
Atmos. Chem. Phys., 9, 1873–1881, 2009
www.atmos-chem-phys.net/9/1873/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Homogeneous vs. heterogeneous nucleation in water-dicarboxylic
acid systems
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Abstract. Binary heterogeneous nucleation of water-
succinic/glutaric/malonic/adipic acid on nanometer-sized
particles is investigated within the frame of classical hetero-
geneous nucleation theory. Homogeneous nucleation is also
included for comparison. It is found that the nucleation prob-
abilities depend on the contact angle and on the size of the
seed particles. New thermodynamical properties, such as sat-
uration vapor pressure, density and surface tension for all the
dicarboxylic acid aqueous solutions are included in the calcu-
lations. While the new surface tension and density formula-
tions do not bring any significant difference in the computed
nucleation rate for homogeneous nucleation for succinic and
glutaric acids, the use of the newly derived equations for the
vapor pressure decrease the acid concentrations in gas phase
by 3 orders of magnitude. According to our calculations,
the binary heterogeneous nucleation of succinic acid-water
and glutaric acid-water – although it requires a 3–4 orders
of magnitude lower vapor concentrations than the homoge-
neous nucleation – cannot take place under atmospheric con-
ditions. On the other hand binary homogeneous nucleation
of adipic acid-water systems might be possible under condi-
tions occuring in upper boundary layer. However, a more de-
tailed characterization of the interaction between the surface
and the molecules of the nucleating vapor should be consid-
ered in the future.

1 Introduction

An important phenomenon associated with the atmospheric
aerosol system is the formation of new aerosol particles. At-
mospheric aerosol formation consists of a complicated set
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of processes that includes the production of nanometer-size
clusters from gaseous vapours, the growth of these clusters
to detectable sizes, and their simultaneous removal by coag-
ulation with the pre-existing aerosol particle population (e.g.
Kerminen et al., 2001; Kulmala, 2003). While aerosol for-
mation has been observed to take place almost everywhere
in the atmosphere (Kulmala et al., 2004b), several gaps in
our knowledge regarding this phenomenon still exist. These
gaps range from the basic process-level understanding of at-
mospheric aerosol formation to its various impacts on atmo-
spheric chemistry, climate, human health and environment.

Nucleation can be either homogeneous (when the nucle-
ation probability is homogeneous thorough the system, i.e., it
takes place inside of an uniform medium) or heterogeneous
(when the probability of nucleation is much higher around
some foreign bodies than in the rest of the system). Knowl-
edge on the exact processes governing atmospheric parti-
cle formation and the vapours participating in them is the
key to quantify the global aerosol source provided by sec-
ondary particle formation. Information on the evolution of
this source, on the other hand, is needed to assess the climatic
effects of atmospheric aerosols. Heterogneous nucleation is
proved to be important in atmospheric conditions (Kulmala
et al., 2004a, 2006).

Recent studies (O’Dowd et al., 2002; Kanakidou et al.,
2005; Tunved et al., 2006; Allan et al., 2006) suggest
that organic compounds are likely to play a major role
in the formation and growth of atmospheric aerosol parti-
cles. Aliphatic straight-chain dicarboxylic acids (general
formula HOOC(CN)nCOOH) such as malonic (n=1), suc-
cinic (n=2), glutaric (n=3), and adipic (n=4) acids are wa-
ter soluble organic acids that are commonly found in atmo-
spheric particulate matter (Grosjean et al., 1978; Kawamura
et al., 1996; Rohrl and Lammel, 2002). This implies that
they partition to the condensed phase and therefore poten-
tially participate even in the very first steps of atmospheric
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nucleation and growth. Unfortunately, atmospheric obser-
vation on gas phase concentrations of these acids are rare.
Recently Limbeck et al. (2005) using Teflon/quartz filter
stack system, determined the gaseous and particulate C2–
C9 dicarboxylic acids concentrations at a continental back-
ground site in central Europe (Mt. Rax) and at an urban site
Vienna. The gaseous concentrations of succinic acid and
glutaric acid were found to be 108–109 molecules/cm3 and
107–108 molecules/cm3, respectively, while the concentra-
tions for malonic acid and adipic acid were usually bellow
the detection limit.

In a recent paperGaman et al.(2004) studied the binary
homogeneous nucleation of water-succinic acid and water
glutaric acid, concluding that the nucleation can take place
only for very high concentrations of organics in gas phase,
which can not be found in atmospheric conditions. How-
ever, the lack of experimental data and well established ther-
mophysical properties for the aqueous solutions of glutaric
and succinic acids caused uncertainty in the nucleation rate
calculations. In recent years several publications discussing
the thermodynamical properties of the organics in question
have appeared. For instance,Riipinen et al.(2006) present
a method for determining the saturation vapor pressure for
pure succinic acid at atmospheric temperatures; the model
used simulates the binary condensation/evaporation by com-
bining basic mass and heat transfer equations. Using exper-
imentally determined evaporation rates of nanometer-sized
aqueous malonic, succinic and glutaric acid droplets together
with the binary condensation model,Koponen et al.(2007)
provided expressions for the liquid phase saturation vapor
pressures for the above mentioned organics. New experi-
mental data for surface tension and density of aqueous so-
lutions of several dicarboxylic acids (including succinic and
malonic acids) are provided byHyvärinen et al.(2006). Riip-
inen et al.(2007) supplies new measurements for the surface
tension and vapor pressure for malonic and adipic acids.

Recently, atmospheric nucleation has been observed to oc-
cur on existing atmospheric clusters (Kulmala et al., 2007b).
On the other hand the fresh particles are seen to contain or-
ganic compounds (e.g.Kulmala et al., 2007a). In order to
obtain some clear information on atmospheric nucleation, we
will focus on the first steps of atmospheric particle formation,
investigate the relevance of the heterogeneous nucleation of
malonic, succinic, glutaric and adipic acids and water in at-
mospheric conditions and compare the likelihood of the het-
erogeneous and homogeneous nucleation. The theoretical
framework is based on classical nucleation theory for which
a brief review is given in the theory section. The description
of the homogeneous and heterogeneous nucleation theory is
followed by the results section where our numerical calcu-
lations are presented and discussed. Finally, the last section
gives a summary of the results, discussing the reliability of
the calculations, restrictions and atmospheric implications.

2 Theory

2.1 Homogeneous nucleation

All our calculations are based on classical nucleation the-
ory (CNT) (Fletcher, 1958; Reiss, 1950). Following the line
presented inGaman et al.(2004), we consider a liquid-like
cluster containingn1 molecules of water andn2 molecules of
organic acid. The formation energy of the cluster is (Laakso-
nen et al., 1999; Reiss, 1950):

1Ghom = −kT

2∑
i=1

ni ln

(
Pi

Ps,i

)
+4πσ12r

2, (1)

wherePi is the ambient partial pressure of free molecules
of speciesi (i=1,2), Ps,i is the equilibrium vapor pressure
of speciesi above a flat solution surface,r is the radius of
the droplet,σ12 is the surface tension of a flat liquid-vapor
interface at the composition of the nucleus,k is Boltzmann
constant andT is the temperature.

Setting (∂1Ghom/∂ni)nj
=0 yields the Kelvin equation,

from which the mole fraction of, say, component 1, denoted
by x, and the radius of the critical cluster are obtained:

ln
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)
v2(x, T ) = ln

(
P2
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wherevi is the partial molar volume of speciesi.
The critical formation energy is given by

1G∗

hom =
4

3
πr∗

2
σ12. (4)

The nucleation rate is (Stauffer, 1976):

Ihom = RAV FZ exp

(
−1G∗

hom

kT

)
(5)

The evaluation of the pre-exponential part of the nucleation
rate is simplified by reducing the binary system to a unary
system, using the concept of virtual monomer. For non-
associated vapors, the average growth rate is:

RAV =
R11R22

R11 sin2 χ + R22 cos2 χ
(6)

whereR11 andR22 are the rates at which water and organic
acid molecules, respectively, collide with the critical cluster.
The growth angleχ in the (n1, n2) plane can be approximated
by using tanχ=

x
(1−x)

. The total monomer concentration in
the gas phase is:

F = c1 + c2 (7)
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wherec1 andc2 are the number concentration of water and
organic acid molecules in the vapor phase. In the approxima-
tion based on virtual monomer, the Zeldovich factor is given
by (Kulmala and Viisanen, 1991):

Z =

√
−1

2πkT

∂21Ghom

∂n2
=

√
σ12

kT

v

2πr∗2
(8)

wherev=xv1+(1− x)v2 is the volume of an average virtual
monomer.

2.2 Heterogeneous nucleation

In the classical theory of heterogeneous nucleation, the seed
particle is considered spherical, with a homogeneous surface.
The free energy of formation of a cluster on a seed particle is
(Fletcher, 1958):

1Ghet = 1G12V + σ12S12 + (σ23 − σ13)S23 (9)

where we denote the parent phase (vapor) with subscript 1,
the liquid embryo with 2 and the substrate with 3.1G12 rep-
resents the free energy difference per unit volume of the bulk
liquid phase between liquid and vapor,σij is the surface free
energy between phasesi and j, andSij is the surface area of
the interface. The composition and the radius of the critical
cluster are given, as in the case of homogeneous nucleation -
by the Eqs. (2) and (3). The formation energy of the critical
cluster is:

1G∗

het =
2πr∗2σ12

3
f (m, X) =

1

2
1G∗

homf (m, X) (10)

with the geometrical factor

f (m, X) = 1 +

(
1 − mX

g

)3

+ X3
[
2 − 3

(
X − m

g

)
+(

X − m

g

)3
]

+ 3mX2
(

X − m

g
− 1

)
(11)

where

g =

√
1 + X2 − 2mX (12)

andm= cos(θ), θ is the contact angle,X=R/r∗, R is the
radius of the seed particle andr∗ is the radius of the critical
cluster.

The nucleation rate per unit time and per unit area of a pre-
existing surface can be expressed in the similar way as in the
homogeneous nucleation case (Eq.5):

Ihet = RAV FZ exp

(
−1G∗

het

kT

)
(13)

In the calculation of the heterogeneous nucleation rate we
used the same approximate formula for the Zeldovich factor
as in the homogeneous nucleation case (Eq.8), as its use in-
stead of the accurate treatment (see, for example, Eq. 18 in

Määtẗanen et al., 2007) does not affect the nucleation rate
and the nucleation probability significantly. According to
Vehkam̈aki et al. (2007) who tested both accurate and ap-
proximate Zeldovich factors on nucleation of CO2 under
Martian conditions, the use of exact formulation gives higher
nucleation rates than the approximate one, but the difference
is less then one order of magnitude and does not affect the
predicted onset conditions.

The average growth rateRAV is described as in the ho-
mogeneous case by Eq. (6). Two approaches are commonly
used for describing the growth rate of the embryo: the direct
vapor deposition and the surface diffusion. The former con-
siders only the monomers colliding with the critical cluster,
while the latter takes into account the monomers that col-
lided and adhered to the surface of the seed particle, after
which they diffuse to the cluster. Although both vapor de-
position and surface diffusion take place in the same time, it
is usually enough to consider only the surface diffusion, as
the vapor deposition growth rate is several orders of magni-
tude smaller. Therefore, in this study we used the surface
diffusion approach.

In heterogeneous nucleation, the number of nucleating
clusters depends on the number of pre-existing seed parti-
cles. Therefore, instead of nucleation rate, it is more practical
to use the concept of nucleation probability, which describes
the fraction of the seed particles that became active. The nu-
cleation probability in a time periodt (in this work t=1.5 s)
is (Lazaridis et al., 1992):

P=1 − exp(−4πR2Ihett), (14)

whereR is the radius of the seed particle. We define here
the onset of nucleation as the conditions where nucleation
probability isP=0.5. In the model run, the succinic acid and
glutaric acid gas phase activities (defined as the ratio between
its ambient vapor pressure and the saturation vapor pressure
over a flat surface of pure liquid) were varied, while the tem-
perature and relative humidity are fixed.

3 Thermophysical properties

3.1 Succinic and glutaric acids

The activity coefficients for succinic acid-water and glutaric
acid-water were calculated with van Laar method, as de-
scribed inGaman et al.(2004). All the other thermophysi-
cal properties used in the model calculations are taken from
Gaman et al.(2004) with the following exceptions:

The saturation vapor pressure for succinic acid (SA) (Ri-
ipinen et al., 2006) and glutaric acid (GA) (Koponen et al.,
2007):

psat,SA = exp[118.41−
16204.7

T
− 12.452 ln(T )] (15)

psat,GA = exp[120.1915−
16329.56

T
− 13.4688 ln(T )] (16)
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New measurements and equations for surface tension and
density of succinic acid aqueous solutions fromHyvärinen
et al. (2006) were included and listed below. The surface
tensionσ (given in [mN/m]) reads:

σ = σw(1 − xSA) + σSAxSA − RT xSA(1 − xSA)[
−0.101554

xSA + 0.024195(1 − xSA)
+

4.4768

41.333xSA + (1 − xSA)

]
(17)

whereσw[mN/m] andσSA[mN/m] represent the pure wa-
ter surface tension and the supercooled succinic acid surface
tension, respectively, as presented inGaman et al.(2004),
xSA is the succinic acid mole fraction,T is the temperature
andR the molar gas constant. The density of the succinic
acid aqueous solution is a function of the pure organic acid
and water densities (ρSA andρW , respectively), the molecu-
lar weights (MSA andMW ) and the acid mole fraction:

1

ρ
=

MSAxSA

ρSA[MSAxSA + MW (1 − xSA)]

+
1.0082MW (1 − xSA)

ρW [MSAxSA + MW (1 − xSA)]
(18)

3.2 Malonic and adipic acids

The activity coefficients for malonic (MA) and adipic acids
(AA) in aqueous solutions were calculated using UNIFAC
Dortmund model (Fredenslund et al., 1975; Gmehling et al.,
1990). The saturation vapor pressure is given byRiipinen
et al.(2007):

psat,MA = exp[220.2389−
22634.96

T
− 26.66767 ln(T )] (19)

psat,AA = exp[140.6704−
18230.97

T
− 15.48011 ln(T )] (20)

Hyvärinen et al.(2006) reports surface tension and density
for binary aqueous solution of malonic acid as:

σ = σw(1 − xMA) + σMAxMA − RT xMA(1 − xMA)[
−0.301717

xMA + 0.073139(1 − xMA)
+

4.1950

13.658xMA + (1 − xMA)

]
, (21)

and

1

ρ
=

0.9984MMAxMA

ρMA[MMAxMA + MW (1 − xMA)]
+

0.9929MW (1 − xMA)

ρW [MMAxMA + MW (1 − xMA)]
, (22)

wherexMA, σMA, ρMA andMMA represent the malonic acid
mole fraction, pure subcooled liquid surface tension, density
and molecular weight, respectively. The pure malonic acid
surface tension is calculated with Macleod-Sugden method
(Reid et al., 1987) and fitted to a linear equation:

σMA(mN/m)) = 87− 0.13T(K). (23)

The pure subcooled liquid density for malonic acid is ob-
tained using the Yen-Woods method (Yen and Woods, 1966)
and its temperature dependence reads:

ρMA(kg/m3) = 1969.42− 1.7021T(K). (24)

Riipinen et al.(2007) provides new parametrization for the
surface tension of adipic acid aqueous solution:

σ = σw(1 − xAA) + σAAxAA − RT xAA(1 − xAA)[
1

312xAA + (1 − xAA)

(
∂312

∂A

)
+

1

321(1 − xAA) + xAA

(
∂321

∂A

)]
, (25)

wherexAA is the adipic acid mole fraction,A is the surface
area (m2) and3ij and

∂3ij

∂A
(i, j=1,2) are the fitted parame-

ters:

312 = exp

(
16535.39

RT

)
(26)

321 = exp

(
−

8392.088

RT

)
(27)

∂312

∂A
= 8.014303

312

RT
(28)

∂321

∂A
= 703.0901

321

RT
(29)

σAA is the pure subcooled liquid surface tension for adipic
acid estimated with Macleod-Sudgen method (Reid et al.,
1987):

σAA(mN/m) = 58.592− 0.083T(K) (30)

The density for the adipic acid-water solution has been cal-
culated using the ideal mixture theory, which requires the
knowledge of the pure component density. As all of the stud-
ied dicarboxylic acids, pure adipic acid is solid at room tem-
perature, but the subcooled liquid density can be calculated
with Yen-Woods method (Yen and Woods, 1966). The pure
liquid adipic acid density dependence on temperature was
then estimated as:

ρAA (kg/m3) = 1352.56− 0.6959× T(K) (31)

4 Results

In a recent publication,Kulmala et al.(2007b) provide ex-
perimental evidence for the existence of neutral clusters in
atmosphere. Their results suggest that the formation of the
aerosols starts with clusters of sizes close to 1.5–2 nm diam-
eter. Therefore, in our calculations, the default size for the
heterogeneous nucleation of water-dicarboxylic acids mix-
tures on solid, spherical particles is 1 nm radius. The default
values for temperature, relative humidity and contact angle
were fixed at 273 K , 70% and 0 degrees (complete wetting),
respectively. The parameters are varied one at a time while
the others are kept constant, unless otherwise stated.
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Fig. 1. Nucleation probability for dicarboxylic acids-water system
vs. dicarboxylic acid concentration in gas phase. The radius of the
seed particle is 1 nm,T =273 K and RH=70%. The three curves
correspond to different values of the contact angle and the colors
represent each dicarboxylic acid: blue – succinic acid, red – glutaric
acid, green – malonic acid and black – adipic acid.

Contact angle variation. In reality, the contact angle
changes as a function of the critical cluster composition,
but, due to the lack of experimental data for these four spe-
cific systems, our calculations were performed at three con-
stant contact angles:m=1 (θ=0◦), 0.9 (θ=25.84◦) and 0.7
(θ=45.5◦), respectively, wherem is the the cosine of the con-
tact angleθ . The nucleation probabilities for heterogeneous
nucleation were calculated and the nucleation rates in case of
homogeneous nucleation were considered also for compari-
son.

The nucleation probabilities depend on the contact angle,
but not significantly, especially for glutaric acid, malonic
acid and adipic acid-water systems. The most sensitive sys-
tem to contact angle variation is succinic acid-water (Fig.1).
We note the different slopes of the nucleation probabilities:
the slopes become steeper with decreasing contact angle.
As expected, the smallest concentration of dicarboxylic acid
necessary for heterogeneous nucleation is obtained for totally
wettable seed particles.

The homogeneous nucleation rates calculated with the
new thermodynamics and same temperature and relative hu-
midity conditions as the heterogeneous nucleation are de-
picted in Fig.2. For succinic, glutaric acid and malonic sys-
tems, the concentrations of organic molecules in gas phase
necessary for homogeneous nucleation is about one order of
magnitude higher than the lowest concentration needed for
heterogeneous nucleation, while in the case of adipic acid,
the homogeneous nucleation seems to be more favourable.

Seed particle size variation. The size of the seed parti-
cles is varied in the next step. Eight different radii are con-

Fig. 2. Modeled homogeneous nucleation rate for dicarboxylic
acid-water system vs. dicarboxylic acid concentration in gas phase
in the same temperature and relative humidity conditions as for the
heterogeneous nucleation.

sidered, ranging from 0.5 nm radius up to 100 nm radius, as
shown in Fig.3. Although the smallest seed particles (here
0.5 nm radius) are less effective than the larger seeds in re-
ducing the nucleation barrier, they are still clearly able to
promote nucleation. For radii larger than 5 nm, the calcu-
lated nucleation probabilities show almost no variation with
the size of the seed particle. A larger seed particle lowers the
concentration of the organic acid needed for heterogeneous
nucleation with another order of magnitude, in comparison
with the nucleation on 2 nm size preexisting particles. Ac-
cording to the data presented byLimbeck et al.(2005), the
gas phase concentration for both glutaric and succinic acids
is of the order of 1013 molecules/m3, i.e., about 2 orders of
magnitude smaller than our estimations for heterogeneous
nucleation and 4 orders of magnitude smaller than for the
homogeneous nucleation case. For comparison purpose, the
nucleation probabilities of all four dicarboxylic acids on par-
ticles of 1 nm radius are shown in the same plot (Fig.4). It
should be noted that the heterogeneous nucleation of malonic
and adipic acids takes place at similar concentrations in gas
phase, the only difference being a slightly steeper slope of
the nucleation probability curve in case of adipic acid-water
system.

Relative humidity and temperature variation. The water
vapor content in the atmosphere is expected to affect the rate
of nucleation. In Fig.5 we present nucleation probabilities
calculated for three relative humidities (50%, 70% and 90%,
respectively). The influence of relative humidity on the nu-
cleation rate is relatively weak in the studied range and be-
comes insignificant in case of adipic acid. A summary of t he
dependence of nucleation probability on changes in temper-
ature is given in Fig.6 for five different temperatures (253–
293 K) demonstrating that temperature is the most important
parameter in governing the binary nucleation rate in dicar-
boxylic acids-water systems. At lower temperatures, the acid
concentrations in the gas phase are lowered by 2–3 orders of
magnitude in comparison with the default values. Figure7
presents the nucleation probabilities of the four systems for
the lowest temperature, 253 K. Malonic acid nucleation is
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Fig. 3. Nucleation probability for dicarboxylic acids-water system vs. dicarboxylic acid concentration in gas phase. The radius of the seed
particle is varied while temperature, relative humidity and contact angle are fixed atT =273 K, RH=70% andm=1.

Fig. 4. Nucleation probability for dicarboxylic acids-water sys-
tem vs. dicarboxylic acid concentration in gas phase. The radius of
the seed particle is 1 nm and the temperature, relative humidity and
contact angle are fixed atT =273 K, RH=70% andm=1.

Fig. 5. Nucleation probability for dicarboxylic acids-water system
vs. dicarboxylic acid concentration in gas phase. The relative hu-
midity is varied while temperature, radius of the seed particle and
contact angle are fixed atT =273 K, RH=1 nm andm=1. The colors
represent each dicarboxylic acid: blue – succinic acid, red – glutaric
acid, green – malonic acid and black – adipic acid.

Atmos. Chem. Phys., 9, 1873–1881, 2009 www.atmos-chem-phys.net/9/1873/2009/
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Fig. 6. Nucleation probability for dicarboxylic acids-water system vs. dicarboxylic acid concentration in gas phase. The ambient temperature
is varied while radius of the seed particle, relative humidity and contact angle are fixed atR=1 nm, RH=70% andm=1.

Fig. 7. Nucleation probability for dicarboxylic acids-water system
vs. dicarboxylic acid concentration in gas phase. The ambient tem-
perature is 253 K and radius of the seed particle, relative humidity
and contact angle are fixed atR=1 nm, RH=70% andm=1. The
colors represent each dicarboxylic acid: blue – succinic acid, red –
glutaric acid, green – malonic acid and black – adipic acid.

achieved for the lowest concentration in gas phase, followed
closely by the adipic acid.

It is worth to note here the importance of well defined
equations for the saturation vapor pressure in the calcula-
tion of nucleation rates. InGaman et al.(2004), we esti-

Fig. 8. Modeled onset activities for the dicarboxylic acid-water sys-
tems vs. temperature. The radius of the seed particle, relative hu-
midity and contact angle are fixed atR =1 nm, RH=70% andm=1.

mated the subcooled liquid state vapor pressure for succinic
acid and glutaric acid by converting the solid state vapor
pressure as described inPrausnitz et al.(1999). According
to the numerical calculations, the systems reached a rele-
vant nucleation rate (for example larger then 1 particle/cm3s)
when the concentration of dicarboxylic acids was around
1015 molecules/cm3. The more recent equations for the va-
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por pressure presented in the previous section reduced the
concentration of the organic acid in gas phase needed for
the homogeneous nucleation by about 2–3 orders of magni-
tude. The use of the new surface tension and density models
(Eqs.17 and 18) instead of the original ones fromGaman
et al., 2004does not change the result significantly.

In Fig. 8 the modeled onset activities for the organic acid-
water systems for different values of temperature are shown.
The curves are smooth and the near linearity of the onset
curves manifests the fact that the water and the four dicar-
boxylic acids are close to an ideal mixture. A resembling
behavior has been observed for the homogeneous nucleation
of water-succinic acid (Gaman et al., 2004).

5 Concluding remarks

Using the classical theory of heterogeneous nucleation, we
have analyzed the droplet formation for four dicarboxylic
acids (succinic, glutaric, malonic and adipic acids)-water
systems on spherical, solid particles.

According to our calculations, heterogeneous nucleation is
more effective than homogeneous nucleation for three of the
acids (succinic, glutaric and malonic), when seed particles
are larger than 2 nm; also smaller seed particles sizes will
enhance the particle formation. For these acids the computed
gas phase concentrations (like for succinic and glutaric acids)
are about 2–3 orders of magnitude higher than the measured
ones (Limbeck et al., 2005). The fact that heterogeneous nu-
cleation is more effective than homogenous nucleation is also
verified recently in laboratory experiments (Winkler et al.,
2008). The only exception is the adipic acid-water system,
for which the homogeneous nucleation seems to be more
favourable.

However, the investigated acids can participate in the at-
mospheric particle formation at low temperatures, like in up-
per troposphere and lower starosphere (UTLS). Deep con-
vection could bump gases to this area, where new particle
formation could occur (Kulmala et al., 2006). The other pos-
sible environment to achieve new particle production via bi-
nary heterogeneous nucleation of these acids is cold urban
environment with high vapour concentrations.

In our calculations we considered the seed particle as
spherical, with homogeneous surface and the interactions be-
tween the surface and the nucleating molecules have been
included only roughly by means of a constant the contact an-
gle, for which several values were tested. Future work should
address the effects of the surface in more detail, as substrates
with different wetting properties are expected to influence
drastically the values of the concentration in gas phase re-
quired for heterogeneous nucleation. This can be done by
considering a well characterized substrate composition and
size dependent contact angle and through the inclusion of the
concept of line tension. However, the theoretical calculations
can not be improved and verified without experimental data.

Reliable data for parameters like contact angle or activity co-
efficients are needed to improve the present calculations and
then apply them in atmospheric models.
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