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Abstract

More and more profiles of atmospheric state parameters are being retrieved from re-
mote soundings in the infrared spectral domain. Classical error analysis, which was
originally applied to microwave sounding systems, distinguishes between “smoothing
errors,” “forward model errors,” “forward model parameter errors,” and “retrieval noise
errors”. We show that for infrared soundings “interference errors”, which have not been
treated up to now, can be significant. Interference errors originate from “interfering
species” that introduce signatures into the spectral measurement which overlap with
the spectral features used for retrieval of the target species. This is a frequent situation
in infrared atmospheric spectra where the vibration-rotation bands of different species
often overlap; it is not the case in the microwave region. This paper presents a full
theoretical formulation of interference errors. It requires a generalized state vector in-
cluding profile entries for all interfering species. This leads to a generalized averaging
kernel matrix made up of classical averaging kernels plus here defined “interference
kernels”. The latter are used together with climatological covariances for the profiles
of the interfering species in order to quantify the interference errors. To illustrate the
methods we apply them to a real sounding and show that interference errors have
a significant impact on standard CO profile retrievals from ground-based mid-infrared
solar absorption spectra. We also demonstrate how to minimize overall error, which is
a trade-off between minimizing interference errors and the smoothing error. The ap-
proach used in this paper can be applied to soundings of all infrared-active atmospheric
species, which includes more than two dozen different gases relevant to climate and
ozone. And this holds for all kind of infrared remote sounding systems, i.e., retrievals
from ground-based, balloon-borne, airborne, or satellite spectroradiometers.
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1 Introduction

During the last decade, more and more, infrared remote sounding measurements have
been used to obtain profiles of atmospheric composition and temperature from ground
or space. Infrared profiling techniques complement the older microwave profilers in
many ways, e.g., with respect to the altitude range attainable, and the atmospheric
trace species under consideration. The theoretical framework for retrieval of profiles
from spectral measurements via optimal estimation (OE) was developed three decades
ago (Rodgers, 1976) and has been applied solely to microwave soundings for a long
time. In addition, a concept for error analysis was formulated (Rodgers, 1990) to distin-
guish between four different classes of errors, i.e., “smoothing errors,” “forward model
errors,” “forward model parameter errors” and “retrieval noise errors”. In the last few
years, this classical error analysis has also been applied to infrared retrievals. However,
in infrared, a very frequently encountered problem in retrieving the “target quantity” is
due to “interfering species.” This occurs because the vibration-rotation bands of dif-
ferent species often overlap in the infrared atmospheric spectrum. Overlapping of this
kind does not occur in the microwave region. Keeping in mind that the wings of (in-
frared) spectral lines always expand asymptotically towards plus-minus infinity in the
frequency domain, it becomes clear that individual spectral lines used for the profile
retrieval of an atmospheric target species, in principle, always overlap with neighboring
spectral lines of other interfering species. This necessitates the simultaneous retrieval
of the interfering species in the infrared and leads to a new class of errors, called “inter-
ference errors”. Interference errors originate from the fact that the profile retrieval of an
interfering species is usually not perfect (i.e., the averaging kernel matrix is not iden-
tical to the unit matrix, as a result of any type of regularization); this causes spectral
residuals (measured minus simulated) around the spectral signature of the interfer-
ing species. In consequence, the (simultaneous) profile retrieval of the target species
tends to compensate for this, meaning that an artifact is introduced into the retrieved
target profile. While an experienced spectroscopist might be able to “see” potential
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interference effects by visual inspection of the spectral features within a micro-window
as a result of his understanding of all retrieval settings, this intuitive approach risks
missing “hidden” interference effects and/or underestimating them quantitatively.

In addition to the described effect from the retrieval of interfering species we will
include in “interference errors” all errors in a retrieved atmospheric target profile which
originate from the regularization of the retrieval of any additional vector-type physical
quantity. For example, temperature profiles retrieved at the same time as the target
species, which may be used in order to minimize errors from insufficient knowledge of
the true temperature profile at the time of observation.

More specifically, we want to add what our concept of interference errors does not
currently mean. It does not have to do with any possible error in the forward modeling,
i.e., either with errors in the forward model parameters, such as errors in the spec-
troscopic parameters of interfering species (e.g., an erroneous pressure broadening
parameter), or with errors in the forward model itself like errors in line shape modeling
(e.g., a non-Voigt type line shape of an interfering water vapor line, modeled by a Voigt-
type forward model). Both kinds of errors will also lead to residuals in the retrieval of the
interfering species, and, thereby introduce errors to the retrieval of the target species.
For this reason, these effects have also sometimes been referred to as “interference
errors”. However, these two error classes clearly can be attributed to and treated as
“forward model parameter errors” (above example of errors in spectroscopic parame-
ters) and to “forward model errors” (above example of errors in line shape modeling).
These are two error classes which had previously been named this way and formally
been treated by Rodgers (1990, 2000). Interference errors are also different but in a
sense related to “smoothing errors” (Rodgers, 1990, 2000), since for their quantifica-
tion the regularization matrix of the retrieval as well as an estimate of true covariance
of the interfering species has to be known (in case of smoothing errors: regularization
matrix and covariance of the target species).

Up to now, interference errors have not been treated in a rigorous and quantitative
way, although a theoretical formulation for treatment of all possible further classes of
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errors (i.e., smoothing errors, forward model parameter errors, forward model errors,
and errors from measurement noise) has previously been described in the literature
(Rodgers, 1990, 2000; Connor et al., 1995). Therefore, these classes of errors will not
be discussed in this paper. Rather, we will discuss interference errors quantitatively
for the first time, and show their significance in terms of their magnitude relative to
smoothing errors. We dedicate this paper to the treatment of interference errors since
they can often become comparable to or sometimes even larger than smoothing errors
in quantitative terms.

This paper starts with definitions and a recap of the classical error analysis according
to Rodgers (Sect. 2). Section 3 is the central part of this paper and gives a general
theoretical formulation to quantify interference errors. This general formulation can be
used to optimize micro-windows, retrieval settings, and regularization strategies. In
Sect. 4 our general method is illustrated by applying it to a real infrared sounding.
As an example, the retrieval of CO profiles is illustrated for a test ensemble of ground-
based solar spectra recorded with the high resolution Fourier transform spectrometer at
the NDACC (Network for the Detection of Atmospheric Composition Change) Primary
Station Zugspitze, Germany (see, e.g., Sussmann and Schafer, 1997; Sussmann et
al., 2005a, b). The interference errors found in the CO profiles from ozone, water vapor
and all other interfering species have been quantified in detail. Section 5 presents
two case studies showing how the error analysis can be used to test ways of reducing
interference errors, e.g., via changing micro-window sets or optimizing regularization
constraints for the retrieval of the interfering species. Finally, Sect. 6 presents some of
the conclusions which can be drawn from this.

2 Definitions and classical error analysis

Our formulation of interference errors in Sect. 3 is an extension of Roger’s (1990) formu-
lation of error analysis which has been supplemented by Rodgers (2000). Therefore,
we first briefly repeat the Rodgers (2000) formulation and the definitions used.
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According to Rodgers (2000, Eq. 3.16) the retrieved target profile x is related to the
true target profile x via the relation

Xx-x = (A-NDx-x,) . smoothing error
+G Ky (b - b) . model parameter error (1)
+G,Af(x,b,b") ... forward model error
+G & ... retrieval noise

where A = 0%/0x,G, = 0%X/0y, K, = 0F /@b, and x,, is the a priori profile. The
forward model parameters (which are not retrieved) are b, and b is our best estimate of
the forward model parameters, as distinct from the true value b. The forward function
f describes the true physical relation between the measurement vector y and x

y=f(x,b,b')+¢ )

Measurement noise is described by the error term g. The forward model F is related
to f via the relation

Af = f(x, b, b') - F(x, b) 3)

where b’ are all forward function parameters which are ignored in the construction of
F, and Af is the error in the forward model relative to the real physics.

We would like to illustrate the four terms in Eq. (1) via examples for ground-based
infrared solar absorption spectrometry. /) The first term in Eq. (1), i.e., the smoothing
error, is due to the limited vertical resolution, which ranges in the case of solar FTIR
from 1—2km up to nearly no resolution at all, depending on the species of interest and
altitude. This results in a retrieved profile that is smoothed in comparison to the true
profile which may show significant fine structure on the sub-kilometer vertical scale in
the real atmosphere. ii) Typical model parameter errors (second term in Eq. 1). In the
case of solar FTIR, there would be errors in the spectroscopic data used both for the
target species and interfering species. Another example would be a wrong solar zenith
angle (e.g., due to an error in instrument time) used for the ray-tracing calculations of

13032

ACPD
6, 13027-13073, 2006

Interference errors in
infrared remote
sounding

R. Sussmann and
T. Borsdorff

it

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

the solar absorption path. Also one of the most important error contributions in case of
solar FTIR belongs to this class, namely temperature errors. Errors as large as a few
Kelvin do occasionally arise, e.g., from a mismatch in time and space between nearby
radio sondes used and the FTIR measurements. iii) A typical forward model error (third
term in Eq. 1) in case of solar FTIR is the generalized use of Voigt type line shapes for
all species and all lines, although it is know that deviations do occur, e.g., for a variety
of water vapor or methane absorption lines in the mid-infrared atmospheric spectrum.
If such a non-Voigt line is present in the micro-windows used, either as the target or
as an interfering species, this forward model error will have an impact on the retrieved
target profile. Other forward model errors could, e.g., arise from inadequate forward
modeling of the instrumental line shape or channeling, if these effects are present in the
spectra and cannot be retrieved. /v) The last error term in Eq. (1) is due to the spectral
measurement noise which is transfered to the retrieval. Note that statistical analysis
using a measurement noise covariance matrix takes noise correlations between neigh-
boring spectral data points (or channels) into account. Such spectral correlations are
present in the case of solar FTIR if a zero filling of the interferograms is performed.

In the following section we will show that a new class of errors, in addition to the four
classes of Eq. (1), arises if we define a generalized state vector including not only the
target profile, but also all further retrieval parameters. The effect is a split up of the
first term of Eq. (1) into the smoothing error plus additional terms, which we will call
interference errors. The rest of this paper is dedicated to these interference errors and
their relation to smoothing errors. The error terms 2—4 of Eq. (1) will not be discussed
further.
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3 Theoretical description of interference errors
3.1 Generalized state vector

We now re-define x to be a “generalized state vector” which takes into account all pa-
rameters to be retrieved, not only the atmospheric target profile, see Eq. (4). We will
refer to the part of x describing the atmospheric target profile to be retrieved as t with
length n. It contains, for example, average volume mixing ratios of the target species,
e.g., carbon monoxide, on a set of n=100 layers with thickness 1 km, covering the ver-
tical range between 0—-100 km altitude. The remaining sub-vector of x represents all
further parameters to be retrieved in addition to the target parameters. It comprises
vectors vy, Vo, ... With length n, describing the profiles of interfering species, i.e.,
species different from the target species which show spectral signatures within the
micro-windows as well as additional vector-type quantities that may be retrieved, such
as retrieved temperature profiles (which can also cause an interference effect). Further-
more, it consists of scalar-type retrieval parameters sy, s,, ..., denoted as “retrieved
auxiliary scalar parameters” hereafter. These parameters are candidates for forward
model parameters that are retrieved, however, because they are not known accurately
enough, e.g., a frequency shift between the measured and simulated spectrum (which
can be caused by a frequency calibration error, either in the spectrometric measure-
ment or the spectroscopic line data used). Note that we introduce the additional class
“retrieved auxiliary scalar parameters” since, according to the nomenclature of Rodgers
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(1976), “forward model parameters” are just parameters that are not being retrieved

(1)
ty
/ t \ Vi1
v, :
V2 Vin

X = : = | Ve (4)

S :
So Vo,
\  / :
S1
So

\ i/

It should be pointed out that the precondition for our later quantification of interference
errors is, that not only the target species but also the interfering species (and all other
retrieved vector-type quantities, e.g., temperature profiles) are represented within the
state vector as full profiles with a sufficient number of grid elements n. This number
has to be chosen large enough so that the true profile variations can be modeled by the
forward model properly. For practical reasons we have to use the same vertical grid
for the target species and interfering species (with, e.g., n = 30...100 layers). This
requirement is not met by the common practice, of retrieving interfering species using
only one simple profile scaling factor. The problem is that, in this case, there is only
one scalar entry to the state vector x from this interfering species (namely the scaling
parameter), and, in consequence, there is no interface to link the true atmospheric
profile covariance of the interfering species into the error analysis.
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In order to overcome this difficulty we have to formally carry out a full profile retrieval
including the interfering species which are intended to be retrieved via simple column
scaling, but use at the same time a Tikhonov—type retrieval constraint with a very high
regularization strength (see Sect. 3.3 for details). This approach emulates the intended
effect of a simple profile scaling retrieval of the interfering species, and, at the same
time, there is a full profile (i.e., vector-type) entry of the interfering species into the state
vector. This is the precondition to allow a mapping of the true profile covariance into the
error analysis (Sect. 3.2). We want to repeat that this somewhat laborious approach
is necessary for an adequate analysis of the interference errors, i.e., this requirement
does not originate from the (column) retrieval of the interfering species itself. However,
we will see later, that application of a less regularized (profile) retrieval for the interfering
species makes it possible to significantly reduce the interference errors (Sect. 5.2)

3.2 Smoothing errors and interference errors

We re-arrange and simplify Eq. (1) to the following form
X-x,=Ax-x,)+¢&, , (5)

where g, comprises the error terms 2-4 in Eq. (1), i.e., all errors in the measurement
and the forward model (parameters). A is the averaging kernel matrix which can be
calculated analytically from the following relation (Steck, 2002)

A=(KS.'’K+R)'K'S;'K | (6)

where K is the Jacobian of F with respect to x, S, is the error covariance of the mea-
surement, and R is the regularization matrix (see Sect. 3.3 for details). Alternatively,
A can be calculated numerically by the so-called perturbation method, which uses the
retrieval response to delta-function perturbations of subsequent components of x to fill
the columns of A. The appropriate magnitude of the perturbation can easily be found
as a trade off between instabilities arising from perturbations which are too small due

13036

ACPD
6, 13027-13073, 2006

Interference errors in
infrared remote
sounding

R. Sussmann and
T. Borsdorff

it

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

to rounding errors, and saturation effects arising from perturbations which are too large
due to non-linearity in the response.

Note that in Rodgers (1990) x is only the vector of the target species, i.e., what we
designated by t above. In this paper, however, we define x as the full state vector
comprising vectors for the target species and vectors for all interfering species and
additional vector-type quantities retrieved, as well as the retrieved auxiliary scalar pa-
rameters, see Eq. (4). In consequence, A denotes in our case a generalized averaging
kernel matrix which includes in addition rows and columns describing the interference
of the retrieval of the target profile with the retrieval of all further parameters: inserting
Eqg. (4) into Eq. (5) yields

T T
(Att A App o @i @y \

[ i-t, ) A A A ToT - [ t-t. )\ [ &)
Vi—Vq, vit Avivt Rvive = Bygs1 Aisp V-V, &1
N T T .
Voa—=Vaq Aot Apoyt Avayo - 8y 8ypgp Vo= Vaa Eva

X —X,= : = o ot ' : + : (7)

81 = S1a : : S1 = Sta Es1
a as1t as1v1 as1v2 = as1s1 as152 '
S2 = 824 ) ) So = S2a €s2

\ : / Agor Aspyy Asoyp - Asos1 dgps2 - \ : ) \ : /

Our generalized averaging kernel matrix A comprises sub-matrices A,;, (column) vec-

tors a,;, row vectors a/T,-, as well as scalars a;;. Note that A;; is what is usually called
the “averaging kernel matrix” describing the smoothing of the retrieved target profile
(Rodgers, 1990). Furthermore, if the retrieved auxiliary scalar parameters sy, s, ...
describe true physical scalar-type quantities (i.e., they are not scalar approximations to
a vector-type physical quantity), and they are not correlated, then the retrieval of these
scalars can and should be performed without any regularization. In this case Eq. (7)
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simplifies to
(Az‘t Ayt Apz - 00 \

t-t f_t .
/01—Va1a\ At Ay Ay - 00 (V1_Va1a\ /e,,:\
Vo= Vo At Ay Ay - 00 Vo — Vo, £,
;(—Xa = : = . . . : N : (8)
3 10 $1= S1a Es1
85— Sy, 0 0 o 0 1- Sy — Soy €go
\ i P I G A N

We then obtain the following relation between £, t,,, and t
E—t, =Ryt — 1) + A1 (Vi = Vi) + AoV — Vo) + ... + & (9)
which can be rearranged

Bt =(Ay - D)t -1,)
FAL (V= Vi) +Apo(Vo = Vo) + ..
+&;

. smoothing error
. interference error (10)

The first term is what has been defined by Rodgers (1990) as the “smoothing error
since it describes the differences between the retrieved profile # and the true profile t;
these differences are due to the finite vertical resolution of the remote sounding system,
or, in other words, due the fact that A;; of real remote sounders deviates from the ideal
unit matrix I. The further terms are what we will refer to hereafter as “interference
errors”. They are caused by interference between the retrieval of the target profile
t and the retrieval of the interfering species (and retrieved auxiliary quantities, e.g.,
temperature) with profiles vy, v,, .... We will call A;,4, A;,», ... “interference kernel

matrices”.
The statistics of the smoothing error is described by the error covariance
Sit= (A —1)S; (A - |)T: (11)
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where S; is a best estimate of the true a priori covariance of the target profiles t.
The statistics of the interference errors are described by the error covariance matri-
ces

T
S1‘v1 = Atv1 Sv1 A§_v1
Stv2 = Az‘v2 Sv2 Atv2 s (12)

where S 4, S5, ... are best estimates of the true a priori covariances of the profiles
vy, Vo, ... oOf the interfering species (and retrieved auxiliary profile-type quantities,
e.g., temperature).

3.3 Retrieval and different types of constraint

While the forward model maps from the n-dimensional state space (profiles, and further
retrieval parameters) into the m-dimensional measurement space (spectrum), we are
interested in the inverse mapping. Since m>n holds in many cases, the inverse prob-
lem is formally over-determined, and can be formulated as a least squares problem.
Usually, due to the non-linearity of F a Newtonian iteration is applied, and a regulariza-
tion term is used that allows one to add additional information about the solution and
thereby avoid oscillating profiles (Steck, 2002)

Ta-1 -1
Xf+1 :X/+(KISS KI+R)

x {K] 7' [y=F(x,)] - R(x; - x,)} (13)

where the subscript / denotes the iteration index.

In the following we briefly present two different types of regularization which we
will use simultaneously for our analysis of interference errors, i.e., optimal estimation
(Rodgers, 1976) and Tikhonov regularization (Tikhonov, 1963). We will apply optimal
estimation to the retrieval of the target profile t (i.e., only to part part of the full state
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vector x); for the simultaneous retrieval of the interfering species v, v,, ... Tikhonov
regularization will be used. The reason for this will be explained below.

In the case of optimal estimation, R is set up using the relation R=S,‘?1 where Sg
is the a priori covariance matrix. In the ideal case Sy is a climatological covariance
constructed from an ensemble of true profiles covering the full range of possible atmo-
spheric states. The a priori profile should be the true climatological mean for optimal
estimation otherwise a bias will be introduced to the retrievals.

In the case of Tikhonov regularization, R is set up using the relation R:aLTL, where
a is the strength of the constraint and L is the constraint operator. For example, in case

of the discrete first derivative operator L, (Steck, 2002)

-11 0...0

L, = 0 -11 . (14)
DTl 0
0...0 -11

the retrieved profile is constrained so that the difference between the retrieved and
the a priori profile approaches a constant profile for high values of a. Regularization
via the L, operator constrains the shape of the retrieved profile but not the absolute
values which are determined by the measurement. For the a priori profile either the
true climatological mean can be adopted, or, if this is not know, any reasonable profile
shape. In absence of any knowledge, it might even make sense to use a zero-a-priori
to achieve a smoothing constraint. While means to optimize the magnitude of a for var-
ious purposes have been given by Steck (2002) in detail, we will restrict our discussion
to two limiting cases: The case a—0 describes a retrieval, where no regularization is
performed at all, and in consequence the retrieved profiles will frequently suffer from
oscillations. The other limiting case, i.e., a—oo represents a profile scaling retrieval
which is a fitting via an iterative scaling of the a priori profile with one factor that is the
same for all altitudes, i.e., an infinitely hard constraint to the profile shape and a zero

13040

ACPD
6, 13027-13073, 2006

Interference errors in
infrared remote
sounding

R. Sussmann and
T. Borsdorff

it

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

constraint to the absolute value of the scaling factor. We will use this kind of setting for
retrieval of columns of the interfering species during our error analysis in Sect. 4.5.

It has been shown by Steck and von Clarmann (2001) in general terms that the op-
timal estimation formalism can be used to emulate purely Tikhonov-type smoothing
constraints. We will just add one example for this equivalence which is of some rel-
evance for our later discussion of interference errors. As explained above, a simple
profile scaling retrieval can be set up by a Tikhonov L,-type constraint with a—co.
This can be emulated by an optimal estimation retrieval, where the diagonal elements
(variances) of Sg are large numbers (relative to the true variances) and the inter-layer
correlation length (described by the off-diagonal elements of Sg) is set to a high value
(relative to the altitude range of the profile, e.g., 100 km).

3.4 Treatment of non-linearity for quantification of smoothing errors and interference
errors

To solve the inverse problem and to analyze smoothing and interference errors we use
the following linearization of the forward model
oF

y = F(xg,bo) + —

Ix (x — xq) +&, = K|X0,b0 (x — xg) + £y (15)

Xq.bg
around a linearization point x;,b,.

In linear approximation, the error analysis could be performed via one linearization
point of the forward model. This point should be chosen to be the mean values x and
b calculated from the ensemble of / retrieved states X; and the corresponding input
forward model parameters b, that have been used for each retrieval.

However, for error analysis, the forward model is often not sufficiently linear, i.e., it
does not allow for an appropriate description of the errors of the full ensemble of all
possible values of parameters x and b using one linearization. Typical examples of
causes leading to such a situation are /) the high variability of atmospheric profiles and
columns (e.g., water vapor, either retrieved as target species t or as interfering species
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v), and i) the highly variable solar zenith angle which is a forward model parameter
b in solar absorption spectrometry. In this case we will apply a statistical approach
based on an ensemble of / linearizations with its linearization points (x;,b,), i.e., the /
retrieved states X; and the corresponding input forward model parameters b; that have
been used for each retrieval.

4 Quantification of interference errors of CO profiles from Zugspitze solar FTIR
4.1 Historical development of solar CO measurements

Although the first vertically resolved information on CO was obtained through in situ
aircraft measurements in the 1970s (Seiler and Warneck, 1972; Seiler and Fishman
1981), ground-based remote sounding measurements were not made until a decade
later. A set of Fourier Transform spectrometers for rotationally resolved solar absorp-
tion spectrometry in the mid-infrared spectral domain was set up in the early 1990s
at a variety of stations around the globe within the framework of the NDACC network.
In the beginning, only one spectral micro-window around the saturated R3 line of the
fundamental (1-0) vibration-rotation absorption band was used for CO total column re-
trievals via profile scaling and non-linear least squares spectral fitting, and utilized, e.g.,
for satellite validation (Pougatchev et al., 1998). In the pioneering work by Pougatchev
and Rinsland (1995) altitude information on CO was obtained for the first time from
four different spectral micro-windows (simultaneously) including a set of 1-0 band lines
with a variety of different opacities (i.e., R3, P7, P9, P10). This approach was var-
ied and refined in a series of papers (Zhao et al., 1997; Rinsland et al., 1998). The
most widely used approach is now the optimal estimation formalism of Rodgers (1976)
semi-empirically modified for microwave profiling of stratospheric ozone (Connor et al.,
1995) and applied to infrared CO retrievals using a reduced set of lines (R3, P7, P10)
by Rinsland et al. (2000). A detailed error analysis of the Rinsland et al. (2000) CO
retrieval (with slightly wider micro-windows) according to the Rodgers (1990) formal-
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ism was presented by Rodgers and Connor (2003). We will refer to this maturated CO
profile retrieval according to Rinsland et al. (2000) and Rodgers and Connor (2003)
in the following as “RRC”. A variety of applications of the RRC retrieval have been re-
ported, e.g., for investigating the impact of biomass burning on the global CO distribu-
tion (Jones et al., 2001; Yurganov et al., 2004, 2005; Velazco et al., 2005; Paton-Walsh
et al., 2005), as well as for satellite validation (Rodgers and Connor, 2003; Sussmann
and Buchwitz, 2005).

4.2 Zugspitze FTIR CO measurement characteristics

At the NDACC Primary Station Zugspitze (47.42° N, 10.98° E, 2964 m a.s.l.), Germany,
a Bruker 120 HR solar FTIR instrument was set up at the beginning of 1995 (Suss-
mann and Schafer, 1997). Since then it has been operated continuously all year round
with typically 120 measurement days per year, and is part of the Permanent Ground-
Truthing Facility Zugspitze/Garmisch (Sussmann and Buchwitz, 2005; Sussmann et
al., 2005a, b).

4.2.1 Test ensemble of Zugspitze spectra

Typical Zugspitze infrared spectra used for the CO profile retrievals are the average of
6 scans recorded in 14 min with an optical path difference of 250 cm™'. Three spec-
tral micro-windows from the 1-0 band were analyzed, i.e., 2057.785-2057.91 cm_1,
2069.615-2069.71cm™", and 2157.33-2159.15¢cm™". For this paper we randomly se-
lected a test ensemble of /=156 spectra taken after 1994. The average signal-to-rms-
noise ratio of the spectra of this ensemble is 377:1. A significant problem in the forward
model between 2157.77-2157.92cm™" was found in the final residuals of the spectral

fits (measured minus calculated). The next section explains the reason for this.
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4.2.2 Contribution plot and forward model characteristics

Figure 1 shows a contribution plot of the micro-windows used, i.e., a forward model
simulation with the absorption contributions of the different species plotted separately.
This contribution plot is based on the average SZA and the average of the retrieved
states X; of our test ensemble. Note that there are four terrestrial interfering species,
i.e., Oz and CO; in the first two micro-windows and O, H,O, N,O, and CO, in the third
micro-window. Furthermore, it can be seen that the residual problem found between
2157.77-2157.92cm™" (as mentioned in Sect. 4.2.1) is due to a solar CO line that has
not been adequately modeled.

For the forward simulations we used the HITRAN 2000 spectroscopic line parameter
compilation including the 2002 update (Rothmann et al., 2003). The model profiles are
based on 66 layers with a 1 km width up to an altitude of 69 km altitude and 1 additional
layer above (up to 100km). For the pressure-temperature profile information used in
the forward model we utilized the daily Munich radio sonde launched at 12:00 universal
time about 80 km north of the Zugspitze.

4.3 Zugspitze FTIR CO retrieval settings

We use the SFIT2 (ver. 3.90) software and follow the RRC retrieval approach as de-
scribed by Rinsland et al. (2000) and Rodgers and Connor (2003), with the modifica-
tions that follow.

4.3.1 CO a priori profile and full covariance for mid latitudes

To extend the RRC approach, we used a full CO a priori covariance matrix for the
Zugspitze retrievals. This matrix was constructed from an ensemble of measured high
resolution profiles. Earlier RRC had used a simple empirical a priori coaviance matrix
for CO comprising diagonal elements only, with the standard deviations (stdv) for all
layers either varied smoothly from 40% below 30 km to 20% above 40 km (Rinsland et
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al., 2000), or all set to 100% (Rodgers and Connor, 2003). While these RRC retrieval
settings were an empirical approach to stabilize the retrieval without too much influence
from a priori information, the Zugspitze approach, for the first time, employs a strict
application of the optimal estimation concept to the retrieval of CO profiles from solar
FTIR.

The Zugspitze a priori profile t, and a priori covariance matrix S;=S¢q for optimal
estimation of CO was constructed from an ensemble of globally distributed aircraft
CO measurements supplemented at above aircraft altitudes by a set of model output
profiles used for the operational MOPITT retrieval (Deeter et al., 2003). In order to
construct this prior information for the Zugspitze (47° N) mid latitude site we selected
a subset of the Deeter et al. (2003) global profile set comprising all profiles within a
full 47° N+16° latitudinal band (Fig. 2a). Figure 2a also shows the mean profile of this
ensemble which is used as an a priori profile t,. The resulting a priori covariance matrix
S;=Sco was calculated from the statistics of the ensemble (Fig. 2b).

4.3.2 Error covariance S, and de-weighting

The measurement error covariance matrix S, was assumed to be diagonal. For the
uncertainties of all spectral channels the average signal-to-noise ratio of the Zugspitze
test ensemble was used (377:1). However, by inspecting the spectra in the interval be-
tween 2157.77-2157.92cm™" we were able to identify a systematic error in the solar
CO forward simulation as the dominant source of error (Sects. 4.2.1 and 4.2.2). To pre-
vent this error from being mapped into the retrieval, we performed a total de-weighting
of the spectrum around this solar line by assuming a signal-to-noise ratio of 0:1 for this
spectral domain within the S, matrix.

4.3.3 Retrieval of interfering species

A number of terrestrial interfering species with significant absorptions were found (O4
and CO; in the first two micro-windows and O3, H,O, N,O, and CO, in the third micro-
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window) in the contribution plot of Fig. 1. We first retrieved them via column scaling
retrieval. In spite of this, we had to introduce a full set of n-dimensional profile vectors
V4, Vo, ... for each of the interfering species (see Eq. 1), in order to attain a profile-
type entry into the state vector. This is required for later analysis of the interference
errors in the CO profiles which result from the true profile variability of the interfering
species. In order to retrieve these interfering species we then used a Tikhonov L,-type
constraint operator (see Eq. 14) with the regularization strength « initially set to a very
high number (1013), leading to a profile scaling retrieval (hard profile shape constraint)
without any regularization/damping of the retrieved scaling factors. This setting leads
to a degree of freedom of signal of dofs = 1 per interfering species. Note, that we later
find that the interference errors can be minimized by finding a lower optimum value for
the regularization strength a for each interfering species, i.e., by actually performing
profile retrievals for the interfering species (discussion in Sect. 5.2).

4.3.4 Retrieval of auxiliary parameters

For the Zugspitze CO profiling, the following auxiliary scalar parameters were retrieved.
There is one independent frequency shift per micro-window, or a total of 3 parameters
for all three micro-windows. One parameter is needed to fit possible zero line distor-
tions via the saturated R3 line. Three more parameters are used to fit the background
slope in each micro-window. There is also one auxiliary parameter to fit a frequency
shift for the solar CO spectrum.

4.3.5 Retrieved test ensemble

Figure 3 shows the retrieved CO profiles from an arbitrarily chosen test ensemble of
156 Zugspitze spectra. It can be seen that the overall range of scatter of the retrieved
ensemble is consistent with the ensemble of the aircraft profiles (also shown) from
which our prior information (covariance and mean profile) was constructed.
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4.4 Quantification of CO smoothing error

Averaging kernels of our CO profile retrieval (i.e., the rows of A;; = Aco_co, See Eq. 7)
are plotted in Fig. 4. The plotted averaging kernels are averages of the averaging ker-
nels calculated around all the retrieved states of the Zugspitze test ensemble (Fig. 3),
i.e., they describe the mean retrieved state. The kernels peak close to their nominal
altitude and retain close to unit area up to an altitude of 15 kilometers. The degree of
freedom of signal is dofs = 3.3 on average over our test ensemble.

We calculate the smoothing error covariance S;; = Sgo_co according to Eq. (11)
using the a priori covariance S; =S¢ of Fig. 2b. Figure 5 shows the square roots of
the diagonal elements of S;o_co, i-€., error standard deviations as profiles versus alti-
tude. Note that this is not a complete description of the smoothing errors, because they
are correlated between different heights. However, it does provide an indication of the
retrieval precision. Figure 5 shows the full ensemble of smoothing error profiles calcu-
lated around each retrieved state (X;,b;) of the Zugspitze test ensemble. As described
in Sect. 3.4 the reason for the spread of the smoothing errors is the non-linearity of the
forward model and thus the dependency of the averaging kernels on the state (x;, b;).

Figure 5 also shows the natural CO variability as a function of altitude which has
been calculated as the square root of the diagonal elements of the a priori covariance
S; =S.p (Fig. 2b). It can be seen that the magnitude of the smoothing error relative
to the natural CO variability increases with altitude. However, the smoothing error of
our retrieval never reaches or exceeds the magnitude of the natural CO variability, as
expected for a properly set optimal estimation approach.

4.5 Quantification of interference errors

The statistics of the interference errors from the four interfering species, i.e., the in-
terference error covariances Sco_o3, Sco_H20: Sco-n20: @nd Sco_cop are calculated
thereafter according to Eqg. (12). As an input to this we first have to calculate the
interference kernel matrices Aco_o03, Aco_H20, Aco-n20, and Aco_coz (Sect. 4.5.1).
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The second input to Eq. (12) are the a priori covariances for the interfering species
S,1 =S03, Sy2 =SH20, S/3 =Sn20, @and S,4 =S¢y, Which are presented in Sect. 4.5.2.
Then Sect. 4.5.3 shows the resulting interference errors versus altitude and their com-
parison to the smoothing errors as well as to the natural variability of CO.

4.5.1 Interference kernels

The interference kernel matrices for our four interfering species are the quadratic sub-
matrices Aco_o3 Aco-t20,Aco-n20, and Aco_cop Of the generalized averaging kernel
matrix as defined via Eq.(7). Analogously with the term “averaging kernels” we here-
after use the term “interference kernels” for the rows of these interference kernels ma-
trices. They reflect the response of the CO-profile retrieval to a unit perturbation of the
true profile of the interfering species (in arbitrary units of our state vector quantity, i.e.,
scaling factors of VMR-layer averages). The interference kernels for the four interfering
species are plotted in Figs. 6a—d.

4.5.2 A priori covariances of the interfering species

To construct the a priori covariance S,;=Sp; needed to estimate the CO-O; interfer-
ence error we used an ensemble of 1438 ozone sonde (brewer mast) profiles provided
by the meteorological observatory Hohenpeissenberg. This German weather service
site is located 30 km north of the Zugspitze. The Hohenpeissenberg ozone sound-
ings are performed 3 times a week (i.e., Monday, Wednesday, and Friday), and our
ensemble covers the time span January 1995—-February 2006. Figure 7a shows the
profile ensemble and its mean, and Fig. 7b shows the covariance calculated from this
ensemble.

To construct the a priori covariance S ,,=S,o We utilized the data set of the (4
times daily) radio soundings performed during the Garmisch AIRS validation cam-
paign between 19 August—17 November 2002. Garmisch is located only 6 km from the
Zugspitze horizontally. We used a subset of 66 radio sondes that had been launched
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coincident to the solar FTIR measurements (i.e., filtering for clear sky conditions). This
ensemble of water vapor profiles and the resulting covariance is plotted in Fig. 8.

To estimate the a priori covariance S,3 =Sy,0 We used an ensemble of 14 aircraft
profiles from a number of campaigns performed from 1995 - 1997 between 20-70° N
which were provided by the ETHmeg data base (http://www.megdb.ethz.ch/dbaccess.
php), see Fig. 9.

The a priori covariance S ,,=Sgg, was constructed from 134 profiles measured dur-
ing two aircraft campaigns in July/August 2000 and May/June 2003 between 31-56° N.
This data was provided by the ETHmeg data base, see Fig. 10.

4.5.3 Interference errors compared to the smoothing error

Based on the results of Sects. 4.5.1 and 4.5.2 the interference error covariances
Sco-03> Sco_He0s Sco-n2os @and Sco_cop can be calculated according to Eq. (12).
In analogy to Fig. 5 (illustrating the smoothing error versus altitude) we plot the square
roots of the diagonal elements of the interference error covariances as profiles versus
altitude, see Fig. 11a. Again, as for the smoothing error, we plotted the full ensemble of
interference errors versus altitude calculated around each of the retrieved states of the
Zugspitze test ensemble. The spread of the interference error profiles of one species is
again due to non-linearity effects as discussed in Sect. 3.4 in general and in Sect. 4.4
for the case of smoothing errors. Figure 11a shows via an example a crucial result of
this paper, namely, that interference errors can become comparable to the magnitude
of the smoothing error or even larger: the CO-Oj interference errors exceed the CO
smoothing errors in the altitude range between ~14—-19km and the CO-H,0O interfer-
ence errors are comparable to the CO smoothing errors in the lower troposphere.
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5 Sensitivity studies and minimization of interference errors
5.1 Experiment with widened micro-window

In the RRC micro-window set there is only one extremely weak water vapor feature at
2156.57cm™, which is nearly hidden below the strong wing of the saturated CO R3
absorption line (Fig. 1c). Therefore, we decided to investigate the effect of widening
this micro-window to the range 2156.0—2159.150m'1, in order to include one addi-
tional, strong water line located at 2158.11 cm™ (see grey shaded area in Fig. 1c).
The question is, whether the CO-H,O interference error is decreased or increased by
widening the micro-window.

The answer can be seen by comparing Fig. 11b (based on the widened micro-
window) with Fig. 11a (based on the RRC micro-window). Clearly, the CO-H,O inter-
ference error is significantly larger when the micro-window is widened since the water
vapor (profile scaling) retrieval is then dominated by the stronger 2156.57 cm™! wa-
ter line. Obviously, the HITRAN 2000 line strengths of the strong 2156.57 cm™' water
vapor line and the weaker 2158.11 cm™~' water vapor line are not perfectly consistent,
leading to an increased residual around the weaker 2158.11 cm™' water vapor line for
retrieval from the wider micro window. And this increased water vapor residual is in the
wing of the CO R3 line (where the weighting function yields information on CO) leading
to an increased CO-H, 0 interference error.

5.2 Optimizing the regularization strength of the retrieval of the interfering species

In this section we show that the interference errors can be reduced by changing the
regularization of the retrieval of the interfering species from a simple scaling retrieval
to a less regularized (profile) retrieval. The idea behind this is that a (less regular-
ized) profile retrieval for an interfering species should lead to a smaller residual around
the spectral feature of this interfering species (than scaling), and thus to less interfer-
ence on the target species retrieval. The disadvantage is that a non-regularized profile
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retrieval of an interfering species, in principle, leads to an effective “deweigthing” of
the spectral domain where the interfering species absorbs, i.e., a reduced informa-
tion content for the target species from this spectral domain, and thereby an increased
smoothing error is expected. The trade-off between the two effects is illustrated here-
after.

Figure 12 shows on the horizontal scale the transition from a scaling retrieval (using
the L, operator in combination with very high values for the regularization parameter,
i.e., aps :1013) towards an essentially non-regularized profile retrieval (ags :10‘11).
The vertical scale in Fig. 12 shows “mean smoothing errors” (red curves) and “mean
interference errors” (black curves). We define these as the altitude average (arithmetic
mean up to 25 km) of the stdv-smoothing error profiles and stdv-interference error pro-
files plotted in Fig. 11, i.e.,

. mean CO smoothing error

n
0co-co ‘= V 21 (Sco-co);; /n
j=

(16)
. mean CO - Og interference error

n
0co-03 = \/21 (Sco-03);; /n
I=

These errors are calculated around all retrieved states of the Zugspitze test ensemble.
The ensemble—type nature of these plots again results from the described non-linearity
effects. As a result from Fig. 12 it can be seen, that the so-defined mean CO-O4
interference error decreases for decreasing agz as expected. Figure 12 also shows
that the mean CO smoothing error increases slightly with decreasing ags, which is
also expected as outlined at the beginning of this section. Therefore, an optimum
a3 for the retrieval of the interfering species O3 can be found by searching for the
minimum of the combined error, i.e., sqrt(ééo_co(aos) + 630_03(003)), see green
curves in Fig. 12. The resulting optimum setting for aqs is found from the minimum
of the average of all green curves (blue diamonds in Fig. 12), i.e., apz = 10%. The
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optimization for ap,o, aN2o, @nd acop Was performed in an analogous manner and
the results are summarized in Table 1. In the case of CO,, the high value of agg, =
10'3 means, that no further optimization relative to a scaling retrieval of CO, could be
achieved.

The effect of incorporating these four optimized a-values into the retrieval is shown
in Fig. 11c. The interference errors are significantly reduced compared to the RRC
standard retrieval where all interfering species were retrieved via scaling (Fig. 11a),
and are now much smaller than the smoothing error for all altitude regions. The cor-
responding effect on the altitude-averaged mean errors is shown in Table 2. Three
different retrieval scenarios are given. Scenario /) corresponds to the RRC standard
retrieval (Fig. 11a), i.e., the mean errors are given for the case in which all interfering
species are retrieved via scaling. Scenario ii) corresponds to Fig. 11c, i.e., using the
optimum a-values for all four interfering species. This reduces the mean CO-O; in-
terference error down to 0.57%, which can be compared to the initial value of 3.12 %
obtained in Scenario /). At the same time the mean CO smoothing error only increases
slightly from 5.21% to 5.26%. In addition, the mean CO-H,O interference error is de-
creased from 0.72 % down to 0.03 %. There is no major improvement for the mean
CO-N,0 and CO-CO;, interferences. The overall improvement of the “mean total error”
Giot 1= Sqrt(Ga0_co + 0a0-03 + Oao_tizo + Oao-nzo + 0a0_coz) i§ 13.55%. Finally,
Scenario iii) uses the optimum a-values only for O5 and H,O, while a scaling retrieval
is used for N,O and CO,. The corresponding numbers in Table 2 show that the overall
improvement is the same as for Scenario ii). Therefore, for a practical retrieval, Sce-
nario ii) is to be preferred, since it requires less computational effort. We want to make
the point that with both Scenarios /) and ii) the interference errors have been almost
eliminated, since 6,,,=5.29% of these Scenarios is only marginally (1.5%) higher than
the smoothing error 6on_co= 5.21% of the standard Scenario /.

Finally we want add one remark about retrieval noise errors, forward model errors,
and forward model parameter errors (see Eq. 1) which we have intentionally not treated
in our examples. One might wonder whether errors belonging to these three classes
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might increase or decrease due to our optimization of the a’s of the interfering species.
The answer is that in principle they will always decrease, i.e., our minimization of in-
terference errors is always accompanied also by a reduction of retrieval noise errors
and forward model (parameter) errors. This can be seen from analogy to the finding by
Steck (2000, see Fig. 4 therein): as a result of a change in (target species) regulariza-
tion strength (to higher or lower values, respectively) the smoothing error is shifted, in
principle, in the same direction (higher or lower values, respectively) and both retrieval
noise errors and forward model (parameter) errors are shifted in the opposite direc-
tion. This finding for a varied target species regularization can directly be transferred
to our case of changing interfering species regularization since the latter is directly
linked to changes of the effective target species regularization: As mentioned above,
any increase or decrease in the regularization strength of the interfering species has
the effect of weighting the target species retrieval to a higher or lower degree in the
spectral range where the interfering species absorbs.

6 Summary and conclusions

This paper shows that a class of potentially significant errors exists in infrared remote
sounding of profiles of atmospheric composition that has not been treated in the lit-
erature up to now. This new class of “interference errors” supplements the well-know
traditional classes of “smoothing errors,” “forward model errors,” “forward model param-
eter errors,” and “retrieval noise errors,” formulated this way in classical error analysis
of optimal estimation by Rodgers. Interference errors are a concern for atmospheric
spectroscopy in the infrared domain, since many vibration-rotation bands of different
trace species overlap there. This is not the case in the microwave atmospheric spec-
trum. Optimal estimation was first applied to microwave sounders, and this might be a
historical reason, why classical error analysis did not include the treatment of interfer-
ence errors. The interference effect physically originates from spectral residuals due
to any type of regularization of the retrieval of interfering species which then lead to
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artifacts in target species retrieval.

A general theoretical formulation of interference errors is given. It is based on a
generalized state vector comprising all retrieval parameters, including the interfering
species in addition to the target species. The point is made, that even in the usual
case of an intended retrieval of interfering species via simple profile scaling, a full
profile (i.e., vector-type) entry has to be introduced into the state vector. We show
how this can be achieved for the interfering species by formally implementing a profile
retrieval using the Tikhonov-type first order regularization matrix (with a very high reg-
ularization strength), which effectively emulates a scaling retrieval. This leads then to
a generalized averaging kernel matrix comprising the classical averaging kernels plus
the newly-defined interference kernels. The latter are used for estimating the interfer-
ence error, using realistic climatological covariances describing the true atmospheric
variability of the interfering species.

The general formulation is illustrated by applying it to a real sounding situation. This
is demonstrated for the example of optimal estimation of CO profiles from ground-
based solar infrared spectra recorded with the high-resolution Fourier Transform spec-
trometer at the NDACC Primary Station Zugspitze, Germany. The errors resulting to
the CO profiles from CO-O5, CO-H,0, CO-N,0O, and CO-CO, interferences are quan-
tified in detail. A crucial result of this paper is that interference errors can become
comparable to the magnitude of the smoothing error or even larger: For the widely
used standard CO retrieval approach the CO-Oj interference errors exceed the CO
smoothing errors in the altitude range between ~14-19 km, and CO-H,O interference
errors are comparable to the CO smoothing errors in the lower troposphere.

Part of our general theoretical formulation is that in principle effects from non-linearity
of the retrieval effect the magnitude of the interference errors (and smoothing errors).
This is because interference kernels (and averaging kernels) depend in principle on
the true state at the time of measurement within the range of possible atmospheric
states encountered and the range of possible forward model parameters (e.g., varying
actual solar zenith angles). In consequence, the smoothing errors and interference
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errors show a state dependency. This principle effect is shown to play a significant role
in a real sounding situation. This is illustrated by the example of CO standard profile
retrievals from solar FTIR, which show that interference errors and smoothing are in
fact varying by a factor of two and more, depending on the state. This implies that
the common practice in the infrared community of using just one “typical” averaging
kernel for characterization of a retrieval does not hold in general and has to be re-
considered on a case-to-case basis. Therefore, throughout the example section of this
paper smoothing errors and interference errors are computed around an ensemble of
states retrieved from a test ensemble of Zugspitze solar FTIR spectra.

We present two case studies showing how the error analysis can be utilized for
reducing interference errors, e.g., via changed micro-window sets or optimized regu-
larization constraints for the retrieval of the interfering species. The first case study,
again for the example of solar FTIR CO retrievals, shows that a widened micro-window
including one additional (stronger) water line leads to strongly increased interference
errors. This is due to inconsistencies in the water vapor line strengths in the HITRAN
data base. In the second case study it is shown that a profile retrieval for the interfering
species (instead of a simple profile scaling) can significantly reduce the interference
errors. A scheme to systematically minimize the interference errors is suggested. This
scheme is based on a Tikhonov—-type retrieval for the interfering species using the first-
derivative regularization operator and optimizing the regularization parameter. In this
case it is shown (for the example of optimal estimation of CO profiles from solar FTIR
spectra) that the interference errors become negligible by using Tikhonov-type profile
retrievals for the interfering species O; and H,O with regularization parameters agz=
102, @pypo= 10°.

Interference errors have not been treated in a rigorous and quantitative way up to
now, although, a theoretical formulation for the treatment of all further classes of pos-
sible errors (i.e., smoothing errors, forward model parameter errors, forward model
errors, and errors from measurement noise) have previously been described in the lit-
erature. Therefore, we have not discussed these further classes of possible errors in
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the example section of this paper. However, we conjectured that simultaneous opti-
mization of smoothing and interference errors would also lead to lower retrieval noise
and forward model (parameter) errors.

This paper shows how to identify and quantify interference errors, and how to mini-
mize the total error including interference errors and the smoothing error. The general
formulation is illustrated for the example of solar FTIR spectrometry of CO profiles.
However, the findings of this paper can be applied to soundings of all infrared-active
atmospheric trace gases, which are more than two dozen gases with relevance to cli-
mate and ozone. Morereover, these findings hold for all kind of infrared remote sound-
ing systems, i.e., retrievals from ground-based, balloon-borne, airborne, or satellite
spectroradiometers.
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Table 1. Optimum settings of the regularization strength a for retrieval of the interfering species
O3, H,0, N,0O, and CO, found from linear minimization of interference and smoothing errors.
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Table 2. Results of the combined minimization of interference errors and smoothing errors; sounding

“opt. a” refers to the numbers given in Table 1.
R. Sussmann and
o improvement versus T. Borsdorff

mean | G, 6| Oco-03 | Fconzo | Tco-nzo | Fco-coz | Ty !
errors scaling

a-settings

Scenario i) 521% |3.12% 0.72 % 0.09 % 0.01% | 6.12%
scaling for all
interfering
species

Scenario ii) 526% | 0.57% 0.03 % 0.04 % 0.01% |529% 13.55%
opt. o used for
all interf.
species

Scenario iif) 526% | 0.57% 0.03 % 0.08 % 0.01% |529% 13.55%
opt. a used for
03 and Hzo,
scaling for
N20 and COZ
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Fig. 1. Forward calculation of the three micro-windows (a)—(c) of the solar infrared absorption
spectrum used for CO profile retrievals. The contributions of the different absorbing species are
separated. Note, that the grey-shaded spectral area in (c) is not used for the standard retrieval.
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It is only used for the sensitivity study with the widened micro-window in Sect. 5.1.
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CO profile retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 3. CO profiles retrieved via optimal estimation from a test ensemble of 156 Zugspitze solar

FTIR spectra plotted together with the climatological aircraft profile ensemble used to construct
the a priori information (see also Fig. 2).
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Fig. 4. Averaging kernels (rows of the averaging kernel matrix) for the Zugspitze standard
retrieval of CO profiles via optimal estimation. The nominal altitudes of the kernels are given as
well as the areas of the kernels as a function of altitude (black curve in the right part). Note, that
the averaging kernels are calculated for the state vector quantity for the CO retrieval, which is
scaling factors of the a priori VMR profile given in a 1-km layer grid. The kernels plotted are the
average of the kernels calculated around all states retrieved from the Zugspitze test ensemble
of 156 spectra.
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Fig. 5. Profile of the stdv of the true CO variability (dashed line: square roots of the diagonal
elements of the climatological CO covariance) and ensemble of smoothing error profiles (solid
lines: square roots of the diagonal elements of the smoothing error covariance) calculated
around all states retrieved from the Zugspitze test ensemble of 156 spectra. The ensemble
type nature of the smoothing errors is a result of the non-linearity of the retrieval (i.e., the
averaging kernels) with respect to the different possible states.
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Fig. 6. Interference kernels (rows of the interference kernel matrices) for the interfering species
O3 (a), H,O (b), N,O (c), and CO, (d) impacting the standard retrieval of CO profiles. The
nominal altitude of the kernels is given. Note, that the kernels are calculated for the state
vector quantity for the retrieval, which is scaling factors of the a priori VMR profiles given in
a 1-km layer grid. The interference kernels plotted are the average of the kernels calculated
around all states retrieved from the Zugspitze test ensemble of 156 spectra.
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Fig. 7. Climatological ensemble of ozone sonde profiles used to construct the Zugspitze O5 a
priori profile (a) and the O5 climatological covariance (b). Note, that the state vector quantity
for the retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 8. Climatological ensemble of radio sonde profiles used to construct the Zugspitze H,O a
priori profile (a) and the H,O climatological covariance (b). Note, that the state vector quantity
for the retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 9. Climatological ensemble of aircraft profiles used to construct the Zugspitze N,O a priori
profile (a) and the N, O climatological covariance (b). Note, that the state vector quantity for the
retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 10. Climatological ensemble of aircraft profiles used to construct the Zugspitze CO, a
priori profile (a) and the CO, climatological covariance (b). Note, that the state vector quantity
for the retrieval is scaling factors of the a pri?g8/7l\qR profile given in a 1-km layer grid.
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Fig. 11. (a) Analogous plot to Fig. 5. In addition, the profiles of the interference errors CO-
03, CO-H,0, CO-N,0 and CO-CO, are plotted (colored curves: square roots of the diagonal
elements of the interference error covariances) which have been calculated around all states
retrieved from the Zugspitze test ensemble of 156 spectra. The ensemble type nature of the
interference errors is a result of the non-linearity of the retrieval (i.e., the interference kernels)
with respect to the different possible states. (b) Same as (a) but for widened micro-window
as indicated in Fig. 1c. (¢) Same as (a) but for optimized (profile) retrievals for the interfering
species using the regularization parameters given in Table 1.
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Fig. 12. This image displays the trade-off between minimizing interference errors and the
smoothing error. Plotted are altitude averaged CO smoothing errors (red curves) and CO-O4
interference errors (black curves) calculated around all states retrieved from the 156 spectra
of the Zugspitze test ensemble as a function of the regularization strength a5. The ensemble
type nature of the plots is due to non-linearity effects. The combined CO smoothing and CO-
O; interference errors are plotted (blue curves), and their average (blue diamonds) shows a

minimum for aos=102.
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