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Abstract

Oceanic phytoplankton can affect in-water and atmospheric radiation fields. In this
study, we develop case 1 (without noncovarying particles) and case 2 (including non-
covarying particles) waters model including Raman scattering in order to examine the
chlorophyll impacts on the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index
and aerosol single scattering albedo. The waters model is coupled with a radiation
transfer model (VLIDORT) for calculating TOMS Aerosol Index and retrieval of aerosol
single scattering albedo. The retrieval is constrained by chlorophyll concentration from
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imag-
ing SpectroRadiometer (MODIS) data, aerosol optical depth from MODIS, and aerosol
vertical profiles from a global chemical transport model (GEOS-CHEM). We find the
retrieved aerosol single scattering albedo is strongly influenced by chlorophyll concen-
tration, particularly in the regions of subtropical Atlantic Ocean and Indian Ocean. The
maximum deviation between the aerosol single scattering albedo retrieved with and
withouout considering chlorophyll can reach 10 percent. Thus, it is important to take
account of the phytoplankton impacts on atmospheric remote sensing measurements.

1 Introduction

Broadening and depletion of solar Fraunhofer lines, known as the Ring effect (Grainger
and Ring, 1962), can make a significant contribution to backscattered ultraviolet ra-
diances measured by satellite instruments (Chance and Spurr, 1997; Vasilkov et al.,
2002). Meanwhile, ocean Raman scattering has been observed to influence the spec-
tral scan measurements (Marshall and Smith, 1990; Gordon, 1999). Studies have
shown that detailed information of oceanic optical properties relating to phytoplankton
is very important to interpret satellite measurements (Gordon et al., 1988; Morel et al.,
1988; Morel et al., 2002). Such measurements are useful to better understand aerosol
formation over ocean. Photochemical degradation of oceanic phytoplankton can fur-
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ther lead to a decrease in the dimethyl sulphide (DMS) production and hence the re-
duction of oceanic sulfate aerosols which counteract the warming of the greenhouse
effect (Charlson et al., 1987). However, the degradation of phytoplankton pigments as-
sociated with ultraviolet radiation flux has been hypothesized to inhibit oceanic carbon
sinks and result in more carbon dioxide remaining in the atmosphere (De More et al.,
2000).

In remote sensing applications, the backscattered radiance measured by a satellite
instrument is sensitive to oceanic surface reflectivity. The seawater Inherent Optical
Properties (IOPs) are determined by the absorption and scattering of pure water and
dissolved or suspended inorganic and biotic pigments in turbid waters. It has been
understood that the constituents in oceanic waters such as pigment chlorophyll-a in
phytoplankton could affect the water reflectance significantly and lead to the variability
of ocean reflectance in the ultraviolet. Currently, the derivation of ozone and aerosol
products from the Total Ozone Mapping Spectrometer (TOMS) is based on minimum
Lambert equivalent surface reflectivity (Herman etal., 1997). Therefore, accurate es-
timation of the ocean reflectivity can improve the retrieval of total ozone column and
aerosol from the TOMS and Ozone Monitoring Instrument (OMI) measurements.

Quantifying the ultraviolet radiation effects on the production of phytoplankton pig-
ments and variability of oceanic ultraviolet reflectance requires the accurate estimation
of in-water and atmospheric radiation fields. A radiative transfer model can be used
to simulate the radiation fields with various water optical properties and solar zenith
angles. Our interest here, is to study the inherent optical properties of oceanic waters
which affect the ultraviolet radiance measured by satellite sensors and examine the
impacts on the TOMS Aerosol Index. Moreover, the influence on our recent developed
retrieval of aerosol single scattering albedo (Hu et al., 2007) will be examined. We
use the vector discrete ordinate radiative transfer model VLIDORT (with polarization)
(Spurr, 2001; Natraj et al., 2007) for calculating the total backscattered radiance. A
new parameterization of seawater inherent optical properties as a function of chloro-
phyll concentration in case 1 water and case 2 water (Vasilikov et al., 2005; Park and
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Ruddick, 2005) is extended to the ultraviolet.

2 Seawater model

Calculation of seawater inherent optical properties requires the absorption coefficient
A(1) and scattering coefficient B(1) (A is wavelength). The parameterization of the ab-
sorption and scattering model covers realistic waters including case 1 (Chlorophyll,
colored dissolved organic matter) and case 2 waters (Chlorophyll, colored dissolved
organic matter, and noncovarying particles). The four components, namely, pure sea-
water, phytoplankton and varying particles, colored dissolved organic matter (CDOM)
and noncovarying particles are considered in the seawater model. The total absorp-
tion and scattering coefficients are sums of contributions from pure seawater and water
constituents as given below:

A=A, ) + As(A) + Acpom(1) + Anc(4) (1)
B(1)=B,,(A) + Bo(4) + Byc(4) ()

where A is the absorption coeﬁicient(m'1); B is the scattering coeﬁicient(m'1); sub-
scripts w, ¢, CDOM, NC denote pure seawater, phytoplankton and varying particles,
colored dissolved organic matter, and noncovarying particles respectively.

The spectral data of A, were taken from Morel and Maritoren (2001), Pope and
Fry (1997) and Smith and Baker (1981). As there is no consensus on the pure water
absorption in the ultraviolet, we interpolate the values between measurements from
Quickenden and Irvin (1980) and Pope and Fry (1997). The values of A, Acpom and
Anc are computed as a function of Chlorophyll concentration (Vasilkov et al., 2005;
Park and Ruddick, 2005):

AsD)=a()cPW 3)

Acpom(1)=Acpom(440)exp[-Scpom (4 — 440)] (4)
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Anc(A)=Anc(440)exp[—Syc (4 — 440)] (5)

where Acpom(440) and Ay -(440) are absorption coefficients of CDOM and noncovary-
ing particles at 440 nm; C is Chlorophyll concentration and a, 8, Sgpoy and Sy are
coefficients.

The scattering coefficients are parameterized as follows:

B,(1)=B,(550)(550/1)" (6)
Bnc(1)=Byc(550)(550/4)" (7)

where B,(550) and By,-(550) are scattering coefficients of co-varying and noncovary-
ing particles at 550 nm.

Figure 1 shows that the water reflectivity is strongly related to the chlorophyll con-
centration in the seawater at TOMS wavelength 331 and 360nm. For 331 nm, the
water reflectivity decreases almost linearly with increasing chlorophyll concentration.
However, we find that the water reflectivity does not linearly decrease with increas-
ing chlorophyll concentration for 360 nm. The reason is that the chlorophyll scattering
dominates when the chlorophyll concentration is relatively low and absorption domi-
nates when the chlorophyll concentration is high.

3 Ocean Raman scattering

In recent years, the trans-spectral scattering (Raman scattering) has been recognized
to have an effect on in-water radiative transfer. Along with fluorescence, it transfers en-
ergy across the optical spectrum and results in changing the spatial as well as the spec-
tral characteristics of the irradiance field measured by satellite instruments (Marshall
and Smith, 1990; Chance and Spurr, 1997; Sathyendranath and Platt, 1998; Gordon,
1999; Vasilkov et al., 2002). We assume that molecular scattering dominates upward
scatter, because it is in clear waters that we expect Raman scattering to contribute

14355

ACPD
7, 14351-14367, 2007

Oceanic impacts on
ultraviolet radiance

Py
I
S
o
=3
2
Py
2
0p]
o
3
=

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14351/2007/acpd-7-14351-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14351/2007/acpd-7-14351-2007-discussion.html
http://www.egu.eu

10

15

20

25

most to the total upwelling radiance at the sea surface. To calculate the contribution of
Raman scattering to the ocean surface reflectance, we use the formula from Vasilkov
et al. (2002):

R, A6)=B7 (1) /(A(Ag) + By(Ae) + [Ug(Re) /g (A) + Bp(A)]) (8)

Where 1 and 1, are observed wavelength and excitation wavelength. B" (1) is the Ra-
man scattering coefficient, A is the absorption coefficient, B, is the backscatter coeffi-
cient. u4(=0.75) and u’j(:O.S) (Sathyendranath and Platt, 1998) are the mean cosines
for downwelling irradiance and upwelling Raman scattering irradiance respectively. The
Raman-backscattering coefficients are obtained from Marshall and Smith (1990).

Figure 2 provides the sensitivity of water reflectivity to chlorophyll concentration when
Raman scattering is considered. We find that the Raman scattering increases the
water surface reflectivity. Water reflectivity decreases almost linearly with increasing
chlorophyll concentration for both TOMS wavelengths. Figure 3 presents the surface
reflectivity from Herman et al. (1997) and calculations of the waters model. We find
that small differences occur in the regions with high chlorophyll concentration.

4 TOMS aerosol index and aerosol single scattering albedo

Figure 4 presents the chlorophyll concentration from SeaWiFS and MODIS data. Turbid
waters with high concentration of chlorophyll are present in tropical and high latitudinal
oceans, especially in the regions near continents. Clear waters (mode water) with
low concentration of chlorophyll, on the other hand, exist in subtropical oceans near
15° N during summer and 15° S during winter. We use the chlorophyll distribution to
calculate its influence on TOMS Aerosol Index which measures the spectral contrast
at two different ultraviolet wavelengths 331 and 360 nm (Herman et al., 1997; Torres et
al., 1998).

Figure 5 shows the differences between the Aerosol Index calculated using the wa-
ter reflectivity influenced by chlorophyll and the Lambertian water surface reflectivity.
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Large differences of TOMS Aerosol Index occur in the subtropical regions during sum-
mer. The strong impact of chlorophyll on TOMS Aerosol Index near 0.5 is found in the
regions near the east coast of United states and Caribbean sea, west coast of central
Africa and east coast of Asia. Large differences of Aerosol Index are also found in the
high southern latitudinal oceans during winter.

In order to examine the influence of chlorophyll on our recently developed retrieval
of aerosol single scattering albedo (Hu et al., 2007), we coupled our waters model
with radiative transfer model VLIDORT. The radiative transfer model is used to calcu-
late the local aerosol single scattering albedo to reproduce the TOMS Aerosol Index,
when constrained by MODIS aerosol optical depth (King et al., 1999; Kaufman et al.,
1997) and by relative vertical profiles from a global chemical transport model (GEOS-
CHEM) (Martin et al., 2002; Park et al., 2003; Hu et al., 2007). The size distribution
of aerosols is assumed to be lognormal with mode radius and standard deviation used
in GEOS-CHEM (Martin et al., 2003). We use VLIDORT to produce a look-up table of
backscattered radiances (331 nm and 360 nm) for a variety of atmospheric and surface
conditions as a function of all Sun-satellite viewing geometries. The chi-squared min-
imization method is used to select the best solution (see Hu et al., 2002 for details).
The retrieval uncertainty of aerosol properties has been discussed in Hu et al. (2007).
The Angstrom exponent and aerosol optical depth make the largest contribution to the
retrieval uncertainty. The retrieval uncertainty is 15 percent.

Figure 6 presents the differences between aerosol single scattering albedo retrieved
with and without considering surface water reflectivity influenced by chlorophyll. The
resulting differences of retrieved aerosol single scattering albedo strongly occur in tur-
bid waters, for example, tropical and subtropical Atlantic Ocean and Indian Ocean. The
largest difference reaches 10 percent near the subtropical Atlantic Ocean and Indian
Ocean. The result indicates that the absorbing aerosols may occur in these regions
such as Atlantic Ocean and Indian Ocean since the TOMS Aerosol Index is high in
these turbid waters. Besides long range transport of absorbing aerosols from near
continents to these oceanic regions, the local absorbing aerosol sources from phyto-
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plankton could also contribute to the high TOMS Aerosol Index.

5 Summary

Case 1 and case 2 waters model is developed to account for the oceanic phytoplankton
effect on the variability of surface seawater reflectivity. The oceanic Raman scattering
is considered during radiance calculation. The water reflectivity decreases almost lin-
early with increasing chlorophyll concentration at TOMS ultraviolet wavelengths. Strong
impacts of chlorophyll from SeaWiFS and MODIS data on TOMS Aerosol Index are
found in the regions near continents. With constraints of MODIS aerosol optical depth
and aerosol vertical profiles generated from GEOS-CHEM model, the retrieved aerosol
single scattering albedo from TOMS Aerosol Index is found to be strongly influenced
by the seawater chlorophyll concentration. The largest differences between the aerosol
single scattering albedo retrieved with and withouout considering chlorophyll can reach
10 percent near the subtropical Atlantic Ocean and Indian Ocean. The positive values
of Aerosol Index over ocean besides the clear water absorption indicates that the phy-
toplankton may not only release a large amount of scattering sulfate aerosols, but also
release significant amount of absorbing aerosols (Bishop et al., 2002). The unknown
oceanic absorbing aerosols could be composed mostly of biogenic compounds, which
could enhance light absorption and accelerate global warming.
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Fig. 1. The water reflectivity dependence on Chlorophyll concentration (without Raman scat-

tering).
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Fig. 4. The Chlorophyll concentration from SeaWiFS measurements for January 2001 (upper)
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Fig. 5. The difference between TOMS Aerosol Index calculated using the water reflectivity influ-
enced by chlorophyll and the Lambertian water surface reflectivity. Upper panel is for January

2001 and lower panel is for July 2000.
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Fig. 6. The difference between aerosol single scattering albedo retrieved with and withouout
considering influence of Chlorophyll. Upper panel is for January 2001 and lower panel is for

July 2000
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