is rather uncom-
mon for atmospheric datasets (Wilks, 2006). To compen-
sate, some have chosen to use the median statistics, which
is more robust for non-normally distributed datasets. How-
ever, it still does not provide any information concerning dis-
tribution, therefore the median is not a focus of this study.
The skewness statistic can be used to determine the degree
to which a dataset does not conform to a normal distribution
(Eq. 8).

γ =

1
n−1

n∑
i=1

(xi − x̄)3

s3
(8)

A positive value of the skewness statistic indicates that the
data is biased towards low values with fewer larger val-
ues, which manifest themselves on the right-hand side of
a probability density function. Conversely, negative values
of skewness indicate the presence of many large value data
points, with fewer small values. Skewness values larger than
±2*Standard error of skewness (SEK) indicate that a par-
ticular data distribution cannot be considered normal, that
also indicates that basic mean and standard deviation statis-
tics may not be reliable. The standard error of skewness can
be estimated by Eq. (9).

SEK =

√
6

n
(9)

The CERES-SSF AOT and SWRE datasets used here are also
not homogeneously distributed over space and time that can
potentially bias the results toward a space and time where
observed data may be more common. None of these statistics
take into account the natural spatial and temporal variability
present in a global dataset.

The radiative efficiency (Eτ ) will also be calculated from
the raw data set. The SWRE/AOT and linear regression
methods for calculatingEτ will be compared. One advantage
of this statistic is that the SWRE-AOT relationship should re-
main fairly insensitive to the temporal and spatial variations
within the data (for a constant solar zenith angle and sim-
ilar aerosol characteristics). A regional analysis by Jones
and Christopher (2007b) showed that Eτ varied less than
±5 W m−2 τ−1 for 9 out of 10 study regions.
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3.2 Random sampling

To determine the resiliency to outliers of the simple average
technique, a subset of pixels is randomly sampled and statis-
tics from that random sample computed. For this analysis,
each random sample consists of 5% of the total number of
raw pixels. Mean AOT and SWRE are computed from each
random sample. This process is repeated 500 times to deter-
mine the stability of the overall average. Smaller variations
would indicate that the overall data is resilient to outliers,
which would appear in some, but not all the random sam-
ples. The resulting statistics could then be used to define
a “sampling uncertainty”, one of many uncertainties actually
present. However, even if this sample uncertainty proves low,
it may not adequately describe the data due to the distribu-
tion issues discussed above. Also, the random samples used
here will still have the same spatial and temporal variations
present in the complete dataset.

3.3 Gridded data

To reduce the effect of large spatial inhomogeneities in the
raw data, the data are binned into a uniform grid of 2×2 de-
gree latitude-longitude cells. Each grid-cell value represents
the simple average of all raw pixels located within that par-
ticular cell. The standard deviation, skewness, and number
of raw pixels within each grid-cell are also recorded. There
are several advantages to gridding. The biggest advantage is
that it produces a quasi-spatially homogeneous dataset from
data that was previously non-uniformly distributed in space.
We define “spatially homogenous” data as data that has an
equal number of data points for equal spatial domains. How-
ever, we recognize that the number of pixels used within each
grid-cell remains quite inhomogeneous. Using gridded data,
additional parameters such as the areal coverage of a cer-
tain aerosol type can be calculated. Global AOT and SWRE
statistics are recomputed from the gridded data set are com-
pared with those computed from the raw data set.

However, gridding data is not a cure-all to the distribution
issues present in the raw data. Recall that each grid-cell is
calculated as the mean of all pixels that fall within its bound-
aries. However, the number of raw pixels that may lie within
a particular grid-cell may vary substantially, from only a few
to over 1000. In sparse data regions, grid-cell values are de-
fined by only a few pixels. As a result, outliers in these re-
gions can significantly affect the grid cell value, causing it
to now be a grid-cell outlier. Using a threshold for the num-
ber of pixels required in a grid-cell was considered, but not
applied because even a small threshold number (∼50) would
eliminate data for several large regions. Since the gridded
data sample size is much smaller than the raw sample size,
the effect of missing data would be magnified in the globally
averaged statistics. Another problem occurs when 1000 or
more data points may be available for a particular grid cell.
Here, a few outliers are not the problem, but the distribution

of the data within that grid-cell is. Like the raw data, the data
used in a particular grid cell may not be normally distributed.
Recall that a grid-cell value is the simple mean of all raw data
within its boundaries, and that a mean statistic is only robust
when the data is normally distributed. If a normal distribu-
tion does not exist, then the resulting grid cell values will be
biased one way or the other. This bias will in turn influence
any statistics derived from a gridded dataset.

3.4 Random gridding

As with the raw data, the gridded data are tested using a ran-
dom sample analysis to determine its stability and resilience
to outliers. Grid cell values are computed by randomly se-
lecting three raw data pixels within a 2×2 degree bin and
taking the average. (Larger random samples were not used
since they would have required the removal of a significant
number of grid-cells from this analysis). This is repeated for
each grid cell in the global field and global statistics com-
puted. The entire process is repeated 100 times to determine
the sample uncertainty of the gridded data values. It must
be noted that since the raw data is not uniformly distributed,
some grid cells will be more “random” than others. The three
random pixels used for each grid cell mean always originate
from the original number of pixels present within that grid
cell, whether it is 10 or 1000. Thus, grid cells that encompass
a larger number of raw data points will have a larger variation
in values owing to a greater number of random combination
of points possible within these grid-cells. As a result, only
a subset of grid-cell values will vary significantly with each
random perturbation. Still, this analysis will show if the vari-
ations in those grid-cells represent a significant effect to the
overall gridded statistics.

3.5 What if anthropogenic AOT do not exist?

An additional complication arises when components of AOT
SWRE are analyzed. Since, some components (e.g. dust or
anthropogenic) may not exist for all pixels and grid-cells,
each component sample size will differ. One solution, used
by Christopher et al. (2006) for anthropogenic aerosols, is to
set component AOT and SWRE equal to zero when that com-
ponent was not present, but a total radiative effect value does
exist.

However, this method presents several problems. The first
is that the assumption of AOT and radiative effect equal to
zero where the Kaufman et al. (2005a, b) technique (Eq. 4)
fails may lead to an under-estimation of component values.
For example, if anthropogenic aerosols only exist for 70% of
data where any aerosol type exist, then the remaining 30%
in the anthropogenic average will be comprised of zeros (or
null data), substantially lowering the average. The argument
can be made that if an aerosol component does not exist, then
its values should be set to zero. However, the matter really
depends on what one is trying to show. For example, if one
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Fig. 1. Probability density functions of non-gridded, global AOT(a) and SWRE(b) shown by symbols with idealized Gaussian (normal)
distributions overplotted (solid line). Bin sizes are 0.01 and 0.2 W m−1 for AOT and SWRE respectively. Vertical lines indicate mean values
for AOT and SWRE, respectively.

is only interested in analyzing dust SWRE independently of
other aerosols, it makes sense to only analyze data where
dust aerosols are actually present (e.g. Christopher and Jones,
2007). Conversely, if one is trying to determine the relative
importance of maritime, dust, and anthropogenic aerosols to
SW radiative effect, then the creation of homogenous com-
ponent datasets using the method described above becomes
necessary.

The other significant problem introduced by setting com-
ponent values equal to zero occurs when these data are grid-
ded. Null data can contribute a large proportion of data to
some grid-cells, increasing its influence and further remov-
ing the data from a normal distribution. This is especially
true in sparse data regions where only a few data points feed
into grid-cell values. When including null component data,
AOT and SWRE values for these grid cells will be decreased
substantially compared to pixels with a larger concentration
of data that included all AOT components. The net result
is that average component values derived from gridded data
will be significantly lower than there non-gridded counter-
parts. This underestimation of component SWRE may bias
a researcher’s conclusions as to the importance of a particu-
lar AOT component. The effect of the null data assumption
of component AOT and radiative effect statistics will be ex-
plored for both raw and gridded datasets.

4 Results

4.1 Simple average

Using non-gridded data, the globally averaged MODIS AOT
in the CERES-SSF and instantaneous SWRE are 0.15 and
−10.6 W m−2, respectively (Table 1). The large spatial and

Table 1. Gridded and non-gridded global AOT and SWRE raw data
count, with corresponding mean, standard deviation, and skewness
statistics.

No-Grid N Mean Stddev Skewness

AOT 968 030 0.151 0.106 1.8
SWRE 968 030 −10.56 7.8 −1.47

Grid
AOT 7412 0.117 0.061 2.4
SWRE 7412 −8.01 4.145 −2.17

temporal variations within these data lead to large sample
standard deviations of 0.11 and 7.8, exceeding all known un-
certainties present within the data, though given the spatial
and temporal variability of these parameters, large standard
deviation values were expected. The skewness statistics for
AOT and SWRE indicate that the data are not normally dis-
tributed, with values greatly exceeding 2×SEK (0.01) (Ta-
ble 1). The mean values for both AOT and SWRE are
displaced from the peak of the PDF functions in Fig. 1,
also indicative of a non-normal distribution. The AOT data
trend towards smaller values, resulting in something approx-
imating a Gamma distribution with a small shape parameter
(Fig. 1a). The SWRE is biased in the opposite direction with
a greater probability of pixels values occurring where the ra-
diative effect is weak (e.g. near zero) (Fig. 1b). Interestingly,
SWRE has a somewhat smaller skewness factor (in an abso-
lute sense) than does AOT (Table 1). As a result, the glob-
ally averaged instantaneous SWRE value derived from raw
data (−10.6 W m−2) is substantially larger than those (−6.4,
−7.6 W m−2) reported by previous studies (e.g. Christopher
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Fig. 2. Probability density functions of mean AOT(a) and SWRE(b) derived by randomly sampling 5% of the total number of pixels and
computing the average, and repeating the process 500 times. Vertical lines indicate mean values for AOT and SWRE, respectively.

Fig. 3. Scatterplot of AOT vs. SWRE with linear regression line
overplotted.

and Zhang, 2002; Loeb and Manalo-Smith, 2005). Note that
the diurnal adjustment has been removed from the Loeb and
Manalo-Smith (2005) value for comparison to the instanta-
neous values use here. The values associated with the peaks
in the AOT and SWRE PDF functions are approximately
0.10 and−7.0 W m−2, respectively, much closer to accepted
values.

A comparison of average AOT and SWRE, calculated
from 500 random simulations, shows that the overall statis-

tic is not sensitive to outliers. The variation in AOT is only
0.11±0.0005 and is normally distributed (Fig. 2a). Similarly,
the variation in SWRE is also very small,±0.034 (Fig. 2b).
Since, these variations are well within 1% of the mean value,
the sample data can be declared robust against outliers. Even
though the sample average is stable, each random sample has
the same distribution and non-uniformity issues present in
the total dataset. Thus, these values remain an overestimate
of global AOT and SWRE.

Using the standard definition ofEτ (SWRE÷ AOT), the
instantaneous globalEτ is −70.7 W m−2 τ−1, very similar
to previous observations of near−70 W m−2 τ−1 (Yu et al.,
2004; Zhang et al., 2005a). The regression based method
produces a similar value,−68.2 W m−2 τ−1, in close agree-
ment with the−70 W m−2 τ−1 value reported by Christo-
pher and Zhang (2002) and the−72 W m−2 τ−1 value by Yu
et al. (2004) (with diurnal adjustment removed). The AOT-
SWRE relationship, shown in Fig. 3, is approximately linear
with a linear correlation coefficient of−0.93. This indicates
the model coefficient, which can also be interpreted asEτ , is
a robust statistic and not very susceptible to outliers.

4.2 Gridded data

The primary reason of the overestimation of AOT and SWRE
by the simple average is due to the spatial distribution of the
data. Figure 4 shows gridded (2×2◦) instantaneous SWRE
for the entire globe. It is evident from this figure that high
values of are concentrated in a few geographic regions, most
notably west of Africa between 10–20◦ N, the East Coast of
China, and the Bay of Bengal. These regions are also associ-
ated with the greatest variation in SWRE, which is evident in
Fig. 5, which shows the standard deviation of SWRE within
each grid-cell. Note that the regions of highest variability
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Fig. 4. Global SWRE gridded into 2×2 degree grid-cells.

Fig. 5. Standard deviation of SWRE within each 2×2 degree grid-cell.

correspond with the regions of greatest SWRE. Grid-cells
within these regions also contain the greatest number of raw
pixels (Fig. 6). At first glance, it appears odd that valid
data should be concentrated where only high aerosol con-

centrations exist. However, this is a result of the use of only
cloud-free data in this analysis. Figure 7 shows globally
averaged MODIS cloud fraction for all data (cloud fraction
threshold not applied). Note that the regions associated with
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Fig. 6. Number of raw pixels present within each grid-cell.

Fig. 7. Global MODIS cloud fraction for each grid-cell derived from clear and cloudy sky data.

high SWRE also happen to have low mean cloud fraction.
As a result, data within these regions is more likely to pass
the cloud-free threshold and included in the SWRE analysis.
Since a greater number of pixels are available in high AOT

and SWRE regions, globally averaged AOT and SWRE are
overestimated using this averaging technique.

The use of clear-sky only data for the calculation of SWRE
has several implications. We use cloud-free only data since
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Fig. 8. Probability density function of raw data points present in selected grid-cells at 19◦ N, 69◦ E (a), and 19◦ N, 19◦ W (b).

the effect of clouds on atmospheric radiation are considered
outside the scope of direct aerosol forcing research. How-
ever, the resolution of the CERES SSF product (20×20 km)
requires that a 400 km2 region must be almost completely
clear to satisfy the cloud free criteria defined in Sect. 2. As a
result, large regions which are predominately cloud-free con-
tain a greater number of data points than to predominately
cloudy regions. Comparing Figs. 4 and 7 confirms this with
the greatest number of data points per grid cell being defined
where cloud fraction is relatively low. Often (but not always),
predominantly cloudy regions also have substantial concen-
trations of aerosols. Using the method presented here, these
aerosols and their effect on incoming solar radiation are ig-
nored, leading to an underestimation of SWRE. To account
for this issue, Zhang et al. (2005b) created a “bias adjust-
ment” technique using the AOT difference between high res-
olution MODIS AOT and CERES-SSF resolution AOT to ad-
just the global SWRE number. Since we focus on statistical
variability alone, we refer discussion of the bias adjustment
to Zhang et al. (2005b).

Upon gridding the raw data, sample size falls from nearly
one million data points to approximately 7400 grid-cells (Ta-
ble 1). The effect of changing grid-cell size to either 1 or
4 degrees was studied, and did not significantly change the
results compared to 2 degree gridded resolution data. The
number of raw pixels contained within each 2×2 degree grid
cell ranges from 1 to 4085. The grid-cell containing the most
pixels (4085) is centered at 19◦ N and 69◦ E within the Ara-
bian Sea. The SWRE for this grid-cell is−14.8±5.8 W m−2,
but with a skewness statistic of only−0.1. For this grid-cell
in particular, the raw pixels are approximately normally dis-
tributed indicating that the grid-cell average is representative
in this case (Fig. 8a). Future research may be able to uti-
lize regions where AOT and SWRE are normally distributed

to compare results of differing research techniques, since the
statistical variability is reduced compared to the global data
set. However, there are many grid-cells that do not contain
a normal distribution of data such as the grid-cell centered
and 19◦ N, 19◦ W, and are generally biased in a manner simi-
lar to the global data set (Fig. 8b). The SWRE distribution in
this grid-cell is likely a reflection of different aerosol regimes
present over this region, which can change from dust to an-
thropogenic depending on time of year (e.g. Ramana and Ra-
manathan, 2006).

No matter what the underlying cause, the gridded data
set also suffers from a lack of a normal distribution. The
globally averaged gridded statistics make this point evident.
Gridded average AOT and SWRE are substantially lower
than there non-gridded counterparts (0.12,−8.0 vs. 0.15,
−10.6 W m−2) (Table 1). However, the skewness statistic
for both gridded AOT and SWRE are higher, indicating that
the gridded average is less representative than before.

The globally averaged gridded AOT and SWRE are sub-
stantially lower than their non-gridded counterparts since
gridding removes the spatial bias towards data in high aerosol
concentration regions. Thus, the gridded data set has a fewer
number of high AOT pixels incorporated into the average.
The more uniform spatial distribution creates a globally av-
eraged instantaneous SWRE that is somewhat closer to the
previously reported values of−6.4 and−7.6 W m−2 (Zhang
et al., 2005b; Loeb Manalo-Smith, 2005); however, the lack
of a normal distribution leaves a large uncertainty as to the
true globally averaged value. As with the raw data, the grid-
ded data was randomly sampled to determine its resiliency to
outliers. The results indicate that the gridded data set, like
the raw data set before, is very resilient to outliers. AOT
and SWRE also vary less 1% from their gridded mean values
(Fig. 9).
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Fig. 9. Probability density function of randomly sampled gridded AOT(a) and SWRE(b) data.

Fig. 10. Anthropogenic component AOT(a) and SWRE(b) probability density functions.

Calculation ofEτ using the gridded data set produces
some interesting results. The traditional definition re-
sults in anEτ value of −68.4 W m−2 τ−1, with the re-
gression method producing a somewhat smaller value,
−60.8 W m−2 τ−1. Using the traditional method, no signifi-
cant difference in SWRE is apparent between raw and grid-
ded data. However, the use of the regression method on grid-
ded data underestimatesEτ by approximately 10% compared
to other methods. The additional step of gridding results
in an underestimation of SWRE for some grid-cells, which
leads to an artificial change in the AOT-SWRE relationship.
As a result,Eτ should not be calculated from gridded or oth-
erwise manipulated data, but from the original raw data.

4.3 Anthropogenic aerosols

The methods described by Christopher and Jones (2007)
and Sect. 2 were used to derive anthropogenic AOT and
SWRE over a global domain for both gridded and non-
gridded data (Table 2). As with total aerosol AOT and
SWRE, anthropogenic AOT and SWRE also lack a normal
distribution with anthropogenic AOT probability maximized
at very low values (Fig. 10). Non-gridded average anthro-
pogenic AOT and instantaneous SWRE are quite high (0.08,
−7.6 W m−2) compared to previously reported values of
0.033 and−2.8 W m−2 (these values have been converted to
instantaneous) by both Kaufman et al. (2005b) and Christo-
pher et al. (2006). The high values reported here are the result
of two factors. First, as with total AOT, more anthropogenic
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aerosol data points exist in regions of heavy aerosol concen-
trations due to the greater probability of cloud-free observa-
tions being present (Figs. 6, 7). The second is that the aver-
ages presented above do not take into account regions where
no anthropogenic aerosols exist. Christopher et al. (2006) set
anthropogenic AOT and SWRE in these regions equal to 0
prior to computing their global averages. Applying this as-
sumption to the non-gridded data results in globally averaged
values of 0.07 and−5.0 W m−2 (Table 2).

Statistics for gridded anthropogenic AOT and SWRE are
also reported (Table 2). Two sets of gridded data were gen-
erated, one including only data where are particular aerosol
type exists and the other incorporating the null assumption
for data points where anthropogenic aerosols did not ex-
ist. As with the non-gridded data, the use of this assump-
tion reduces globally averaged AOT and SWRE, to 0.04 and
−3.2 W m−2 when including null data in the gridding process
(Table 2). These values are much closer to those reported by
Kaufman et al. (2005b) and Christopher et al. (2006).

Additional variability in anthropogenic AOT and SWRE
results from the method used to separate the anthropogenic
component. Recall that anthropogenic AOT was defined as
the residual of total AOT, dust, and maritime components.
Thus, any AOT remaining after dust and maritime com-
ponents have been calculated is assigned as anthropogenic.
This assumption can represent an artificial increase in the
importance of anthropogenic aerosols relative to the other
components. Kaufman et al. (2005b) do solve Eqs. (1–5) for
anthropogenic AOT instead of dust AOT. However, the re-
sulting anthropogenic equation is not 100% mathematically
consistent with the dust equation (Eq. 4). Here, dust AOT is
calculated using the residual method, artificially increasing
its importance relative to anthropogenic AOT. The only so-
lution to this would be to develop mathematically consistent
equations for the calculation of dust and anthropogenic AOT,
which is left for future research.

5 Conclusions

The question remains as to what is the actual TOA instanta-
neous shortwave radiative effect from aerosols over a global
domain. This work has shown that significantly different
values can be returned depending on the technique used to
analyze the data. No one method for calculating globally
averaged AOT and SWRE generates values without substan-
tial statistical uncertainty. The “raw data” average suffers
from a non-uniform spatial distribution, weighted towards
regions with high aerosol concentrations. As a result, statis-
tics derived from these data overestimate global AOT and
SWRE, despite the probability distribution favoring lower
values of both. The gridded data is close to spatially uni-
form (over ocean regions), and the resulting average does
not show the large high bias produced by the non-gridded
data. However, the distribution of raw data within each grid-

Table 2. Non-gridded and gridded, globally averaged anthro-
pogenic AOT and SWRE for datasets that include and do not in-
clude null data where anthropogenic AOT do not exist. The differ-
ence in sample size from AOT to SWRE is due to the constraint that
anthropogenic AOT can only occur for data where 0.3<f <0.9.

AOT SWRE

N 812 257 583 983
Non-null 0.084 −7.563

Null 0.068 −5.033

N 7252 6256
Grid 0.057 −4.65

Null-Grid 0.043 −3.196

cell leads to significant uncertainty as to some grid-cell val-
ues. Grid-cells with non-uniform distributions are gener-
ally biased toward low AOT and SWRE values, with the
resulting grid-cell average likely being an underestimate of
the actual value. Thus, we are left with a range of values
for global AOT and instantaneous SWRE (0.12<AOT<0.15;
−8.0<SWRE<−10.6 W m−2), with true values likely lying
somewhere in between, which represents an uncertainty of
over 25%. Due to the much greater probability of aerosol
data existing in aerosol-heavy regions, the actual value for
AOT and SWRE lies closer to the gridded value than the
non-gridded value. Just how close remains uncertain, but the
gridded dataset produces more realistic results. Fortunately,
the random sample analysis for both gridded and non-gridded
datasets showed that globally averaged values are not suscep-
tible to outliers present in the data.

Attempting to determine maritime, dust, and, anthro-
pogenic component statistics is even more difficult depend-
ing on the treatment of regions where one or more aerosol
types do not exist. Including regions of null-data in the com-
putation of a globally averaged mean reduces anthropogenic
AOT and SWRE. The magnitude of this decrease is also un-
certain as it relies on the method used to separate AOT com-
ponents (see Sect. 4c). When reporting globally averaged
component values, it is vital to state whether or not null data
are being included and show distribution of component data.
Otherwise, it is impossible to determine the significance of
any reported globally averaged AOT or SWRE statistics.

The primary conclusion of this work is that a globally av-
erage AOT or SWRE value is not meaningful unless addi-
tional statistics are supplied. It is important to know the un-
derlying distribution of the sample data as well as its spatial
and temporal variability. When dealing with observational
datasets such as the one used here, data are not likely to
be present on a uniform spatial or temporal domain. Elim-
inating this issue requires that the raw data be placed onto
a uniform as described in Sect. 3c. The resulting globally
averaged AOT and SWRE are much closer to previously re-
ported values, but significant statistical uncertainties remain.

www.atmos-chem-phys.net/7/2937/2007/ Atmos. Chem. Phys., 7, 2937–2948, 2007



2948 T. A. Jones and S. A. Christopher: Aerosol radiative effect

No single averaging technique or statistics provides an ade-
quate description of global AOT and SWRE.

Only a combination of statistical and distribution informa-
tion can provide an estimate as to the magnitude and uncer-
tainty of globally averaged values. In addition to globally
averaged values, future works should also report data dis-
tribution statistics, such as skewness and probability density
functions. When non-normal distributions are encountered,
its needs to be reported what effect the actual distribution
will have on a globally averaged value. Also important to
note are all forms of data manipulation, such as gridding,
diurnal/sample bias adjustments performed on the data. Ma-
nipulating data in various ways often improves its statistical
quality, but can also change its underlying meaning. With-
out this rigorous documentation, results from various works,
even when done over the same spatial and temporal domain
may not be comparable.
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