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Abstract. Experiments investigating the isotopic fractiona-
tion in the formation of H2 by the photolysis of CH2O un-
der tropospheric conditions are reported and discussed. The
deuterium (D) depletion in the H2 produced is 500(±20)‰
with respect to the parent CH2O. We also observed that com-
plete photolysis of CH2O under atmospheric conditions pro-
duces H2 that has virtually the same isotope ratio as that of
the parent CH2O. These findings imply that there must be a
very strong concomitant isotopic enrichment in the radical
channel (CH2O+hν→CHO+H) as compared to the molecu-
lar channel (CH2O+hν→H2+CO) of the photolysis of CH2O
in order to balance the relatively small isotopic fractionation
in the competing reaction of CH2O with OH. Using a 1-box
photochemistry model we calculated the isotopic fractiona-
tion factor for the radical channel to be 0.22(±0.08), which
is equivalent to a 780(±80)‰ enrichment in D of the remain-
ing CH2O. When CH2O is in photochemical steady state, the
isotope ratio of the H2 produced is determined not only by the
isotopic fractionation occurring during the photolytical pro-
duction of H2 (αm) but also by overall fractionation for the
removal processes of CH2O (αf ), and is represented by the
ratio of αm/αf . Applying the isotopic fractionation factors
relevant to CH2O photolysis obtained in the present study to
the troposphere, the ratio ofαm/αf varies from∼0.8 to∼1.2
depending on the fraction of CH2O that reacts with OH and
that produces H2. This range ofαm/αf can render the H2
produced from the photochemical oxidation of CH4 to be en-
riched in D (with respect to the original CH4) by the factor
of 1.2–1.3 as anticipated in the literature.
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(rhee@kopri.re.kr)

1 Introduction

Formaldehyde (CH2O) is a key carbonyl compound in the at-
mosphere. Its abundance varies over a wide range from sub-
ppb levels to∼100 ppb depending largely on local sources
(Warneck, 1999). Its turnover is large in the atmosphere and
it is a source of molecular hydrogen (H2), carbon monox-
ide (CO), and of the hydroperoxyl radical (HO2), yet lim-
ited measurements are available in various atmospheric re-
gions. Recent satellite observations of CH2O make it possi-
ble to investigate its distribution on regional and global scales
(e.g., Martin et al., 2004; Wittrock et al., 2006). While direct
emissions from fossil fuel combustion, biomass burning, and
also automotive exhaust contribute significantly to the bur-
den of atmospheric CH2O (Carlier et al., 1986; Garcia et al.,
2005), in situ production of CH2O by photochemical oxida-
tion of volatile organic compounds appears to be the domi-
nant source on a global scale (Carlier et al., 1986; Warneck,
1999). In remote oceanic areas (Wagner et al., 2002; Weller
et al., 2000), in the free troposphere (Frost et al., 2002), and
in the stratosphere, only the photochemical oxidation of CH4
serves as the major source. Apart from the importance of
the rather simple CH2O molecule in the Earth’s atmosphere
and far beyond, it is also subject to fundamental research re-
garding for instance the exact processes during its photolysis
(e.g., Moore and Weisshaar, 1983; Townsend et al., 2004;
Troe, 2007).

CH2O is broken down by photolysis (R1 and R2) and by
photochemical oxidation (R3) in the troposphere (Calvert,
1980):

CH2O + hν → CHO+ H (R1)

CH2O + hν → CO+ H2 (R2)

CH2O + OH → CHO+ H2O (R3)
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Reaction (R1) produces the HO2 radical by the rapid re-
action of hydrogen (H) and formyl (CHO) radicals with at-
mospheric oxygen (O2), which can lead to the formation of
the hydroxyl radical (OH) via the reaction with NO or O3
in the atmosphere. This is an important propagation of the
radical chain. Only reaction (R2) yields H2. All photochem-
ical reactions of CH2O do produce CO, while solely reaction
(R2) forms H2, which is the topic of our research. In fact,
this photochemically produced H2 constitutes∼50 to∼60%
of the total source of tropospheric H2 (Novelli et al., 1999;
Rhee et al., 2006b).

In the stratosphere, H2 originates both from this in situ
photolysis process (R2), albeit under photochemically very
different conditions, and from tropospheric import. Recently
it has been established that stratospheric H2 is enriched in
deuterium (D) along with the decrease of CH4 mixing ratios
whilst the H2 mixing ratios remain almost constant (Rahn et
al., 2003; Rhee et al., 2006a; Röckmann et al., 2003). It ap-
pears that the D enrichment of H2 is much stronger than the
concomitant enrichment for CH4 acompanying its destruc-
tion by OH, O(1D), and Cl radicals. This means that the
D enrichment of H2 occurs not only by the fractionation in
the reaction of H2 with oxidizing radicals (OH, Cl, O(1D))
but is also due to the chain reactions leading from CH4 to
H2 (Rhee et al., 2006a). Gerst and Quay (2001) discussed
potential reactions that may lead to the D enrichment along
the photochemical chain reactions of CH4. However, the de-
tailed mechanism by which the D content of H2 is accumu-
lated has not yet been elucidated due to the lack of measure-
ments for isotopic fractionation factors at each reaction step
and branching, all of which are fundamentally difficult to de-
termine.

To address this question, as a first step we have investi-
gated the isotopic fractionation occurring during the photol-
ysis of CH2O by which H2 is produced for the conditions
at Earth’s surface. In spite of its crucial role in the isotope
budget of H2, as well as CO, in the atmosphere, the isotopic
fractionation occurring during photolysis of CH2O has been
rarely investigated in the past (Crounse et al., 2003; Feilberg
et al., 2005; Feilberg et al., 2007b). Since CH2O is a rela-
tively “long-lived” intermediate in the photochemical chain
reactions between CH4 and H2, the results will provide es-
sential insight into understanding the accumulation of D in
H2 produced.

2 Experiments

Formaldehyde (CH2O) was prepared by purifying para-
formaldehyde (Merck) in a vacuum system following
the method of Spence and Wild (1935). Solid para-
formaldehyde was heated at∼420 K under vacuum. For pu-
rification the evaporating CH2O and impurities were forced
through a set of glass U-tubes which were partly immersed in
an ethanol sludge (∼160 K) made with liquid nitrogen. Pu-

rified formaldehyde was then collected in a U-tube dipped
in liquid nitrogen (77 K). A given amount of pure CH2O
(∼3 mbar) was released to a 3-L glass bulb and several 0.1-L
glass flasks simultaneously, all of which were connected to
the same manifold. The pure CH2O in the 0.1-L glass flasks
were used to determine the D/H ratio of the CH2O (see be-
low). Afterwards pressure inside the manifold was read by
a capacitance manometer (MKS10, Baratron). CH2O-free
synthetic air was then introduced into the 3-L glass bulb to
reach about ambient pressure and the final pressure was read
by another capacitance manometer (MKS1000, Baratron) to
determine the CH2O mixing ratio. Since these pressure read-
ings are essential for determining the CH2O mixing ratio in
the reactors used for the photolysis experiments, the capaci-
tance manometers were calibrated accurately by an absolute
manometer (Digiquartz 740, Paroscientific) whenever neces-
sary. The CH2O-air mixture was used as a stock for a series
of CH2O photolysis experiments. The CH2O mixing ratios
in the stock air were usually around 0.3%.

Aliquots of the CH2O stock air were transferred to quartz
or glass flasks, diluted to the target mixing ratio with CH2O-
free synthetic air, and photolyzed for a few hours to∼17
days (Table 1). The CH2O mixing ratios in the reactors were
less than∼2 ppm except in the experiments running for few
hours, for which∼50 ppm of CH2O was used. After photol-
ysis we measured the H2 mixing ratio and D/H ratio. TheδD
values and mixing ratios of the H2 produced were determined
by a recently developed technique involving continuous-flow
isotope ratio mass spectrometry (Rhee et al., 2004).

In order to test stability of CH2O in the reactor, we had
once monitored the pressure inside the 3-L glass bulb for 2
days after injecting pure CH2O at ∼3 mbar. No change in
pressure inside was found, indicating no absorption or loss
of CH2O by polymerization or heterogeneous reactions. The
same results even at higher pressure of pure CH2O air have
been reported (e.g.,Horowitz and Calvert, 1978).

All glass used was Duran glass (Schott), thoroughly evac-
uated and heated prior to use. Glass bulbs were kept in the
dark by wrapping them with aluminum foil or with black
cloth to avoid any photochemical reactions prior to com-
mencing CH2O photolysis experiments. CH2O photolysis
experiments in sunlight were carried out on the roof of a
3-story building of the Max Planck Institute for Chemistry,
Mainz (50◦ N, 8.16◦ E), in August and September of 2003
and in March, May and June of 2004 (Table 1). We also
conducted CH2O photolysis experiments using a xenon (Xe)
short arc lamp (XBO 75W/2). A characteristic intensity
spectrum of the light sources and the transmission of the re-
actor materials are shown in Fig. 1 together with photolytic
properties of CH2O.

The D/H ratio of the original CH2O in the stock air was de-
termined by analyzing the isotopic composition of the pure
CH2O in the 0.1-L glass flasks, which originated from the
same source of CH2O as that in the stock air (see above).
The pure CH2O sample was photolyzed using a mercury
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Table 1. Summary of CH2O photolysis experiments.

Photolysis
**[CH 2O]0 (ppm) Light source Reactor material9(H2) δD-H2 (‰)

Start End *Duration (h)

4-Sep-03 10-Sep-03 91 2.3 Daylight Glass 0.47 −247
4-Sep-03 10-Sep-03 91 2.5 Daylight Glass 0.52 −190
4-Sep-03 10-Sep-03 91 2.6 Daylight Glass 0.49 −252

14-Sep-03 17-Sep-03 51 0.43 Daylight Glass 0.52 −214
14-Sep-03 17-Sep-03 51 0.46 Daylight Glass 0.66 −46
14-Sep-03 17-Sep-03 51 0.48 Daylight Glass 0.56 −205
29-Mar-04 29-Mar-04 1 53 Daylight Quartz 0.09 −449
29-Mar-04 29-Mar-04 2 50 Daylight Quartz 0.18 −459
29-Mar-04 29-Mar-04 3 34 Daylight Quartz 0.21 −415
29-Mar-04 29-Mar-04 7 63 Daylight Quartz 0.31 −366
29-Mar-04 29-Mar-04 7 36 Daylight Quartz 0.26 −413
17-May-04 25-May-04 130 2.1 Daylight Quartz 0.67 3
17-May-04 31-May-04 230 2.0 Daylight Quartz 0.68 −4
14-Jun-04 18-Jun-04 67 1.4 Daylight Quartz 0.50 −205
14-Jun-04 18-Jun-04 67 1.8 Daylight Quartz 0.61 −38
14-Jun-04 18-Jun-04 67 1.8 Daylight Quartz 0.61 −77
14-Jun-04 18-Jun-04 67 1.1 Daylight Quartz 0.39 −256
14-Jun-04 30-Jun-04 277 2.1 Daylight Quartz 0.71 15
14-Jun-04 30-Jun-04 277 1.9 Daylight Quartz 0.66 −65

30-May-04 4-Jun-04 80 1.6 Daylight Glass 0.56 −137
30-May-04 4-Jun-04 80 1.6 Daylight Glass 0.60 −113

5-Jun-04 11-Jun-04 94 1.6 Daylight Glass 0.54 −132
5-Jun-04 11-Jun-04 94 1.5 Daylight Glass 0.59 −78

92 1.5 Xe arc lamp Quartz 0.44 −12
244 1.4 Xe arc lamp Quartz 0.43 5
10 3 mbar Hg arc Lamp Quartz 0.98 7
10 3 mbar Hg arc Lamp Quartz 0.97 −8
13 3 mbar Hg arc Lamp Quartz 1.00 1
13 3.3 mbar Hg arc Lamp Quartz 0.95 0
12 3.3 mbar Hg arc Lamp Quartz 0.99 0

* This is simply a sum of daylight hours calculated using astronomical parameters from the internet (http://aa.usno.navy.mil/data/docs/
RS OneDay.html).
** Initial mixing ratios of CH2O in a reactor prior to photolysis. For the photolysis of pure CH2O, unit of pressure is used.

(Hg) short arc lamp (HBO 103W/2, OSRAM). The photol-
ysis of pure CH2O produces not only CO and H2 but also
H and CHO radicals which further undergo self reactions
and reaction with CH2O, ending up with the production of
CO and H2 (e.g., Calvert, 1980). Thus, the final products
of the photolysis are only CO and H2. Isotopic mass bal-
ance requires that for complete conversion the product H2
has the same isotopic composition as the parent CH2O. Com-
plete conversion of the CH2O to CO and H2 was confirmed
by measuring the amount of H2 produced and its isotopic
composition. The deuterium content is as usual expressed as
δD=(RSPL/RSTD−1)×1000 (‰), where RSPL and RSTD rep-
resent the D/H of H2 for sample and a reference material,
respectively. For convenience, we express theδD values rel-
ative to the isotopic composition of the parent CH2O.

3 Results

3.1 The yield of H2 in the photolysis of CH2O

As mentioned earlier, photolysis of CH2O has one channel
that produces CHO and H radicals (R1) and the other that
produces CO and H2 molecules (R2). The CHO radical re-
acts rapidly with O2 in the air, also forming CO. Thus, the
amount of CO produced should always be the same as that of
CH2O photolyzed, while the amount of H2 produced repre-
sents the fraction of CH2O that follows the molecular chan-
nel (R2). Thereby, the yield of the molecular channel in the
photolysis of CH2O, given as8(H2), can be defined by the
ratio of H2 to CO.

However, a portion of the CH2O in the reactor may re-
act with the radicals, H, OH, and HO2, as they are pro-
duced in the reactor during the photolysis. These reactions
produce CO and formic acid (HCOOH). The reaction of
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Fig. 1. Absorption cross section (gray shade) (Meller and Moort-
gat, 2000) and quantum yields (blue lines) (Sander et al., 2006) of
CH2O, light transmission of the reactors, and intensity of the lights
used in the experiments.8r and8m indicate the quantum yields of
the radical and molecular channels, respectively, in CH2O photol-
ysis. Light transmissions of quartz (black dashed line) and Duran
glass (Schott) (black solid line) are from a company measurement.
Spectra of Xe (red dashed line) and Hg (red dotted line) short arc
lamps were provided by OSRAM, and normalized actinic flux (red
solid line) at the Earth’s surface is from Finlayson-Pitts and Pitts
(1999).

CH2O with HO2 produces the hydroxymethylperoxy radi-
cal (HOCH2OO). This radical is so unstable that it immedi-
ately dissociates back to CH2O. However, a fraction reacts
with HO2 or itself producing HCOOH (Burrows et al., 1989;
Su et al., 1979; Veyret et al., 1989) (see Sect. 3.2 for de-
tails). In addition, CO and any HCOOH produced can react
further with OH to form their oxidized products. These re-
actions may result in a deficit in the mass balance of CO if
only photolysis of CH2O is considered. Because of such a
non-conservation of CO in the reactor, we did not attempt to
measure the ratio of the mixing ratios of H2 to CO for each
photolysis run to obtain the value of8(H2). But, we tracked
the actual fraction of H2 produced by photolysis of CH2O,
given as9(H2), which represents the ratio of the H2 mixing
ratio in the reactor to the initial CH2O mixing ratio.

Figure 2 shows the evolution of9(H2) throughout the pe-
riods of photolysis for experiments conducted with different
reactor materials or light sources. The period of photolysis
is given as number of daylight hours disregarding any pa-
rameters that might influence the actual photolysis rates of
CH2O. For the short periods experiments (<12 h),9(H2) in-
creases rapidly with the increase of photolysis time. At long
periods of photolysis (>130 h),9(H2) converges toward an
asymptotic value. By virtue of negligible production of H2
(<10−8 per CH2O according to the model described below)
through reactions other than the CH2O photolysis and of lit-
tle reactivity of H2 in the reactor for the periods of the CH2O
photolysis,9(H2) approaches an asymptotic value as a func-
tion of time. This asymptotic value of9(H2) is equivalent to
8(H2) when CH2O is destroyed only by photolysis.

 

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Ψ
(H

2)

Photolysis (hr)

Quartz
Glass
Xe arc lamp
 λ = 2.4x10-5 s-1

 λ = 3.8x10-5 s-1

 λ = 1.5x10-5 s-1

Fig. 2. Evolution of the fraction of H2 (9(H2)) produced by pho-
tolysis of CH2O in daylight or using a Xe short arc lamp. The
gray-shaded area and lines represent model calculations for a given
CH2O photolysis rate and yield of H2, 8(H2). Solid and dashed
lines are the bounds of the most probable evolution of9(H2) in
Mainz using the results from the Tropospheric Ultraviolet and Vis-
ible (TUV) radiation model as described in Fig. 3. For photol-
ysis with the Xe lamp, the photolysis rate of 1.5×10−5 s−1 and
8(H2)=0.49 are arbitrarily forced to fit the measurements.

For the photolysis periods from 50 to 100 h, the mea-
surements are scattered. We suspect that this is due mostly
to photolytical effects rather than analytical errors. In par-
ticular, changes in radiation occurring over the course of
the experiments on the roof (e.g., cloudiness, albedo, solar
zenith angle (SZA), light scattering due to aerosol content,
etc.) may result in such different values. In addition, since
the quantum yield of the molecular channel peaks at longer
wavelengths compared to the radical channel (Moortgat et
al., 1983),9(H2) increases with the increase of SZA. As
an indirect support for this speculation, photolysis of CH2O
performed in the laboratory using Hg and Xe short arc lamps
shows that the uncertainty of replicate runs is merely about
2% for the yield of H2. Provided that the scatter is due to
variabilities of the parameters that influence photolysis rate
of CH2O, we did not average the values of9(H2) for the
same period of photolysis, but the individual values were
used to determine the isotopic fractionation factors for the
CH2O photolysis.

The CH2O photolysis experiments conducted with a Xe
short arc lamp give an opportunity to qualitatively examine
a relation between8(H2) and the range of wavelengths by
which CH2O is photolyzed. As a Xe short arc lamp emits
photons within a broad range of wavelengths, the effective
wavelength for the photolysis of CH2O depends on the cut-
off wavelength for transmission through quartz which ex-
tends down to∼200 nm (see Fig. 1). This is shorter than
the lower limit of solar wavelengths at the Earth’s surface.
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Fig. 3. (a)Solar zenith angle (SZA) at local noon in Mainz (11:00
GMT) in 2004. Gray shaded areas indicate the dates when exper-
iments were conducted. SZA at local noon ranges from 27.1◦ to
47.8◦ for the periods of experiment.(b) Photolytic yield of H2
(8(H2)) and photolysis rate of CH2O (JCH2O) at a given solar
zenith angle calculated with the TUV radiation model. The gray-
shaded area indicates a range of8(H2) for the situation of Mainz,
and the blue line represents the photolysis rates at a given SZA.
The dark gray area represents daily mean values of8(H2) and their
corresponding values ofJCH2O obtained by weighting the photol-
ysis rates over the range of SZA for the experimental periods. The
dashed line indicates the arithmetic mean of minimum and maxi-
mum values of these mean values ofJCH2O and its mapping onto
values for8(H2). These two values ofJCH2O and8(H2) were then
used in the 1-box photochemistry model.

Consequently,8(H2) from the Xe short arc lamp experi-
ments should be smaller than that obtained with sunlight be-
cause of the dominance of the radical channel in CH2O pho-
tolysis at these short wavelengths (Moortgat et al., 1983). As
shown in Fig. 2,9(H2) is almost the same for the two dif-
ferent irradiation periods, indicating that it has reached an
asymptote. This asymptotic value is smaller than that ob-
tained in sunlight, which, as expected, reflects a smaller value
of 8(H2) using the Xe short arc lamp.
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Fig. 4. A 1-box model simulation of CH2O photochemistry in the
reactor. Details of the reactions are given in Appendix A.(a) Time
evolution of the relative abundances of CH2O and its photochemical
products. “OH+HCOOH” represents the sum of the amounts of any
compounds produced by the reaction of formic acid and OH radical.
(b) Time evolution of the fraction of CH2O that is photolyzed or
reacts with radicals.

3.2 A box model simulation of CH2O photolysis

To examine the actual photochemistry in the reactor, we
constructed a 1-box model composed of 33 photochemi-
cal reactions, including photolysis of CH2O and H2O2 as
well as formation of HCOOH (see Appendix A). The model
was run under conditions of standard ambient temperature
(25◦C) and pressure (105 Pa) with the other boundary con-
ditions from the results from the Tropospheric Ultraviolet
and Visible (TUV) radiation model (http://cprm.acd.ucar.
edu/Models/TUV). As shown in Fig. 3, the TUV radiation
model predicts that the values of8(H2) range from 0.6 to
0.76 in Mainz. Since SZA at local noon during the experi-
ments were between 27◦ and 48◦, daily averaged photolysis-
rate-weighted mean values of8(H2) would be 0.64 to 0.66,
which correspond to total CH2O photolysis rates for both
channels (JCH2O) of 2.4×10−5 to 3.8×10−5 s−1. For the
same range of SZA, the ratio of the photolysis rates of H2O2
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in Fig. 3. For the short duration experiments, we assumed that the
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resented by magenta shading. When calculating the evolution of
δD-H2 using the 1-box model, we constrain the model such that the
values ofαm andαK (see text) are always 0.50 and 0.78, respec-
tively, and that the complete photolysis of CH2O yields H2 with a
δD value that is the same as that of the initial CH2O. For compari-
son, the evolutions ofδD-H2 using the isotopic fractionation factors
determined by Feilberg et al. (2007b) is shown as red solid line on
the premise that the values of other parameters are the same as those
in the present study (see Appendix A).

and CH2O, JH2O2/JCH2O, varies only from 0.089 to 0.090.
The initial mixing ratio of CH2O was assumed to be 1 ppm
in synthetic air (78% of N2 and 22% of O2). The commercial
software package FACSIMILE (MCPA Software, UK) was
used to integrate time derivatives of the chemical species in
the reactions.

As shown in Fig. 4, while photochemical destruction of
CH2O forms CO and HCOOH, both of which are further ox-
idized by reacting with the OH radical, H2 in the reactor is
almost entirely produced by CH2O photolysis to the molec-
ular channel (R2) and is little oxidized by the OH radical
within the time periods of the experiments (<0.1% of H2 has
reacted at 99% of CH2O being oxidized). Hence, a substan-
tial portion of the initial CH2O is converted to products other
than CO, but the H2 produced is accumulated in the reactor
reaching an asymptotic value at full conversion.

The time evolutions of9(H2) were predicted by applying
the values of8(H2), JCH2O, andJH2O2 from the TUV radia-
tion model described above to the 1-box model (Fig. 2). The
results appear comparable to the measurements for photoly-
sis periods of<12 h. However, there are substantial differ-
ences between the measurements and the model predictions
at longer photolysis periods. In particular, the asymptotic
value of the measurements differs from the model predictions
when the most likely values of parameters under photochem-
ical conditions in Mainz, Germany, are applied (solid and
dashed lines in Fig. 2). As shown in Fig. 4b,∼10% of CH2O
is destroyed by the reactions with radicals. This leads to the
lower asymptotes of9(H2) than the value of8(H2) obtained
from the TUV radiation model because this asymptotic value
of 9(H2) is smaller than8(H2) by a factor corresponding to
the fraction of CH2O photolyzed. In order to reproduce the
asymptote of9(H2) from the measurements in the model, a
value of8(H2)≈0.74 is necessary, the value that the TUV
radiation model predicts when SZA is near 85◦ in the loca-
tion of Mainz. This SZA is larger than the weighted-mean
value of 63◦ predicted by the model. This discrepancy could
be associated with feeding the parameters relevant to photo-
chemical reactions in the model without accounting for their
variation along the change in radiation as mentioned above.

3.3 Isotope effect of the CH2O photolysis to the molecular
channel

Figure 5 shows the variation of theδD value of H2 (δD-
H2) as a function of9(H2). As the isotope ratios are nor-
malized with respect to theδD value of the initial CH2O, a
δD-H2 value of zero means that the isotope ratio of the H2
in sample air is the same as that for the initial CH2O. The
air samples whose values of9(H2) approach the asymptotic
values at long photolysis times for both the sunlight and Xe
short arc lamp experiments show near-zero values ofδD-H2.
This indicates that complete photochemical decomposition
of CH2O yields H2 that has the same isotope ratios as the
initial CH2O. This observation and the evolution ofδD-H2
as a function of9(H2) give us crucial information to aid
in determining the hydrogen isotopic fractionation processes
occurring in (R1) and (R2) as follows.

According to the results from the 1-box model described
in Sect. 3.2, most of the CH2O in the reactor is broken down
by photolysis (>90%) with the remainder being destroyed
mostly by reaction with OH (<8%) while HO2 and H radi-
cals play only a minor role (<2%) (see Fig. 4b). The rate of
change of the CH2O mixing ratio in the reactor can thus be
described as:

d [CH2O]

dt
= − (J + K) [CH2O] (1)

whereJ is the sum of photolysis rates of (R1) (i.e.,jr) and
(R2) (i.e.,jm) andK is the sum of the products of the relevant
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photochemical reaction rate coefficients (ki) and radical con-
centrations (Xi) as follows.

J = jm + jr (2)

K =

∑
i

ki [Xi ] (3)

In the same way, for the next abundant isotopologue,
CHDO, one obtains:

d [CHDO]

dt
= −

(
J ′

+ K ′
)

[CHDO] (4)

whereJ ′ andK ′ indicate the sums of the photolysis rates and
the photochemical reaction rates for CHDO, respectively.

In terms of non-equilibrium kinetics, the isotopic fraction-
ation factor is represented as the kinetic isotope effect (or
simply isotope effect), which is expressed by the ratio of re-
action rates for the different isotopologues, one of which has
a rare isotope substituted for the common one (Melander and
Saunders, 1980). We define here the isotopic fractionation
factor as the ratio of photochemical reaction rates or photol-
ysis rates of an isotopologue which has a single deuterium
to that for the most abundant isotopologue. For instance, the
isotopic fractionation factor for the molecular channel,αm is:

αm =
j ′
m

jm

(5)

Hence,J ′ andK ′ in Eq. (4) have the following relationship
with the corresponding rates for CH2O by means of isotopic
fractionation factor,αi .

J ′
= j ′

r + j ′
m

= αrjr + αmjm (6)

K ′
=

∑
i

k′

i [Xi ]

=

∑
i

αki
ki [Xi ]

= αKK (7)

By definition, the isotopic fractionation factor for CH2O,
αf , is

αf =
J ′

+ K ′

J + K

= αr ×
jr

J
×

J

J + K
+ αm ×

jm

J
×

J

J + K
+ αK ×

K

J + K
(8a)

In Eq. (8a), the ratio ofjm to J represents the yield of H2
from photolysis of CH2O (8(H2)), and the ratioJ /(J+K)

is the fraction of CH2O that is photolyzed. Designating the
latter as0, αf can be rewritten as

αf = αr (1 − 8) 0 + αm80 + αK (1 − 0) (8b)

Or simply,

αf = αhν0 + αK (1 − 0) (8c)

where αhν represents the isotopic fractionation factor for
photolysis of CH2O. Since the amount of radicals produced
along the experiments is not constant,0 is not a constant but
varies as a function of time. In addition, strictly speaking,
8(H2) varied during the sunlight experiments as did SZA
(Fig. 3b). Accordinglyαf is changing along with the CH2O
photolysis and photochemical reactions. Nevertheless, as-
suming thatαf is constant gives a convenient way to deter-
mine the isotopic fractionation factor for the production of
H2, αm.

Integrating Eqs. (1) and (4) and then dividing [CHDO]
by [CH2O] leads to the well-known Rayleigh equation
(Rayleigh, 1902):

RQ

Ro

= f αf −1 (9)

whereRo is the isotope ratio of the initial CH2O,RQ is that
for the remaining CH2O along the course of experiment, and
f the fraction of the remaining CH2O. Thus, the isotope ratio
of the products (Rp) as a function of CH2O photochemical
destruction can be obtained by mass balance:

Rp

Ro

=
1 − f αf

1 − f
(10)

ActuallyRp is the sum of the isotope ratios of the products
formed by CH2O photolysis and its photochemical reactions
with radicals. The isotope ratio of the H2, Rm, which is pro-
duced from CH2O photolysis to the molecular channel, can
be derived from the following derivatives:

d [H2]

dt
= jm [CH2O] (11)

and

d [HD]

dt
= j ′

m [CHDO] (12)

Solving Eqs. (11) and (12) with inserting the solutions of
Eqs. (1) and (4), respectively, and the definition ofαm in
Eq. (5),Rm has the following relation withRo:

Rm

Ro

=
αm

αf

×
1 − f αf

1 − f
(13)

By dividing (13) by (10), the ratio of the isotope ratios of H2
(Rm) and all products from CH2O photochemistry (Rp) is
the same as the ratios of their isotopic fractionation factors:

Rm

Rp

=
αm

αf

(14)

Similar experessions can be derived for the radical channel
of CH2O photolysis (15) and for the photochemical reactions
(16):

Rr

Rp

=
αr

αf

(15)
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Table 2. Sensitivity test of theαr at a given range of the parameters.

Prescribed value Uncertainty of parameter Sensitivity Uncertainty ofαr

(Zi ) (1Zi) (1αr /1Zi) (1αr )

[CH2O]0 (ppm) 1 ±1 0.0027* ±0.003
JCH2O (s−1) 3.143×10−5 +4.53×10−5

−3.14×10−5
0.0026* ±0.004

8(H2) 0.647 ±0.039 −0.476 ∓0.019
JH2O2/JCH2O 0.0896 ±0.0036 −2.48 ∓0.009
αH for CH2O+H 0.781 ±0.25 ∼0 ∼0
αOH for CH2O+OH 0.781 ±0.0061 −0.45 ∓0.003
αHO2 for CH2O+HO2 0.781 ±0.25 −0.036 ∓0.009
δD-H2 of final product (‰) 0 ±40 −0.0019 ∓0.076

Sum** 0.079

* Sensitivity is calculated by the ratio of a parameter to the prescribed value.
** Quadratic sum of errors.

RK

Rp

=
αK

αf

(16)

From the relations of Eqs. (14), (15), and (16), it is imme-
diately recognized thatRp is the weighted sum of the isotope
ratios of the products from two channels of CH2O photoly-
sis and its photochemical reactions, similar to the isotopic
fractionation factor of CH2O in Eq. (8b).

Rp = Rr (1 − 8) 0 + Rm80 + RK (1 − 0) (17)

Since we measured the evolution ofRm with 9(H2), αm

can be determined from Eq. (13). Asf approaches 1 (thus,
9(H2) goes to zero),Rm/Ro in Eq. (13) becomes the value
of αm, which is in turn represented by the value ofδD-H2 as
follows:

δD-H2= (αm−1) × 1000(‰) (18)

Accordingly, the intercept in Fig. 5 (9(H2)=0) represents the
value ofαm (=0.50(±0.02)) and indicates that H2 produced
by photolysis of CH2O is 500(±20)‰ depleted with respect
to the initial CH2O. Since the experiments for the photolysis
of CH2O for short periods were conducted with high CH2O
mixing ratios of 50 ppm, a similar amount of initial CH2O,
was applied in the 1-box model to determine the value ofαm.
Its uncertainty, 0.02, was determined such that all measure-
ments for the short periods experiments are predicted by the
1-box model within the range of errors (see Fig. 5). The as-
sumption thatαf is constant should be valid during the initial
stage of photolysis of CH2O because the amounts of radicals,
in particular the OH radical, produced are too small to affect
αf (see Fig. 4b). Even ifαf were not constant, it would not
interfere with the determination ofαm because theαf ’s in
Eq. (13) cancel forf approaching 1.

3.4 Isotope effect of CH2O photolysis to the radical chan-
nel

Provided that complete photolysis of CH2O yields H2 that
has the same isotope ratio as that of the initial CH2O (Fig. 5),
we can also determine the isotopic fractionation factor,αr ,
which governs the isotopic fractionation occurring in (R1).
However, in this case the Rayleigh model cannot be applied
because the value ofαf varies with time due to changes in
the amounts of radicals (see below). We ran a photochemi-
cal 1-box model instead, which consists of the 33 reactions
mentioned in Sect. 3.2 as well as critical reactions of CHDO
and HD to determineαr as follows:

CHDO+ hν → products (R1a)

CHDO+ hν → CO+ HD (R2a)

CHDO+ OH → products (R3a)

CHDO+ H → products (R4a)

CHDO+ HO2 → HOCHDOO (R5a)

HD + OH → products (R6a)

HOCHDOO→ CHDO+ HO2 (R27a)

HOCHDOO+ HO2 → products (R28a)

In Fig. 5 several model runs under different conditions are
plotted. As an ideal case, we assume that CH2O is destroyed
exclusively by photolysis. Since in this scenarioαf is con-
stant as the reaction proceeds, the Rayleigh model can be ap-
plied to determineαr . In Eq. (13), asf approaches 0, the ra-
tio of Rm toRo becomes the ratio ofαm toαf , which is repre-
sented by the value ofδD-H2 at the end of photolysis. As the
values ofδD-H2 converge at zero,αf =αm and thusαm=αr
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Table 3. Comparison of the isotope effects determined from CH2O photolysis experiments.

Source Minor αm αr *αOH 8(H2) ** 0 αhν αf αm/αf

isotopologue

This study [CHDO] 0.50(±0.02) 0.22 (±0.08) 0.781(±0.006) 0.65 (±0.04) 0.69 (±0.28) 0.40 (±0.03) 0.51 (±0.11) 0.97 (±0.21)
Feilberg et al. (2007b) [CHDO] 0.55(±0.02) 0.91(±0.05) 0.781(±0.006) ***0.77(±0.06) 0.69 (±0.28) 0.63(±0.01) 0.68 (±0.04) 0.81 (±0.06)
Crounse et al. (2003) [CHDO] 0.8
Feilberg et al. (2007a) [CD2O] 0.333(±0.056)

* Kinetic isotope effect for CH2O + OH from Feilberg et al. (2004).
** The value is calculated for the Mainz conditions for the periods of experiments.
*** The value was calculated by the relationαhν=αm×8(H2)+αr×(1−8(H2)).

according to the relation in Eq. (8b) since0=1. This scenario
is, however, unlikely considering the substantial production
of radicals via the radical channel (R1), which may in turn
react with CH2O in the reactor as described above. Introduc-
tion of the reactions of H and/or HO2 with both CH2O and
CHDO with and without kinetic isotope effect do not signif-
icantly change the evolution ofδD-H2 compared to the ideal
scenario that only accounts for CH2O photolysis. However,
it is apparent that the reaction of OH and CH2O is critical for
determination ofαr , as theδD-H2 value for the final prod-
uct of H2 reaches only∼−170‰. Taking the kinetic isotope
effect for the reaction of CH2O with OH radicals into ac-
count increases theδD-H2 value for the final product a little
to ∼−130‰. Applying the kinetic isotope effect for the re-
action of HD with OH does not improve the model to sim-
ulate the measurements because of too slow reaction rate of
H2+OH. However, decreasing the value ofαr from 0.50 to
0.22 (thus larger isotope effect) makes it possible to reach
the δD-H2 value of the final H2 to zero and significantly
improves the predicted evolution ofδD-H2 compared to the
measurements. Therefore, provided that the TUV radiation
model and the reaction rates applied in the 1-box model are
correct, our best estimate ofαr is 0.22 and the total isotopic
fractionation factor of CH2O due to photolysis (αhν) results
in 0.40 for8(H2)=0.647, the yield of H2 which is the best
estimate from the TUV radiation model for the average con-
ditions of Mainz at the times of the experiments (see Fig. 3).

As the value ofαr in the present study is not determined
directly by measurement, but is based on model calculations,
we conducted sensitivity runs to estimate the uncertainty of
αr by varying the values of the various parameters used in
the 1-box model. These parameters are the mixing ratio of
CH2O in the reactor,8(H2), photolysis rates of CH2O and
H2O2, kinetic isotope effects for the reaction of CHDO with
the radicals, and the uncertainty ofδD-H2 for the final prod-
uct (Table 2). Among themαr is the most sensitive to the
ratio of the photolysis rate of H2O2 to that for CH2O be-
cause large production of OH by photolysis of H2O2 leads
to the increase of the fraction of CH2O that reacts with OH
in the reactor, which in turn lowers the value ofαr to com-
pensate for it (see Eq. 8b). The same effect can be caused by
the variation ofαOH for CH2O+OH and by8(H2). Sensitiv-
ity runs for the potential error in theδD-H2 value of the final

product shows the largest impact toαr among the parameters
because of its large potential error of 40‰, which includes
the uncertainty of theδD value of the original CH2O (=4‰).
Overall most of the uncertainty forαr originates from the
uncertainties in8(H2) and theδD-H2 of the final products.
The quadratic sum of the errors incurred by these parameters
amounts to 0.08.

4 Discussions

4.1 Comparison with previous research

To our knowledge three experiments have been done in
sunlight to determine the isotopic fractionation factor for
formaldehyde photolysis (Table 3): One experiment investi-
gated the isotopic fractionation of CH2O itself by measuring
time evolution of the amount of isotopologues, CH2O and
CD2O using an optical method (Feilberg et al., 2007a; Feil-
berg et al., 2005), another experiment examined the same
isotopic fractionation but for CH2O and CHDO using the
same technique and the D/H ratio of H2 produced by mass
spectrometry (Feilberg et al., 2007b), and the other mea-
sured the D/H ratio of H2 produced from the photolysis of
CH2O which is reported in a conference proceeding abstract
(Crounse et al., 2003). In the latter study a similar procedure
as in the present study was apparently applied. However, the
lack of details of the experiment, in particular the fraction
of H2 (9(H2)) and theδD value of the original CH2O used
for the photolysis experiments, both of which are critical to
determineαm, makes it difficult to inferαm from this sin-
gle value ofδD. The authors reported that the photolysis of
CH2O produces isotopically light H2, theδD value of which
is ∼−200‰. If the authors meant the value to be the de-
gree of enrichment of the H2 produced,αm is ∼0.8, which
is far larger (so less isotopically fractionated) than what we
obtained in this study.

In the case of Feilberg et al. (2005)’s experiments, the ra-
tio of photolysis rate of the two isotopologues,JCD2O/JCH2O,
was determined as 0.333(±0.056) (Feilberg et al., 2007a)
using an optical technique. This value is smaller than
the value forJCHDO/JCH2O (=αhν) of 0.40(±0.03) deter-
mined in the present study as expected from the assumption
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that double-deuterated formaldehyde is more stable than the
single-deuterated one due to zero point energy difference.

Recent work reported by the same group (Feilberg et al.,
2007b) has a particular interest as the goal of the experiment
is the same as the present study, but approaches it in a dif-
ferent way. In this experiment, the authors determined the
values ofαm andαhν as 0.55(±0.02) and 0.63(±0.01), re-
spectively. The value ofαm is similar to, while that forαhν

is far larger than, the values determined in the present study.
Actually the large discrepancy ofαhν points to a much larger
difference in the value ofαr between Feilberg et al. (2007b)
and the present study: 0.91(±0.05) versus 0.22(±0.08). Un-
like the previous work (Feilberg et al., 2005), Feilberg et
al. (2007b) took into account the CH2O production in the
chamber of the facility in determination ofαhν in addition
to leakage of the experimental chamber. Notwithstanding,
there is still such a large discrepancy in the isotopic frac-
tionation factors of CH2O between the two studies. Besides
the discrepancy in the magnitude ofαr , an interesting result
of Feilberg et al. (2007b) is that the degree of the isotopic
fractionation in CH2O photolysis to the molecular channel
is larger than that for the radical channel, being opposite to
the results from the present study and from early results by
McQuigg and Calvert (1969).

It is useful to recall the different experimental conditions
in both studies. Feilberg et al. (2007b) performed an iso-
topic tracer study using similar amounts of CH2O and CHDO
in the EUPHORE reactor in Valencia, Spain, which allowed
them to inferαhν directly by a spectroscopic method.αm was
then inferred from the isotope-ratio-mass-spectrometric mea-
surements of HD and modeling of the H2 yield using a given
quantum yield for CH2O photolysis. The direct determina-
tion of αhν using spectroscopic measurement, however, had
to be corrected to account for the losses of CH2O and CHDO
by the reaction with OH radical and large leakage of air in
the chamber as well as production of CH2O from the wall.
In addition, their values ofαr andαm depend on which value
of the quantum yield for CH2O photolysis are applied. In our
study, performed at the level of natural deuterium abundance,
αm is the “directly” inferred quantity, andαhν follows from
the experimental results that the isotopic compositions of the
initial CH2O and of the H2 that are formed from complete
photolysis are virtually the same, but it also requires a cor-
rection for reaction with radicals. At present we are not able
to identify the reason of the large discrepancy in the isotopic
fractionation factors of CH2O between the two studies. More
experiments can resolve this issue.

4.2 Atmospheric implication

The determination ofαm and αr may provide an impor-
tant insight to comprehend what causes the enrichment in D
throughout the photochemical oxidation pathway from CH4
to H2. The overall composite of isotopic fractionation factors

from CH4 to H2, αCH4-H2, may be defined as:

αCH4-H2 =
R0

H2

RCH4

(19)

whereR0
H2

represents the isotope ratio of H2 produced by
photochemical oxidation of CH4 andRCH4 is that for CH4.
Strictly speaking,αCH4-H2 differs from the general definition
of isotopic fractionation factor in that it is a function of not
only thermodynamic conditions but also environmental pa-
rameters such as radiation, radical species and their concen-
trations in the atmosphere. Nonetheless, given a system with
these parameters,αCH4-H2 can be considered as an isotopic
fractionation factor. Rhee et al. (2006a) estimated the value
of αCH4-H2 to be 1.3 in the troposphere, meaning that the H2
produced from CH4 oxidation is enriched in D by 1.3 times
as much as the initial CH4. Gerst and Quay (2001) and Price
et al. (2007) also expected D in the H2 from photochemical
oxidation of CH4 to be enriched by a factor of 1.2–1.3.

As Gerst and Quay (2001) described in detail,αCH4-H2 is
the product of several factors that are associated with pho-
tochemical chain reactions from CH4 to H2. These factors
include: (1) isotopic fractionation occurring during the reac-
tion of CH4 with OH (αCH4), the rate-determining step of the
photochemical chain reactions of CH4, as well as the sub-
sequent isotopic fractionation processes occurring along the
way to CH2O (α6), (2) the branching ratios in the reactions
of deuterated species, e.g., CH3D, CH2DOOH, and CH2DO,
(3) the factor of 2 brought up by the reduction of the number
of hydrogen atoms from CH4 to CH2O, and finally (4) iso-
topic fractionation occurring during the photolytical produc-
tion of H2 from CH2O. Assuming that CH2O is in a photo-
chemical steady state, as it has a far shorter chemical lifetime
than CH4 and H2, point (4) is represented by the ratio of the
isotopic fractionation factor of the H2 produced (αm) to that
for CH2O (αf ), which determines the degree of D enrich-
ment of H2 (Rhee et al., 2006a). Note thatαf differs from
αhν by the effect of isotopic fractionation arising from reac-
tion with OH radical (αOH) in the troposphere. Combining
all these factors yields:

αCH4-H2 = 2 × αCH4 × βCH4 × α6 × βp ×
αm

αf

(20)

whereβCH4 is the branching ratio for the deuterated prod-
uct, CH2D, in the reaction of CH3D and OH, andβp is a
combined branching ratio for other short-lived intermediates,
CH2DOOH, and CH2DO.

Regarding the right-hand side of Eq. (20), the value of
αCH4 is 0.78(±0.07) at 298 K (Gierczak et al., 1997) and
decreases with the decrease of temperature, that forβCH4

is at most unity but most likely is less than unity as Gerst
and Quay (2001) speculated, and the same is expected for
βp. In the subsequent reactions, there is no compelling ratio-
nale that the more deuterated isotopologues react faster than
the lighter ones considering the theoretical view of lower
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zero point energy for the isotopically heavier isotopologues.
Thus, the value ofα6 may not be larger than unity. The
last two parameters in Eq. (20),αf and αm, are what we
are concerned with here: sinceαf is a combined isotopic
fractionation factor due to photolysis and photochemical re-
actions of CH2O by the fraction of the reaction routes as
shown in Eqs. (8), the value is the weighted mean of the
isotopic fractionation factors involved in the reactions. As
listed in Table 3 under the radiation conditions of Mainz, the
best values ofαm andαr were estimated as 0.50(±0.02) and
0.22(±0.08), respectively, from the present study. Feilberg
et al (2004) determined the value ofαOH as 0.781(±0.006).
The optimal values of8(H2) and0 in Mainz were calcu-
lated as 0.647(±0.039) and 0.69(±0.28), respectively, for
the periods of experiments using the TUV radiation model
at a weighted mean SZA of 62.7◦ (see Fig. 3). In order to
determine0, we calculated OH radical concentrations and
their uncertainties from the relationship between the photol-
ysis rate of O3 (J (O1D)) and OH concentration by Rohrer
and Berresheim (2006) (i.e., [OH]=2.4×J (O1D)+0.13 and
σ=0.07×106+0.33×[OH]). By inserting these values into
Eq. (8b) the resulting value forαf is 0.51(±0.11). Most of
its uncertainty is carried over from the uncertainty of OH.
The resulting ratio ofαm/αf (=0.97(±0.21)) is slightly lower
than unity, but because of its large uncertainty, arising from
the uncertainty of the OH concentration, it is not possible to
predict with certainty whether the CH2O photolysis leads to
a depletion or enrichment of D in the H2 produced with re-
spect to the parent CH2O. When using the values of isotopic
fractionation factors determined by Feilberg et al. (2007b),
the CH2O photolysis leads to the depletion of D in the H2,
however, even taking into account the uncertainty ofαm/αf

(see Table 3).
We extend the calculation of the ratio ofαm/αf to a range

of values of8(H2) and0, assuming that the values ofαm,
αr , andαOH determined from the present study and Feilberg
et al. (2004) are applicable to the entire troposphere. The po-
tential ranges of8(H2) for the troposphere were estimated
using the TUV radiation model with varying SZA at the alti-
tudes of the US standard atmosphere. In order to estimate0

for the troposphere, it is necessary to know the reaction rate
of CH2O+OH at a given time and place. The reaction rate co-
efficient varies by∼15% in the troposphere due to change in
temperature, while the OH concentration varies in the order
of magnitude with its peak occurring at local noon. The peak
values are well above 107 molecules cm−3 (e.g., Berresheim
et al., 2003), leading to0 ∼0.45. Thus, the range of0 is
likely to be between 0.4 and 1 in the troposphere. As shown
in Fig. 6, the ratios ofαm/αf vary from∼0.8 to∼1.2, which
suggests that, depending on the values of0 and8(H2) in
the troposphere, the H2 produced from the CH2O photolysis
could be either enriched or depleted in D. For instance, at the
Earth’s surface the values ofαm/αf along the track of the sun
are likely to be lower than unity, thus yielding the depleted
H2 in D with respect to the parent CH2O.
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Fig. 6. Contour plot of the ratioαm/αf for potential ranges of the
yield of H2 from CH2O photolysis (8(H2)) and of the fraction of
CH2O that is decomposed by photolysis (0) in the troposphere. The
symbols track the values of8(H2) and0 calculated by the TUV
radiation model and Rohrer and Berresheim (2006)’s parameteriza-
tion of OH concentration at the indicated solar zenith angle (SZA)
from 0◦ to 85◦ in 5◦ steps at Earth’s surface.

Finally, we examine the range ofαm/αf that can be rec-
onciled with the values ofαCH4-H2 inferred for tropospheric
conditions. In the literature it is reported thatαCH4-H2 would
be between 1.2 and 1.3 in the troposphere (Gerst and Quay,
2001; Price et al., 2007; Rhee et al., 2006a). According
to Gierczak et al. (1997), the value ofαCH4 at the tropo-
spheric mean temperature of 272 K is 0.77(±0.08). Insert-
ing these values into Eq. (20), the lower bound forαm/αf

will be ∼0.8 when the branching ratio for deuterated com-
pounds (βCH4 and βp) and α6 are unity. When the val-
ues proposed by Gerst and Quay (2001) are applied (i.e.,
βCH4×α6×βp=0.96×0.77×0.96),αm/αf is 1.15. These two
values ofαm/αf bound the range which was estimated for
the typical values of0 and8(H2) in the troposphere (Fig. 6).
This suggests that even ifαm/αf is smaller than unity it is still
possible that H2 formed from the photochemical oxidation of
CH4 is enriched in D with respect to the original CH4 due to
the factor of 2 that arises from the reduction of the number
of hydrogen atom. Recent laboratory experiment (Nilsson
et al., 2007) reports the branching ratio for CH2DO reacting
with O2 to be 0.88(±0.01), suggestingβp to be lower than
unity and thatαm/αf is likely to be larger than unity.

5 Conclusions

CH2O photolysis experiments conducted in sunlight under
ambient conditions allowed us to determine the isotopic frac-
tionation factors for both the radical (R1) and molecular (R2)
channels. The H2 produced is depleted in D by 500(±20)‰
with respect to the initial CH2O. The radical channel (R1)
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appears to have a much stronger isotopic fractionation than
the molecular channel (R2), resulting in D enrichment of
the remaining CH2O by 780(±80)‰. This isotope effect is
significantly larger than the result obtained from the exper-
iments in the EUPHORE reaction chamber by Feilberg et
al. (2007b), a difference we do not understand at present.

Applying the isotopic fractionation factors obtained from
the present study to the conditions of Mainz, CH2O photoly-
sis may produce the H2 that is slightly depleted in D. How-
ever, the large uncertainty in the combined isotope effects of
the photochemical reactions of CH2O, which primarily orig-
inates from the uncertainty of OH concentration, makes it
impossible to precisely define the role of CH2O photolysis
in the D enrichment of H2. In the troposphere, CH2O pho-
tolysis may produce the H2 either enriched or depleted in D
with respect to the parent CH2O depending on the fraction
of CH2O that reacts with OH or that is photolyzed to H2.
Nonetheless, our estimated range ofαm/αf (∼0.8 to∼1.2)
in the troposphere can be reconciled with the production of
H2 enriched in D with respect to the original CH4 by the fac-
tor reported in the literature.

Appendix A

1-box photochemistry model

The 1-box model is composed of 33 reactions (Table A1)
running at 25◦C and 105 Pa of air which is composed of 78%
of N2 and 22% of O2. Unless otherwise mentioned, the yield
of H2 in the photolysis of CH2O and the ratio ofJH2O2/JCH2O
are assumed to be 0.647 and 0.0896, respectively, following
the result from the TUV radiation model in Mainz.
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Table A1. Photochemical reactions in the model.

No.* Reaction Rate coefficient** Notes

(R1) CH2O + hν → CHO + H 1.109E-5 1
(R2) CH2O + hν → CO + H2 2.033E-5 1
(R3) CH2O + OH→ CHO + H2O 8.6E-12×exp(166/RT) 2
(R3’) CH2O + OH→ HCOOH + H 2.01E-13 9
(R4) CH2O + H → CHO + H2 2.14E-12×exp(−9063/RT)×(T/298)1.62 8
(R5) CH2O + HO2 → HOCH2OO 6.71E-15×exp(4989/RT) 3
(R6) H2 + OH → H + H2O 5.5E-12×exp(−16629/RT) 3
(R7) H2O2 + hν → 2OH 2.816E-6 1
(R8) O2 + CHO→ CO + HO2 3.5E-12×exp(1164/RT) 3
(R9) CHO + CHO→ CH2O + CO 5.0E-11 4
(R9’) CHO + CHO→ (CHO)2 5.0E-11 5
(R10) CHO + H→ CO + H2 1.13E-10 6
(R11) CHO + OH→ CO + H2O 1.69E-10 4
(R12) CHO + HO2 → product 5.0E-11 4
(R13) H2O + CHO→ CH2O + OH 8.54E-13×exp(−108920/RT) 7
(R14) H2O2 + CHO→ CH2O + HO2 1.69E-13×exp(−29018/RT) 7
(R15) O2 + H → HO2 M×5.71E-32×(T/298)−1.6 3
(R16) H + H→ H2 M×8.85E-33×(T/298)−0.6 4
(R17) OH + H→ H2O M×4.38E-30×(T/298)−2.0 4
(R18) (CHO)2 + OH → product 1.1E-11 2
(R19) HCOOH + OH→ product 4.0E-13 3
(R20) CO + OH→ CO2 + H 1.5E-13×(1+0.6×P/1013.25) 3
(R21) CO + HO2 → CO2 + OH 5.96E-11×exp(−95616/RT)×(T/298)0.5 10
(R22) OH + OH→ H2O2 M×6.20E-31×(T/298)−1 3
(R23) HO2 + H → product 8.10E-11 3
(R24) HO2 + OH → H2O + O2 4.8E-11×exp(2079/RT) 3
(R25) HO2 + HO2 → H2O2 + O2 M×1.7E-33×exp(8314/RT) 3
(R26) H2O2 + OH → HO2 + H2O 2.91E-12×exp(−1330/RT) 3
(R27) HOCH2OO→ HO2 + CH2O 2.4E12×exp(−58201/RT) 2
(R28) HOCH2OO + HO2 → HCOOH + H2O + O2 5.6E-15×exp(19123/RT) 2
(R29) 2HOCH2OO→ 2HOCH2O + O2 5.5E-12 11
(R29’) 2HOCH2OO→ HCOOH + CH2(OH)2 + O2 5.71E-14×exp(6236/RT) 11
(R30) O2 + HOCH2O → HCOOH + HO2 3.5E-14 12

Notes: 1. TUV radiation model; 2. Atkinson et al. (1997); 3. DeMore et al. (1997); 4. Baulch et al. (1992); 5. Stoeckel et al. (1985); 6. Ziemer et al. (1998); 7. Tang and Hampson
(1986); 8. Baulch et al. (1994); 9. Yetter et al. (1989); 10. Volman (1996); 11. Atkinson et al. (1992); 12. Veyret et al. (1982)
* Prime (’) designates the second reaction.
** R andT in rate constant designate gas constant and absolute temperature, respectively.M indicates air concentration in termolecular reaction. The units of the rate coefficients
for first-, second-, and third-order reactions are s−1, cm3 molecule−1 s−1, and cm6 molecule−2 s−1, respectively.
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