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Abstract. A new technique is described for the analysis of
cloud-resolving model simulations, which allows one to in-
vestigate the statistics of the lifecycles of cumulus clouds.
Clouds are tracked from timestep to timestep within the
model run. This allows for a very simple method of track-
ing, but one which is both comprehensive and robust. An
approach for handling cloud splits and mergers is described
which allows clouds with simple and complicated time histo-
ries to be compared within a single framework. This is found
to be important for the analysis of an idealized simulation of
radiative-convective equilibrium, in which the moist, buoy-
ant updrafts (i.e., the convective cores) were tracked. Around
half of all such cores were subject to splits and mergers dur-
ing their lifecycles. For cores without any such events, the
average lifetime is 30 min, but events can lengthen the typi-
cal lifetime considerably.

1 Introduction

In recent years Cloud Resolving Models (CRMs) have be-
come an increasingly important tool for the study of convec-
tive phenomena. CRMs should not be regarded as providing
surrogates for observations; rather, they allow idealized but
realistic simulations to be produced which provide a labo-
ratory for the careful diagnostic analysis of generic convec-
tive systems. Such analysis is a distinctive methodology that
is necessary to improve our understanding of the basic phe-
nomena and to develop improved parameterization methods
for larger-scale models.
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This paper describes and illustrates the use of a novel anal-
ysis technique for CRM data, which allows one to investigate
statistical properties of the lifecycles of clouds produced dur-
ing CRM simulations.

Current analyses of CRM data often focus on determining
and understanding the spatial and temporal average proper-
ties of the full ensemble of convective clouds that are pro-
duced in the model in response to some specified external
forcing (e.g.Petch et al., 2007). Rather less attention has
been devoted to the lifecycle behaviour of individual clouds.
There are currently many simulations (whether labelled as
CRM or otherwise) which are being performed with convec-
tion represented explicitly but at rather coarse resolution (∼1
to 5 km) (e.g.Petch et al., 2002; Done et al., 2004; Khairout-
dinov et al., 2005). In such simulations a deep convective
cloud may occupy only a small number of model gridpoints.
Thus, although the results may provide genuine value rela-
tive to their lower-resolution counterparts with parameterized
convection (e.g.Roberts and Lean, 2008), it is far from clear
that the simulations will provide a good representation of in-
dividual clouds. A statistical investigation into cloud life-
cycles could therefore be valuable in order to reveal which
aspects of the lifecycles are well or poorly captured at these
model resolutions. Even assuming a high-resolution simula-
tion, however, statistical information on the cloud lifecycle
would be useful to test the realism of the model clouds, and
to allow one to examine the detailed effects of model param-
eterizations, such as the microphysics. A good recent study
of cloud lifecycles in a CRM simulation is that ofZhao and
Austin (2005a,b). However, practical constraints limited that
study to an investigation of six clouds, making it difficult to
assess whether the results are generic.

Statistical investigations into the lifecycles of cumulus
clouds could also allow improvements to be made to existing

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2196 R. S. Plant: Statistical properties of cloud lifecycles

convective parameterizations.Cho (1977) considered the
effects of incorporating a cloud lifecycle into a cumulus-
ensemble mass-flux framework, and showed that the effects
on the apparent heating were negligible. However, an addi-
tional contribution arises in the apparent moisture sink com-
pared to a steady-state cloud model, due to mixing of air
from the decayed cloud with its environment. Another ex-
ample comes from the popular Kain and Fritsch parameter-
ization (Kain, 2004) for mesoscale models. A rudimentary
lifecycle is included by assigning to the convective plumes
a (somewhat arbitrary) lifetime which extends over multiple
timesteps. The parameterization is a mass-flux scheme which
considers a single plume to be representative of all convec-
tion occuring within a model grid box. Based on the pio-
neering study ofArakawa and Schubert(1974), some other
parameterizations consider a spectrum of convective plumes
(Plant and Craig, 2008, is a recent example). Future param-
eterizations might seek to combine these two features: mul-
tiple cloud types and a simple cloud lifecycle. However, this
is not possible at present, essentially because there is a lack
of available information about how the cloud lifecycle varies
with cloud type (and forcing regime).

An important feature of many observed cumulus clouds is
that they may evolve through a sequence of pulse-like events
(e.g.Scorer and Ludlam, 1953; Blyth et al., 2005). The ex-
istence of such pulses may complicate the careful tracking
of cumulus clouds because identification criteria that pick-
out individual thermals are liable to pick-out objects that are
subject to various interactions. Those interactions may be
difficult to describe even qualitatively (Westcott, 1984) but
both cell-merging (Wiggert et al., 1981; Weusthoff and Hauf,
2008a) and cell-splitting (Fujita et al., 1975) have been ob-
served to be common phenomena. One of the goals here
then is to develop a tracking system that is robust but detailed
enough to deal with situations in which interactions between
the tracked objects are commonplace.

An automated method is presented which first identifies
and then tracks the development of individual clouds in a
CRM simulation. Its most important characteristic is that it
is run online, at every timestep, alongside the model simu-
lation. By exploiting the high temporal resolution available
in a model, it is possible to devise a tracking method that is
at once simple, comprehensive and robust. The method is
fully described in Sect.2 and results obtained from tracking
moist, buoyant updrafts in a CRM simulation are discussed
in Sect.3. Conclusions are drawn in Sect.4.

2 Methodology

The purpose of the tracking algorithm is to capture the com-
plete time evolution of each cloud produced in a numerical
model simulation. The algorithm can be divided into three
main parts, which will be described in turn below. Before
proceeding to the details of the algorithm, we present Fig.1,
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Fig. 1. Example of the evolution of and inter-relationships between
cloud objects. Each object is labelledO1, O2 etc. It persists for
the time indicated in min and with a time-mean areaA expressed in
units of the grid box area. The values off denote “fractions” that
are defined in Sect.2.3. They are used to characterise the combina-
tion or break-up of objects.

which provides an example of an evolution that one would
wish to describe in the tracking.

Figure1 shows the development of and inter-relationships
between five “cloud objects”, each object being a connected
group of “cloudy” grid boxes (as defined in Sect.2.1). The
object O1 can be recognized as a coherent and persistent
structure (Sect.2.2) for 67 min. It occupies an average of
6.6 grid boxes, growing from 2 connected grid boxes when
first identified into an object of area 10 grid boxes by the time
that it combines with another object,O2. This second object
has occupied 2 grid boxes since it was first identified, 4 min
before the combination. The combined object is denotedO3
and retains coherence for 1 min before breaking-up into two
distinct groupings: the small objectO4 and the larger and
longer-lived objectO5. We shall refer back to Fig.1 on sev-
eral occasions below in order to illustrate how the general
tracking algorithm operates for this particular case.

2.1 Identify cloud objects at a given timestep

Cloud identification requires, first, a determination of the
grid boxes that are considered cloudy, and second, connect-
ing such boxes together into distinct structures that we will
refer to as cloud objects. A wide variety of criteria have been
used in the literature for the identification of cloudy boxes.
Analyses of satellite observations often employ a brightness-
temperature threshold (e.g.Kuo et al., 1993; Carvalho and
Jones, 2001; Machado and Laurent, 2004). Other methods
are based on radar echoes (e.g.Foote and Mohr, 1979; Dixon
and Wiener, 1993; Theusner and Hauf, 2004) and even the vi-
sual inspection of photographs (e.g.Plank, 1969; Hozumi et
al., 1982).

In model simulations, the identification of cloudy grid
boxes is less constrained by the character of the data and it
is possible to define thresholds for model variables that are
arguably more directly related to the presence of cloud. One
popular choice (e.g.Xu and Randall, 2001; Cohen and Craig,
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2006) is to use a vertical velocity criterion (w>1 ms−1 any-
where in the column) in order to pick out strong updrafts.
This approach has its origin in analyses of aircraft observa-
tions (LeMone and Zipser, 1980; Zipser and LeMone, 1980).
Other methods are simply to use model variables for cloud
water and/or ice content (e.g.Cohen and Craig, 2006), to
consider the convective transport of boundary layer air by
means of a passive tracer (Zhao and Austin, 2005a), or even
visual inspection of data in a virtual reality environment
(Heus, 2008). Siebesma and Cuijpers(1995) compared three
identification methods for simulated shallow cumulus, which
they referred to as the cloud decomposition (positive cloud
water), the updraft decomposition (positive cloud water and
vertical velocity) and the cloud-core decomposition (positive
cloud water, vertical velocity and buoyancy). The cloud-
core decomposition produced the best agreement between
the mass flux representation of turbulent fluxes (assumed by
many parameterizations) and the actual model fluxes. For
related discussions, see alsoSwann(2001); Siebesma et al.
(2003); Yano et al.(2004).

It would be wrong to view any particular cloud definition
as intrinsically correct. Rather the different definitions allow
one to focus attention on different aspects of the cloud field.
In Sect.3 we will use a “cloud-core” definition, but it would
be straightforward to implement other choices. Specifically,
a grid column is taken to be cloudy in this study if a small
positive threshold (10−5) is exceeded for all three of the fol-
lowing variables on the same model level: the cloud water
(in kg kg−1), the vertical velocity (in ms−1) and the buoy-
ancy (actuallyθ ′

v in K).
Once the “cloudy” grid boxes have been determined, it re-

mains to connect adjacent boxes together into cloud objects.
As discussed byKuo et al.(1993) for example, either a four-
segmented or eight-segmented method can be used, the for-
mer considering only those adjacent grid boxes which share
a gridbox edge, whereas the latter also allows connections
to neighbouring grid boxes along a diagonal. In Sect.3 an
eight-connected method will be used. For example then, the
group of cloudy grid boxes labelledG3 in Fig. 2 would be
considered as an object containing six model grid boxes. Al-
thoughKuo et al. (1993) obtained similar results from the
two methods, some differences occur in the numbers of one-
point and two-point cloud objects in coarse-resolution simu-
lations (Lennard, 2004).

For a cloud object to be included in the tracking process
presented below, it is required to contain at least two cloudy
grid boxes. Thus the very smallest clouds, such as the group
G1 in Fig. 2, are ignored. One would not expect these to be
well represented by the model. A further requirement for a
cloud lifecycle to be included in the statistics is that track-
ing should be possible for at least 5 min. The combination
of these two conditions helps to ensure that the final statis-
tics should not be overly sensitive to the precise definition of
cloudy grid boxes, since any isolated, short-lived fluctuations
above a threshold are excluded.

G2

G3

1G

Fig. 2. Schematic diagram showing a portion of the horizontal do-
main used by a numerical model. Grid boxes identified as cloudy
are shown in red, whilst green indicates the halo of grid boxes to be
considered when determining relationships with the cloud objects
present at the previous timestep.G1, G2 andG3 label groupings of
cloudy grid boxes.

2.2 Relationships with cloud objects at the previous
timestep

The purpose of the second part of the algorithm is to establish
the relationships between cloud objects present at the current
timestep and those present at the previous one. Many track-
ing methods have been developed for determining the evolu-
tion of features in data of relatively low temporal resolution
(e.g. Dixon and Wiener, 1993; Carvalho and Jones, 2001;
Machado and Laurent, 2004, and references therein). Given
two time slices, each of which contains one or more features
of interest, the aim is to establish the features that are in com-
mon between the two slices, essentially satisfying oneself
that a feature in the first slice is highly likely to have evolved
into some feature(s) in the later slice. Often the method will
involve forming some estimate of the propagation speed of
the feature. On occasion, the relationships between features
in the two time slices may not be entirely clear. (Data errors,
such as radar clutter, can also produce some tracking errors,
as noted byWeusthoff and Hauf(2008b) for instance.)

Here the tracking algorithm is applied online, as a diag-
nostic component of the numerical model simulation. Be-
cause data is available to the tracking algorithm with very
high temporal resolution, it is possible to establish the rela-
tionships between cloud objects at adjacent timesteps using a
method that is both simple and comprehensive. It is assumed
that in a single timestep all motion is less than a single hor-
izontal gridlength. This is a numerical stability requirement
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for many of the advection schemes used by CRMs, including
the LEM used in Sect.3. For there to be a relationship be-
tween two cloud objects at adjacent timesteps, it follows that
either the areas of the two objects must overlap, or else that
the object at the current timestep must be no further than one
grid box from that at the previous timestep. Thus, all of the
relationships required can be found by looking for cloud ob-
jects present (at least in some part) at the previous timestep
within a halo region for each current cloud object. Halos are
illustrated in Fig.2, and comprise grid boxes that either over-
lap or are adjacent to the cloud object of interest.

From the set of all relationships, the character of the re-
lationships between previous and current cloud objects can
be determined. This proceeds from the construction of the
maximum possible number of subsets of relationships, sub-
ject to the constraint that each cloud object at the current and
previous timestep appears in one and only one subset. Fig-
ure1 can be used to provide various examples. There is ini-
tially a single subset, containing nothing from the previous
timestep andO1 from the current timestep. Let us denote
this as (0, O1) with the comma serving to separate the pre-
vious from the current timestep. Thereafter there is again a
single subset, (O1, O1). On identification ofO2, there will
then be two subsets,(O1, O1) and (0, O2). Thereafter the
two subsets are (O1, O1) and (O2, O2) until the timestep at
which the two objects combine. At that time, a single subset
will be identified, specifically (O1 O2, O3). After the combi-
nation, we will be dealing with a single, simple subset again,
(O3, O3).

A useful property of each such subset can be denoted by
p→c, wherep andc are the total number of cloud objects
in the subset from the previous and current timesteps respec-
tively. This property allows the following characteristic rela-
tionships to be distinguished.

– 0→1 (i.e., there is no relationship to a cloud object at
the current timestep from any of the objects present at
the previous timestep) signifies the birth of a new cloud
object.

– 1→0 signifies the death of a cloud object.

– 1→1 (by far the most common occurrence in practice)
signifies a straightforward continuation of a pre-existing
cloud object.

– 1→2+ signifies the splitting up of a pre-existing cloud
object.

– 2+→1 signifies a merger of pre-existing cloud objects
to form a single object.

– 2+→2+ signifies more complicated relationships,
which might occur, for example, if a pre-existing cloud
object simultaneously both breaks-up and absorbs an-
other pre-existing cloud object. Such happenings are
extremely rare, but nonetheless must be accounted for.

Note that 2+ has been used to denote two or more cloud
objects. It is convenient to be able to distinguish between the
births, deaths and straightforward continuations on the one
hand, and the splits, mergers and complicated relationships
on the other. In order to do so, we will henceforth refer to the
latter types of relationship as “events”.

2.3 Compile timeseries data for each cloud

We consider a cloud lifecycle to be terminated by the death
of a cloud object, and to have begun at the birth of the first
cloud object that can be linked to the dead object through
the tracking process. For each cloud object, a timeseries is
stored of relevant data, including such properties as the ob-
ject size (number of grid boxes), the precipitation rate and
mass fluxes. The procedure for updating and organizing the
timeseries depends upon the character of relationships to the
cloud objects present at the previous timestep, as we now ex-
plain. Births, deaths and straightforward continuations are
easy to deal with, signalling respectively the start of a new
timeseries, the output of a completed cloud lifecycle, and the
addition of a new entry to a pre-existing timeseries.

For any event, the timeseries of all pre-existing cloud ob-
jects contributing to the event are closed and archived into a
library. New timeseries are begun for all of the cloud objects
from the current timestep that are involved in the event. The
full time history for current cloud objects can thus be recon-
structed by means of references to the library. If a current
cloud object has been subject to a single event in reaching its
current state then we describe it as being a second-generation
cloud object. Higher orders of generation are also possible:
for example, in Fig.1, O4 results from a merger of two cloud
objects, with the combined object then splitting up. Higher
orders can be incorporated by extending the above procedure
to allow inter-library references. In the example ofO4 then,
this object is linked to the data forO3 that is held in the li-
brary. But the library also contains the data forO1 andO2,
and information is retained to linkO3 back to thisO1 and
O2 data. The route fromO4 back to the birth ofO1 or O2
requires a sequence of three cloud objects, so thatO4 may be
considered a third-generation object. In this way, each cur-
rent cloud can be followed back through all of its contributing
elements.

As well as the character of each event, it is useful also to
save parameters which estimate the relative contributions of
the various cloud objects involved. Specifically, we calcu-
late the quantitiesf c

i which represent the fraction of a cloud
objecti from the previous timestep that can be linked to the
current cloud objectc. (The fraction should be interpreted as
zero if there is no relationship betweeni andc.) For multi-
generational clouds, this is generalized to a fractional asso-
ciationac

n with some cloud objectn held in the library. The
association is given by

ac
n =

∑
ml...j i

f m
n f l

m. . .f i
j f c

i (1)
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where the summation extends over all possible combinations
of library objects that lead fromn to c. Applying these con-
cepts to Fig.1, the merger ofO1 andO2 into O3 is described
by two fractions, one for the link betweenO1 andO3 and
the other for that betweenO2 andO3. Similarly there are
two non-trivial fractions associated with the splitting-up of
O3 into O4 andO5. If we now considerO4, we see that its
complete description requires a fraction linking it toO3 and
associations linking it withO1 andO2. The association toO1
for example, is given by the product of the fraction linking
O4 andO3 with the fraction linkingO3 andO1.

The determination of the fractionf c
i makes use of the

areas occupied by the cloud objects concerned. In a 2→1
merger of objectsi andj to produce objectc, the fractions
are trivially

f c
i = f c

j = 1 (2)

while for a 1→2 split of objecti into objectsc andd we have

f c
i =

Ac

Ac + Ad
; f d

i =
Ad

Ac + Ad
(3)

whereA denotes the cloud object area. For example, just
after the split in Fig.1, O4 andO5 occupied areas of 2 and
10 grid boxes respectively, resulting in the fractions marked
on that figure.

A generalization of the approach to encompass other
events is given by the equation below, allowing fractions to
be determined for potentially complicated events involving
multiple cloud objects from both the previous and current
timesteps. Specifically:

f c
i = Ni

(
rc

+
Ai

li

)
(4)

wherel is the total number of relationships from a particu-
lar (subscripted) cloud object at the previous timestep to all
objects at the current timestep. The reduced arearc may be
positive or negative and is intended to provide an indication
of any portion of the current cloud objectc that is not linked
to objects from the previous timestep. (In a merger, for exam-
ple, a positive value would indicate an object at the current
timestep that is larger than the sum of areas of its consitutent
objects from the previous timestep.) It is defined by

rc
= Ac

−

′∑
i

Ai

li
, (5)

where the primed summation extends over those objectsi

from the previous timestep that have a relationship to the
current cloud objectc. To complete the specification of the
fraction, it remains to define the quantityNi . This is a nor-
malization factor, chosen to ensure that all objects from the
previous timestep that are involved in events are fully linked
to current objects. Hence,Ni is such that∑

c

f c
i = 1. (6)

As a check on the formula in Eq. (4), it is easy to confirm
that for a 2→1 merger and a 1→2 split, the fractions reduce
to those given in Eqs. (2) and (3) respectively. Taking the
split in Fig. 1 as an example, the reduced area forO4 is the
difference between its own area just after the split and the
area ofO3 just before the split. Eq. (4) then indicates that the
fraction linkingO3 andO4 is proportional to the area ofO4,
and finally Eq. (6) provides the constant of proprtionality as
the reciprocal of the sum of the areas ofO4 andO5.

We wish to be able to compare cloud lifecycles with events
during their time history alongside simple lifecycles without
any events. In order to do so, it is necessary to construct a
single timeseries for each cloud lifecycle, even for lifecycles
that encompass multiple events. We define the lifetime of
a cloud lifecycle as its complete duration, extending back-
wards from the death of a cloud object to the birth of its first
contributing object. For an extensive cloud propertyE, the
lifecycle timeseries is obtained from

Ec
=

∑
n

ac
nEn (7)

the sum extending over all contributing cloud objectsn, with
the understanding that this includes the terminating objectc

itself and thatac
c=1. For an intensive cloud propertyI , the

product of the association with the area of a cloud object is
considered to provide a weighting factor, so that

I c
=

∑
n ac

nAnIn∑
n ac

nAn

. (8)

As an example, consider the timeseries of total precipita-
tion (an extensive variable) for the cloud lifecycle that con-
cludes with the cloud objectO4. The full timeseries covers
85 min, the first 63 min capturing 17% of the precipitation
from O1, the next 4 min capturing 17% of the precipitation
from O1 and 17% of that fromO2, the next 1 min capturing
17% of the precipitation fromO3 and the final 14 min cap-
turing the entirety ofO4.

Finally, we note two restrictions on the multi-generational
cloud-object library that are imposed for purely practical rea-
sons. If the library becomes very large, or if lifecycles extend
through many generations, then searching through the library
can become a time-consuming operation, considerably slow-
ing the model simulation. Therefore, we remove from the
library any archived cloud objectsn with associationsac

n that
are less than 0.05 for all of the current cloud objectsc. More-
over, we do not allow a lifecycle to extend backwards for
more than 10 generations. Some diagnostics characterizing
the removed cloud objects are output in order to allow vari-
ous checks that the removals do not have significant adverse
effects on the final lifecycle statistics. For example, in the
simulation results to be presented in Sect.3 the removed ob-
jects did not persist for long: under 2 min on average, which
compares with an average of 14 min for the cloud objects re-
tained in the library. Various test runs with different values
for the removal criteria have also been performed to check
explicitly for any effects of the removals.
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Table 1. Statistics of the convective-core lifecycles tracked during
a CRM simulation of radiative-convective equilibrium. Grid boxes
containing moist, buoyant updrafts are referred to as cloudy, while
two-or-more connected cloudy grid boxes constitute a cloud object
(Sect.2.1). The proportions of births, deaths, splits, mergers and
complicated events are expressed as fractions relative to the num-
ber of straightforward continuations (of which there were 3.1×107).
All quantities are computed from data at each model timestep be-
tween 19.5 and 36 days.

Quantity Mean Standard
deviation

Cloudy grid boxes 52.4 6.9
Cloudy boxes not part of cloud objects 7.0 2.8
Number of cloud objects 10.0 2.0
Proportion of births and deaths 3.0×10−4 –
Proportion of splits 2.4×10−4 –
Proportion of mergers 1.7×10−4 –
Proportion of complicated events 4.2×10−6 –

3 Results from a CRM simulation

The tracking algorithm described in Sect.2 has been tested in
both a cloud-resolving model and in artificial dynamical sys-
tems of cellular automata (based on variations of the game-
of-life rules). The advantage of the artificial system is that its
rules can be altered to test various aspects of the algorithm:
for example, allowing events to be extremely rare or else fre-
quent and complex. Explicit timestep-to-timestep validations
have been performed to check that the algorithm is robust and
functions as designed.

We present results for a simulation of radiative-convective
equilibrium performed with the Met. Office Large Eddy
Model (LEM) (Petch and Gray, 2001). The setup is not dis-
similar to simulations that have previously been studied by
Cohen and Craig(2004, 2006). The convection is forced
by cooling the troposphere at 4 K day−1, over a sea-surface
which has its temperature held fixed at 300 K. The simula-
tion domain is a doubly-periodic grid of size 64×64×20 km3

with a horizontal gridlength of 2 km and 76 staggered verti-
cal levels. The Coriolis parameter is set to zero and no mean
wind is imposed, so that the convection is not expected to
be organized by the large-scale state. In fact, limited self-
organization does occur in such conditions, as discussed by
Cohen and Craig(2006); Davies(2008).

The LEM has a variable timestep, which can change dur-
ing the simulation. This is to ensure good behaviour of the
subgrid model (Mason, 1989; Brown et al., 1994), and also
that the CFL stability condition for advection remains sat-
isfied throughout. The timestep ranges from 0.30 to 0.65 s,
with a mean value of 0.51 s.

The simulation is run for 36 model days, of which the first
19.5 days are used to spin-up from a rather arbitrary initial
condition to the equilibrium state. The domain-mean model
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Fig. 3. Convective-core lifetime distribution for(a) all lifecycles,
and(b) lifecycles which do not contain events in their time histories.
The lifetimes are binned into intervals of 5 min.

state does not vary in time once equilibrium is reached, apart
from fluctuations attributable to the finite size of the domain
(Cohen and Craig, 2006). Statistics are presented for 4617
lifecycles of convective cores that are tracked during the re-
mainder of the simulation. Table1 summarizes some basic
statistics of interest. Although there are some isolated sin-
gle cloudy grid boxes present, it is clear that the portion of
the domain containing cloudy grid boxes (moist, buoyant up-
drafts) remains well captured when the grid boxes are com-
bined into cloud objects. Complicated events are seen to be
rare, as anticipated, but splits and mergers are not unusual.

The statistics for the proportions of various events are po-
tentially very sensitive to the removal criteria applied to the
cloud-object library (Sect.2.3). However, in test runs allow-
ing up to 40 generations and reducing the required associa-
tions to 0.01, the same proportions were produced to within
5%.

3.1 Convective core lifetimes

Figure 3 shows the distribution of lifetimes (as defined in
Sect.2.3) for the convective-core lifecycles, both for all life-
cycles (panel a), and for those whose time histories do not
contain any events (panel b). 54.2% of the lifecycles do
not contain any events, and these have a mean lifetime of
29.7 min. This is broadly consistent with observational stud-
ies on the lifetime of individual, isolated cells (e.g.Foote and
Mohr, 1979; Westcott, 1984; Wilson et al., 1998). The life-
time distribution appears to be approximately exponential up
to ∼45 min, with a small peak for around 60 to 75 min. The
rapid fall-off for lifetimes in the range 10 to 60 min is again
qualitatively consistent with observations (see, for example,
the distributions of radar cell lifetimes in Fig. 3 ofFoote and
Mohr, 1979, Fig. 8 ofWiggert et al., 1981, Fig. 12 ofLópez
et al., 1984and Fig. 17 ofWeusthoff and Hauf, 2008b).
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Fig. 4. Timeseries of composited lifecycles, showing the mean evo-
lution across the lifecycle of(a) cloud area,(b) precipitation rate,
(c) vertically-integrated mass flux, and(d) the centre of mass. The
normalized lifecycle has been divided into bins of 0.1. Each panel
shows three lines, each of which corresponds to a composite con-
structed from lifecycles having a particular range of lifetimes: 5 to
30 min (blue), 30 to 60 min (green) and longer than 60 min (red).

Including the lifecycles which do contain events enhances
the proportion of the long-lasting lifecycles, raising the mean
lifetime to 54.6 min. Again, this chimes with observations of
radar cells, which show that merged echoes persist for signif-
icantly longer than unmerged echoes (Wiggert et al., 1981;
Westcott, 1984, 1994; Wilson et al., 1998). In Sect.3.2 we
discuss further the effects of events on the convective core
lifetime.

Examining timeseries for individual lifecycles shows that
(as expected) there is strong lifecycle-to-lifecycle variability,
with qualitative differences in the development. Nonethe-
less, it is possible to draw out some general properties of
the simulated, convective-core lifecycles by normalizing the
timeseries of each lifecycle and then compositing these to
produce an averaged lifecycle.López et al.(1984) and
Weusthoff and Hauf(2008b) have also attempted similar
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Fig. 5. Frequency distribution functions at various stages of the
convective-core lifecycle of the normalized(a) precipitation rate,
and(b) vertically-integrated mass flux. Each panel shows four lines,
each of which corrresponds to a range of the normalized lifetime:
0 to 0.1 (blue), 0.3 to 0.4 (green), 0.6 to 0.7 (red) and 0.9 to 1.0
(black).

composites for radar cells. Here, the time is normalized using
the lifetime, and each cloud property is normalized for each
lifecycle by its time-mean value across the lifecycle. Figure4
shows such composites for various cloud properties, and for
lifecycles with different ranges of lifetime. Panel (d) shows
the centre of mass,h, which is defined as the mass-weighted
first moment ofC, the mixing ratio of the total condensed
water (here, the sum of rain, snow and cloud liquid water,
graupel and ice).

h =

∫
Czρdz∫
Cρdz

(9)

z is the height andρ the density. In order to demonstrate
the variability between lifecycles, and to allow comparison
with that across lifecycles, Fig.5 shows frequency distri-
bution functions of normalized cloud properties for selected
lifecycle stages.

Clearly the longer-lived lifecycles have more pronounced
variations across their lifecycles. This is consistent with the
evolution of the composite lifecycles constructed byLópez
et al. (1984); Weusthoff and Hauf(2008b). The short life-
cycles (those with lifetimes less than 30 min) receive little
support for time development, the vertically-integrated mass
flux decreasing monotonically through their composite life-
cycle (Fig.4c). The decrease is rather strong and is most
rapid during the latter part of the lifecycle, in qualitative
agreement with some ofBarnes et al.’s (1996) aircraft ob-
servations. The cloud area and centre of mass remain almost
constant through the composite short lifecycle (Fig.4a,d).

www.atmos-chem-phys.net/9/2195/2009/ Atmos. Chem. Phys., 9, 2195–2205, 2009



2202 R. S. Plant: Statistical properties of cloud lifecycles

Measures of updraft strength (the area and mass flux) for
the longer lifecycles (those with lifetimes larger than 30 min)
exhibit clear peaks towards the later part of the composite
lifecycles, and (as inLópez et al., 1984; Weusthoff and Hauf,
2008b) seem to have their strongest variations at the start and
end of the lifecycles. The longer composite lifecycles in-
crease their centre of mass throughout (Fig.4d). This may
occur due to vertical transport of the normalized condensate,
or else because the production of condensate occurs at pro-
gressively higher levels through the course of the lifecycles.

The mass flux frequency distributions (Fig.5b) are consis-
tent with the composite lifecycles, changing most strongly at
the start and end of the lifecycles and with the largest mass
fluxes tending to occur a little after the midpoint. The distri-
butions have a broad spread, comparable to or perhaps some-
what larger than the variations seen in the composites across
the lifecycle. This suggests that the composites do indeed
have value in describing the lifecycle, but that caution should
be used in interpreting them as generic lifecycles. Note also
that the frequency distributions tend to become more spread
as the lifecycle progresses.

The normalized precipitation rate shows a considerable
increase across the composite lifecycles and the rates re-
main relatively large when the lifecycle is terminated. This
is consistent with the notion that the lifetime of a convec-
tive updraft is similar to the time required for precipitation
to develop (Rogers and Yau, 1989). It also highlights the
importance of differences between convective cloud defini-
tions. For example, the rain rate of the composite radar cells
constructed byWeusthoff and Hauf(2008b) peaks midway
through the lifecycle. Moreover, Fig.5a shows that the use
of a precipitation threshold would not capture many of the
convective cores during the first 10% of their lifecycles. Cer-
tainly then, it would not be appropriate to compare too di-
rectly the lifecycle statistics obtained here to statistics ob-
tained by, say, tracking radar echoes. Comparisons of a qual-
itative nature may nonetheless be reasonable and have been
made above. We consider that such comparisons are valuable
in order to demonstrate that these model-based statistics are
physically plausible, but they are not intended as a detailed
assessment of the accuracy of the simulation.

Observationally-based “cloud” identification and tracking
methods (such as those cited in Sects.2.1, 2.2) are strongly
constrained by the nature of the available data. Systematic
studies of the sensitivity of lifecycle statistics to cloud defini-
tion are needed, both to inform comparisons between clouds
observed with different systems and to allow comparisons
between modelled and observed clouds.

3.2 The role of events within the lifecycle

It was shown in Sect.3.1 that lifecycles containing “events”
in the time history had considerably longer lifetimes on aver-
age than those without any events. Here we consider the role
of events in more detail.
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Fig. 6. Distribution of the times separating consecutive events
within the lifecycles. The vertical scale is logarithmic, and the sep-
aration bin size is 1 min.

Figure6 shows the distribution of times that separate con-
secutive events identified by the tracking algorithm. For sep-
arations larger than∼5 min, the distribution is roughly ex-
ponential. However, many of the events picked-out by the
algorithm are quickly followed by other events, often within
tens of seconds. Indeed 49.1% of all event separations are
less than 1 min. The interpretation is that the joining to-
gether or breaking up of cloud objects is rarely a clean pro-
cess that happens once only at a single timestep. Rather, the
joining (for example) of two cloud objects is more typically
a somewhat messy affair, perhaps with some portion of the
combined object becoming temporarily detached as the con-
stituent parts coalesce to produce what may ultimately be-
come a unified entity.

In order to examine the effects of cloud objects joining up
or splitting, it would therefore not be appropriate to rely on
the total number of events found by the tracking algorithm as
a useful measure. The total reflects not only the number of in-
cidents occurring in a lifecycle, but also how clean or messy
those incidents are. Instead, we prefer to define “separated
events” as those events satisfying the following criteria.

– The event must not take place within 5 min of the start
or end of the lifecycle.

– The event must take place at least 5 min after the previ-
ous “separated event”.

Thus, the evolution shown in Fig.1 for example, would
be considered to contain one separated event. The choice of
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truncated Poisson distribution for the same mean number of sepa-
rated events. Panel(b) shows the mean lifetime of lifecycles with a
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Fig. 5. Frequency distribution functions at various stages of the
convective-core lifecycle of the normalized (a) precipitation rate,
and (b) vertically-integrated mass flux. Each panel shows four lines,
each of which corrresponds to a range of the normalized lifetime:
0 to 0.1 (blue), 0.3 to 0.4 (green), 0.6 to 0.7 (red) and 0.9 to 1.0
(black).
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Fig. 6. Distribution of the times separating consecutive events
within the lifecycles. The vertical scale is logarithmic, and the sep-
aration bin size is 1 min.
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Fig. 8. Distribution of the timings of separated events, both as (a)
absolute times after the start of a lifecycle, and as (b) relative times,
with the timings being normalized by the lifetime. The bin size is
5 min in (a) and 0.05 in (b).

Fig. 8. Distribution of the timings of separated events, both as(a)
absolute times after the start of a lifecycle, and as(b) relative times,
with the timings being normalized by the lifetime. The bin size is
5 min in (a) and 0.05 in (b).

5 min is a reasonable but somewhat arbitrary one. It is equiv-
alent to a relatively high time resolution that might be avail-
able in the data from current operational radar networks (e.g.
Weusthoff and Hauf, 2008a). We have checked that our con-
clusions are not qualitatively affected by reasonable changes
of this choice.

Some statistics based on separated events are shown in
Figs. 7 and8. There are 2113 lifecycles that contain sepa-

rated events, and the effects on lifetime are indeed consid-
erable. Each separated event increases the mean lifetime by
about 15 min, or around half the mean lifetime of a lifecycle
that does not contain any separated events.

A simple-minded explanation for this increase can be pro-
vided if it is supposed that each convective core initiated has
a mean lifetime of≈30 min (irrespective of whether there
is another core close by), and that if cores are to be initi-
ated in the vicinity of a pre-existing core then the charac-
teristics and lifecycle-stage of the pre-exisiting core have no
effect on the initiation process. These are strong assump-
tions, and whether there is any truth in the explanation we
leave as a topic for future work.Westcott’s comment (1994,
p789), based on observations of the merging of radar echoes,
that “merging itself may be considered a passive process” is
suggestive. More solidly though, there are at least hints in
Figs. 7a and8 that the idea may not be entirely unreason-
able. Statistical independence of the cores would imply that
the number of events satisfies a zero-truncated Poisson distri-
bution: such a distribution is overlaid on Fig.7a. Moreover,
the timing of separated events within the lifecycles is shown
in Fig. 8. Although such events are less likely to occur to-
wards the beginning or end of a lifecycle, the likelihood of
events for most of the lifecycle is fairly uniform.

4 Conclusions

This paper describes the design and implementation of a
novel method for analysing the results of CRM simula-
tions. The algorithm developed operates as an almost self-
contained diagnostic suite that is plugged into the model sim-
ulation. The objective is to identify clouds from the CRM
results and track their evolution. By examining the cloud
field on a timestep-to-timestep basis it is possible to exploit
the high temporal resolution data available to an online di-
agnostic system. In conjunction with a numerical stability
condition that is satisfied by the advection schemes typically
used in CRMs, a simple methodology is sufficient to provide
comprehensive and robust tracking. The algorithm has been
designed to be as generic as possible. Alternative identifica-
tion criteria for cloudy grid boxes would be trivial to imple-
ment, and most of the decisions about how to examine the
lifecycle data are deferred to the postprocessing. Thus, the
methodology would be straightforward to adapt in order to
track other features online in other models.

The use of the methodology was demonstrated for an ide-
alized simulation of radiative-convective equilibrium. The
statistics obtained allow one to quantify the behaviour of the
simulated convective clouds in ways that are not accessible
to other analysis methods. We chose to track moist, buoyant
updrafts, which we referred to as convective cores. Around
half of all the cores tracked were subject to merging and split-
ting during their lifecycles. While this fact complicates the
analysis, we were able to demonstrate how cores with simple
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and complicated time histories can be considered within a
single framework and to demonstrate explicitly the consider-
able impact of “events” on the core lifetimes.
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