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Abstract

Volatile organic compounds (VOCs) were analyzed in air and snow samples at the
Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud
and Aerosol Characterization Experiment) during February/March 2006. The fluxes
of individual compounds in ambient air were calculated from gas phase concentra-5

tions and wind speed. The highest flux values were observed for the aromatic hydro-
carbons benzene (14.3µg m−2s−1), 1,3,5-trimethylbenzene (5.27µg m−2s−1), toluene
(4.40µg m−2s−1), and the aliphatic hydrocarbons i-butane (7.87µg m−2s−1), i-pentane
(3.61µg m−2s−1) and n-butane (3.23µg m−2s−1). The fluxes were used to calculate
the efficiency of removal of VOCs by snow, and the effect of temperature on removal10

efficiency. The removal efficiency was calculated at – 24◦C (−13.7◦C) and ranged from
37% (35%) for o-xylene to 93% (63%) for i-pentane. The distribution coefficients of
VOCs between the air and snow phases were derived from published poly-parameter
linear free energy relationship (pp-LFER) data, and compared with distribution coef-
ficients obtained from the simultaneous measurements of VOC concentrations in air15

and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those
values measured in the present study, which indicates more efficient snow scavenging
of the VOCs investigated than suggested by theoretical predictions.

1 Introduction

Large quantities of a number of organic compounds enter the troposphere from a vari-20

ety of sources. Some of these occur naturally, but most air pollutants are derived from
human activities (anthropogenic) and can significantly change or impact the earth’s
natural life processes (Bidleman, 2001). Volatile organic compounds (VOCs) such as
benzene, toluene, ethylbenzene and xylenes constitute an important group of anthro-
pogenic organic compounds from combustion (vehicles, aircraft and fossil fuel power25

plants), fuel storage and transport, solvent usage and production, industrial emissions,
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landfills and hazardous waste facilities (Zalel et al., 2008). Some VOCs are toxic (e.g.
benzene, 1,3-butadiene) and many are ozone precursors (Dollard et al., 2007). VOCs
are transformed and removed from the troposphere by chemical processes including
photolysis, reaction with hydroxyl (OH) or nitrate (NO3) radicals, and reaction with O3
(National Research Council, 1991; Atkinson, 1995, 1997). It is well established that5

benzene and the alkylated benzenes react almost exclusively with OH radicals under
the conditions prevalent in the lower troposphere (Atkinson, 1994). Secondary aerosol
particles are formed from some organic compounds including toluene and pinenes
(Odum et al., 1997; Kavouras et al., 1998; Kleindienst et al., 2004). As gases and ad-
sorbed on particles, some VOCs (e.g. i-alkanes, aromatic hydrocarbons) can be trans-10

ported over long distances from source regions to higher layers of the troposphere,
where they can persist for long periods of time (Gröllert and Puxbaum, 1998; Li et al.,
2005).

The difference in atmospheric lifetimes of VOCs with respect to OH removal can be
a useful tool to estimate the amount of photochemical processing in an advection flow15

(Monod et al., 2001). Other processes influencing the distribution pattern of VOCs are
emission rates, mixing processes, dilution, and dry and wet deposition. The datasets
obtained from automatic non-methane VOC monitoring may contain much additional
information that could contribute to understanding of the processes and trends that
govern dispersion and transformation of ambient pollutants (Zalel et al., 2008). At20

high latitudes and altitudes, the transformation and deposition of VOCs is significantly
influenced by low temperatures, and in particular by the phase transition of water at
temperatures below 0◦C (Lei and Wania, 2004). In the atmosphere at high altitudes,
snow and ice represent an important compartment for storage and reactions of environ-
mentally relevant chemicals. Research has been conducted aimed at understanding25

the processes linked to the occurrence of organic pollutants in snow and ice (Roth et
al., 2004) since organic pollutants were detected in snow in remote areas (Hoff et al.,
1995; Wania et al., 1999) and at a high alpine site (Gröllert and Puxbaum, 1998).

Here we present the results of measurements of selected VOCs in ambient air
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at the Jungfraujoch high alpine research station during field work associated with
CLACE 5 (CLoud and Aerosol Characterization Experiment), undertaken in Febru-
ary/March 2006. As part of this research, quantitative characteristics of VOCs distribu-
tion between atmospheric phases during precipitation formation were investigated.

2 Background theory5

High alpine sites are appropriate locations to determine background concentrations of
VOCs in the free troposphere, since these locations are primarily influenced by the long
range transport of ozone and its precursors (Pochanart et al., 2001; Zanis et al., 2000).
However, the concentrations of air contaminants (e.g. VOCs and aerosols) at higher
altitudes (>3000 m) have also been shown to be affected by polluted regions in alpine10

valleys (Prévot et al., 2000; Baltensperger et al., 1997a). Due to economic growth
in Europe and construction of roads and tunnels in alpine regions, traffic and hence
VOC emissions have increased markedly during the last decades, and are expected to
increase further in the future (Prévot et al., 2000; Karl et al., 2001).

The environmental fate of VOCs is highly dependent on their partitioning in the at-15

mosphere between gas and condensed phases like aerosols, rain, fog and snow. Such
sorption processes can slow the long range transport of compounds in the atmosphere.
Transformation processes are also significantly affected by VOC partitioning between
phases. A good understanding of the thermodynamic partition equilibria of organic
pollutants is therefore the basis for a good understanding of their fate (Goss, 2004).20

The atmosphere of the Swiss Alps is a multicomponent and multiphase system, and
water can be present in all three states of aggregation under climate conditions. The
organic vapors are present in the atmosphere in insufficient amounts and can not gen-
erate own phases. They can sorb onto solid or liquid surfaces and form surface films
from which substances exchange into all phases. To determine the distribution of or-25

ganic substances between different phases of the system, it is necessary to assess the
contribution of processes involving the dispersion and transformation of compounds in
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ambient air, and their physical and chemical removal from the system. These pro-
cesses are the transport of organic chemicals, their reactions with other compounds
of the atmosphere (OH radicals, ozone, gaseous nitrogen oxides), and wet and dry
deposition (Forrer et al., 2000; Rouviere et al., 2005).

In the Alps at higher altitudes, the transport of organic compounds from emission5

sources to higher altitudes in the troposphere is a complex process consisting of sev-
eral stages: the elevation (vertical transport) of the contaminants from the sources to
the upper troposphere, the horizontal transport of the compounds in the upper tropo-
sphere, precipitation scavenging of organic chemicals, and their deposition on alpine
surfaces (Fig. 1). Any transported compound can be quantitatively described by its10

fluxes, following the procedure described by Dämmgen et al. (1997). The vertical flux
(J0) is directly proportional to the gradient of concentration of the substance (∆C) be-
tween a source and a receptor, (Eq. 1):

J0≈∆C. (1)

The horizontal flux (Jc) is described by convective diffusion, and is proportional to the15

concentration and velocity of the substance in the air flow (Eq. 2):

Jc=Cairν (2)

where Cair is the concentration of VOC in the air (µg m−3) and ν is the velocity of the
horizontal flux (m s−1).

The flux of deposition (Jd ) is difficult to describe quantitatively. Hydrocarbons dis-20

tribute among the different compartments of the multiphase atmospheric system (gas
phase, aqueous droplets, aerosol particles, ice, and snow crystals). Their partitioning
depends upon their nature and concentration, and on meteorological conditions. The
deposition flux can be described by the density (d ) and intensity (I) of precipitation
(Eq. 3):25

Jd≈Id . (3)

14351

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/14347/2008/acpd-8-14347-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/14347/2008/acpd-8-14347-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 14347–14369, 2008

Distribution of VOCs
between air and snow

E. Starokozhev et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Since mixing is diffusion-controlled, the system is considered to be in dynamic equilib-
rium. The partitioning of organic substances between the gas and other phases can
be described by the distribution coefficient (Eq. 4), which encompasses characteristics
of all fluxes in the atmosphere:

Kair/snow=
Cair

Csnow
(4)5

where Csnow is the concentration of VOC in the precipitation (ng L−1).
The distribution of VOCs between the atmospheric phases determines whether and

how the chemicals will be scavenged by precipitation (Lei and Wania, 2004). The
partitioning constant varies among different compounds, which allows assessment of
the major trends for processes relevant to each substance. When Kair/snow approaches10

infinity, the efficiency of the scavenging process of organic compounds by precipitation
is low. On the other hand, active precipitation scavenging of the compound will take
place when Kair/snow approaches 0.

3 Experimental section

3.1 Location and meteorology15

The large scale topography of the Swiss Alps is along a NW-SE cross section which is
characterized by two mountain ranges divided by the deep Rhone Valley (Fig. 2). The
Jungfraujoch observation station (3580 m a.s.l., 46.55◦ N, 7.98◦ E) is situated on the
northerly crest on a mountain saddle between the mountains Jungfrau (4158 m a.s.l.)
in the west and Moench (4099 m a.s.l.) in the east. During autumn, winter and spring,20

the research station is in clouds in the free troposphere about 40% of the time, whereas
there is a clear influence from the planetary boundary layer in summer (Baltensperger
et al., 1997a; Zanis et al., 2000). Meteorological processes on different spatial and
time scales are important in the interpretation of trace gas observations at high alpine
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sites during the whole year (Forrer et al., 2000). These processes may contribute to the
export of anthropogenic pollution from the boundary layer to the free troposphere. Me-
teorological information including air temperature, wind direction, wind speed, relative
humidity and global radiation during sampling was obtained from a monitoring station
of the Swiss Meteorological Institute within the Swiss Air Pollution Network (NABEL).5

3.2 Analytical methods

Hydrocarbons were measured by a GC-FID automatic sampling instrument (AirmoVOC
HC2010) with an integration time of 60 min. The system was located in a laboratory
at the top of the research station. The inlet of the GC system was a 1/8” stainless
steel tube drawing outside air at 100 ml min−1 from 5 m above the bottom. The air10

sample was pre-concentrated at room temperature in an adsorption tube packed with
two adsorbents (3 cm Carbotrap B, 1 cm Carbosieve). The trapped components were
desorbed by heating the adsorption tube to 250◦C for 2 min, then transported by H2
(5.0) to a cryofocusing unit. This unit consisted of a fused silica capillary tube packed
with Carbopack and Envicarb X (2:1), which adsorbs hydrocarbons by CO2 cooling at15

−45◦C. After heating of the cryotrap to 350◦C, the organic compounds were injected
into a fused silica capillary column (24 m×0.25 mm, BGB 2.5; film thickness 1µm, sta-
tionary phase 2.5% phenylpolysiloxane and 97.5% methylpolysiloxane) for chromato-
graphic separation. The temperature program for the chromatographic separation was
as follows: 30◦C for 20 min, increase by 3◦C min−1 to 120◦C, increase by 5◦C min−1

20

to 150◦C, 15 min at 150◦C. Flame ionization detection (FID) was used for quantitative
analysis of organic trace compounds. Calibration of the system was performed with a
thirty-component mixture produced and certified by NPL (National Physics Laboratory,
UK). Hydrocarbons were identified based on their retention times. Accuracy values
comprised the 2 sigma errors of calibration, the reproducibility of the measurements,25

and peak integration errors due to peak overlap and baseline noise. The detection limit
was between 1 and 10 ppt, depending on the individual hydrocarbon. The precision of
the instrument was below 15% and the accuracy below 10% for C5–C9, as found in
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several intercomparison campaigns for VOC measurements (Winkler, 2001).
Snow/ice was sampled during precipitation events using a custom built stainless

steel collector installed on the measurement platform at the research station. A total
of 27 snow/ice samples were collected from 20–26 February and 1–5 March 2006.
Analysis of VOC in melted snow samples was performed by HS-SPDE (headspace5

solid phase dynamic extraction) and GC/MS (gas chromatography/mass spectrome-
try). The relative standard deviations varied between 5 and 15% for benzene and the
alkylated benzenes. The sampling procedures, and the HS-SPDE and GC/MS analyti-
cal methods have been described in detail by Fries et al. (2008) and Sieg et al. (2008).

4 Results and discussion10

4.1 VOC fluxes

To assess the influence of atmospheric transformation of organic compounds on their
further behavior, it is necessary to consider the atmosphere as a thermodynamic sys-
tem; this requires simultaneous investigation and comparison of the meteorological and
physico-chemical parameters of the system. The following meteorological parameters15

simultaneously reflect the thermodynamic characteristics of the atmosphere: (i) tem-
perature describes the conditions of gas and vapor components in the atmosphere, (ii)
wind speed describes transport of compounds in the ambient air, (iii) relative humidity
gives the concentration of water vapor in the air and allows prediction of the direction
of condensation and evaporation processes in the system at any moment, and (iv)20

global radiation provides a measure of the additional energy influencing the degree of
condensation and evaporation of water and organic compounds in the air.

The concentrations of organic substances in the gas phase and snow were selected
as physico-chemical parameters of the system. Alkanes, alkenes and aromatic hydro-
carbons were determined in the air samples during CLACE 5 (Fig. 3, Table 3). Data25

from four days of measurements were selected for investigation of the VOC distribu-
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tion between the air and snow phases. Only on two of these days (24 February and 1
March) did significant snowfall take place. The two other days (11 and 12 March) were
clear and sunny. The air temperature on the selected days was always far below 0◦C,
and varied from −12◦C (24 February and 11 March) to −27◦C (1 and 12 March). The
meteorological regimes on 11 and 12 March were similar to those of 24 February and5

1 March (Table 1). Thus, it is possible to consider the atmospheric conditions on 11
and 12 March as the initial state of the thermodynamic system “atmosphere”, and the
conditions on the 24 February and 1 March as the final state after the reaction (snow
scavenging) took place. Analysis of the wind speed (2–14 m s−1) during these days
shows that there was a permanent transfer of the air mass in the atmosphere, forced10

by convection. Therefore, spatial homogeneity involves horizontal and vertical mixing
processes (Baltensperger et al., 1997b), and the amounts of organic chemicals in the
gas phase can be better described using their fluxes.

The fluxes of individual hydrocarbons detected in all air samples during CLACE 5,
calculated using Eq. (2) are given in Fig. 3. The diagrams of the initial fluxes (Jc) show15

the highest values of the following hydrocarbons (in µg m−2 s−1) on 11 (12) March: ben-
zene 14.3 (4.38), 1,3,5-trimethylbenzene 5.27 (1.79), toluene 4.40 (1.56), i-butane 7.87
(7.27), i-pentane 3.61 (3.40), and n-butane 3.23 (2.80). Insignificant concentrations
(approximately 10% of the benzene concentration) of the following hydrocarbons were
found in the ambient air on the same dates: 1,2,4-trimethylbenzene 1.49 (0.51), m/p-20

xylene 1.09 (0.28), o-xylene 1.02 (0.24), ethylbenzene 0.83 (0.45). OH-rate constants
of these compounds are higher than for benzene and consequently the atmospheric
lifetimes for these chemicals (8.4 h, 11.7 h, 20.3 h, and 1.63 days, respectively) are
shorter than for benzene (9.4 days) (see Table 2). The high concentrations of alkanes
in ambient air could be due to their long persistence in the atmosphere, with distant25

sources making a greater contribution to their concentrations than in the case of the
faster reacting VOCs (Hellén et al., 2006).

The final flux values (J
′

c) for all hydrocarbons on 24 February and 1 March were lower
than the initial flux values. One explanation for this is VOC removal by wet deposition.
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However, the efficiency of washing out of selected compounds from the atmosphere
varied widely (range 30–100%), which may be explained by different photochemical
activity and interaction with water vapor. Benzene in the atmosphere should partition
into the water phase to a greater extent than the other organic compounds investigated
here, as it has the lowest Henry’s constant. Toluene can be absorbed by the water5

phase, and will be transformed by reactions with components of the gas phase (e.g.
OH-rate constants, see Table 2) more efficiently than benzene. Thus, the quantitative
characteristics of the distribution of the investigated hydrocarbons between the air and
snow phases in the atmosphere should be different.

The efficiency of scavenging of VOCs by snow was calculated, Eq. (5) as the differ-10

ence between the initial (Jc) and final (J
′

c) flux values before and after wet deposition:

E=
Jc−J

′

c

Jc
100%. (5)

The efficiency of removal of VOCs by snow events during CLACE 5 is shown in Fig. 4.
The ranking of organic compounds according to their removal efficiency indicates a
low dependency on their solubility in water (see Table 2). Thus isopentane and n-15

pentane, with very high values of Henry’s law constants (50 and 56, respectively), were
removed from the atmosphere by snow very effectively (60–90%). In contrast, o-xylene
(Henry’s constant=0.21) was removed with low efficiency (35–37%). The reason for
these results could be that dissolution is not the major mechanism of uptake of VOCs
by snow. The efficiency of snow removal of aromatic hydrocarbons was temperature20

dependent; the lower the ambient temperature at Jungfraujoch, the greater was the
efficiency of washing out.

Thus, the highest removal efficiency values for all compounds were obtained at an
ambient temperature of approximately −24◦C. An increase in temperature to −13.7◦C
decreased removal efficiency by a factor of approximately two for some hydrocarbons25

including ethylbenzene and isobutene. The removal efficiency for benzene, toluene,
n-pentane and n-butane decreased by an average of 20% with this temperature in-
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crease (see Fig. 4). These finding validate the results of the uptake model of Fries et
al. (2007) that revealed a higher uptake of aromatic hydrocarbons by ice crystals at
lower temperatures.

According to Lei and Wania (2004), one possible explanation for this observation
might be cold temperature removal of organic chemicals due to a reduction in vapor5

pressure with temperature, which consequently enhances air/ice partitioning. Another
explanation could be that low temperatures (Hoff et al., 1995), the large size and spe-
cific surface area of snow/ice crystals (Franz and Eisenreich, 1998,) promote snow/ice-
hydrocarbon interactions. Specific snow surface area is a key parameter determining
the capacity of snow for organic contaminants and is even higher during colder days10

(Burniston et al., 2007).

4.2 Determination of distribution coefficients

To estimate the distribution ratio of hydrocarbons between air and snow in the tro-
posphere, their concentrations were determined in these phases during the CLACE 5
campaign. Air and snow samples were collected at the same time so that the measured15

concentrations reflected the equilibrium distribution. Unfortunately, alkanes could not
be quantified in snow samples using the chosen analytical method. However, Gröllert
and Puxbaum (1998) reported a maximum ratio of 130 (Csnow

Cair
) for scavenging of alkanes

by snow at an elevated alpine site.
Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes were20

quantified in snow samples, and benzene, toluene, m/p-xylene, o-xylene, ethylben-
zene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were also quantified in the air
samples (see Table 3). For these latter seven compounds, the distribution coefficients
(Kair/snow) were derived from measurements using Eq. (4) (Table 3). The distribution
coefficients show a correlation with ambient temperature, with values of coefficients be-25

ing higher for all compounds at −13.7◦C than at −24◦C (e.g. 5.3×10−3 and 4.8×10−3,
respectively, for benzene). Unexpectedly, the highest distribution coefficient values
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were observed for benzene despite it having the highest water solubility (1780 mg L−1)
among the analyzed monoaromatic hydrocarbons. The lowest distribution coefficient
value was found for 1,2,4-trimethylbenzene (2×10−4), which has a water solubility of
57 mg L−1. The distribution coefficients of the other aromatic hydrocarbons at −13.7◦C
were 3.6×10−4 for 1,3,5-trimethylbenzene, 4×10−4 for m/p-xylene, 4×10−4 for toluene,5

3×10−4 for o-xylene, and 2.3×10−4 for ethylbenzene.
Several studies have reported hydrophobic VOCs in precipitation at higher concen-

trations than predicted from Henry’s law constants and ambient atmospheric concen-
trations (Sato et al., 2006; Fries et al., 2008).

Lei and Wania (2004) proposed Eq. (6) for estimating the distribution coefficients of10

a wide range of organic compounds at temperatures below 0◦C.

K b
air/snow

=
1

AI · ρW ·KSA
(6)

where AI is the specific surface area in m2 g−1 and ρw is the density of ice (g m−3).
KSA is the sorption coefficient onto the snow surface (m3 m−2), determined for a wide

range of hydrophobic and hydrophilic organic substances at −6.8◦C (Roth et al., 2004).15

The KSA values have been extrapolated to a temperature of −13.7◦C for the com-
pounds considered in the present study.

The distribution coefficients determined empirically and theoretically show the same
pattern as described above (see Table 3). Comparison of the distribution coefficients
derived from measurements during CLACE 5 (Kair/snow) with those values (K b

air/snow
)20

calculated using Eq. (6) shows good consistency for benzene (5.3×10−3 and 6.2×10−3,
respectively) and 1,3,5-trimethylbenzene (4.4×10−3 and 5.2×10−3, respectively) (see
Table 3). The small difference in coefficient values for these compounds indicates that
their sorption onto the snow surface plays a significant role in their removal by snow.
For 1,2,4-trimethylbenzene, o-xylene, , m/p-xylene, ethylbenzene and toluene the em-25

pirical coefficient values were 0.5×10−3, 1.1×10−3, 1.3×10−3, 1.5×10−3 and 2.8×10−3,
respectively (Table 3). However, for the other aromatic hydrocarbons the distribution
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coefficients calculated theoretically were one order of magnitude higher than the empir-
ical values (see Table 2). One explanation for these differences may be the influence
of processes other than dissolution and sorption on the removal of hydrocarbons by
snow from the gas phase, as the calculated distribution coefficients (K b

air/snow
) con-

sider adsorption of VOCs on the snow surface as the only important process during5

scavenging. For compounds with low water solubility and a low Kair/snow, such as
1,2,4-trimethylbenzene and o-xylene, removal from the air by snow adsorption alone
is insignificant. For these compounds in particular, other processes such as particle
scavenging should also be considered.

5 Conclusions10

VOCs were measured in air and snow samples during CLACE 5 in the winter of 2006.
The fluxes of individual organic compounds were measured under various atmospheric
conditions, and from these fluxes the removal efficiency of the hydrocarbons by snow
was calculated. The efficiency values of some investigated compounds (e.g. alkanes,
m/p-xylene, and o-xylene) were inconsistent with their water solubility and volatility. The15

distribution coefficients between air and snow phases were derived for various aromatic
hydrocarbons from measurements made during the present study, and from calculated
values obtained from previous studies. The empirical and calculated distribution coeffi-
cients showed the same pattern, but the empirical coefficients for several hydrocarbons
were one order of magnitude lower than the calculated values. One explanation for this20

may be the influence of processes other than dissolution and adsorption on the re-
moval of hydrocarbons by snow from the ambient air. For compounds with low water
solubility and a low distribution coefficient, removal from the air by snow adsorption
alone is negligible. For these compounds in particular, other processes such as par-
ticle scavenging should also be considered. The measured distribution coefficients25

and the removal efficiencies showed a correlation with temperature, characterized by
increased VOC removal by snow with decreasing ambient temperature.
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Table 1. Meteorological parameters during CLACE 5 (2006).

Date Sampling Wind speed Relative Air temperature Global radiation
time (m s−1) humidity (%) (◦C) (W m−2)

00:00 3.7 55.4 −16.4 0
04:00 9.1 52.7 −16.5 0
08:00 9.6 98.2 −14.5 102

24 February 12:00 14.2 98.5 −13.7 312
16:00 11.7 99.8 −13.7 78
20:00 15.7 99.3 −14.2 0

00:00 8.1 100 −21.6 0
04:00 7.9 97.5 −22.5 0
08:00 9.9 100 −24.1 114

1 March 12:00 4.2 98.7 −23.2 390
16:00 2.7 78.8 −23.7 42
20:00 2.9 52.8 −24.4 0

00:00 5.1 96.3 −17.8 0
04:00 47.5 99.3 −17.8 0
08:00 8.2 98.3 −18.3 126

11 March 12:00 12.6 95.8 −17.7 516
16:00 13.3 99.8 −13.7 78
20:00 8.1 99.3 −16.2 0

00:00 7.5 100 −21.6 0
04:00 6.5 99.8 −23.7 0
08:00 6.7 100 −24.3 114

3 March 12:00 5.6 100 −26.6 618
16:00 5.6 99.1 −27.6 102
20:00 2.1 46.6 −24.4 0
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Table 2. Physico-chemical parameters of VOCs, measured in air samples during CLACE 5.

Compound Molecular Water H(25◦C) H(25◦C) Boiling OH Rate Atmospheric
weight solubility (atmm3/mole) (dimension- point constant lifetimea

(mg/L) less) (◦C) (cm3/molecule s)

isobutane 58 48.8 1.19 47.6 −11.7 2.34×10−12 5 days
n-butane 58 61.2 0.95 38 −0.5 2.54×10−12 4.6 days
isobutene 56 263 0.218 8.27 −6.9 5.14×10−11 5.40 h
3 methylpentane 86 17.9 1.68 67.2 63.2 5.7×10−12 2 days
2 methylpentane 86 14 1.71 68.4 60.2 5.6×10−12 2.1 days
n-pentane 72 38 1.25 50 36 3.94×10−12 2.9 days
isopentane 72 48 1.4 56 27.8 3.9×10−12 3 days
n-hexane 86 9.5 1.8 72 68.7 5.61×10−12 2.1 days
benzene 78 1780 0.00555 0.22 80.1 1.23×10−12 9.4 days
toluene 92 526 0.00664 0.27 110.6 5.96×10−12 1.9 days
o-xylene 106 178 0.00518 0.21 144.4 1.37×10−11 20.3 days
m/p-xylene 106 161 0.00718 0.29 139.1 2.36×10−11 11.7 days
ethylbenzene 106 169 0.00788 0.32 136.2 7.1×10−12 1.6 days
1,3,5-TMB 120 48 0.00877 0.36 165 5.75×10−11 4.9 h
1,2,4-TMB 120 57 0.00616 0.25 169 3.3×10−11 8.42 h

a Assuming (OH)=106 rad cm−3 (Monod et al., 2001).
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Table 3. Concentrations of VOCs in air (Cair) and snow (Csnow) samples collected on 24 Febru-
ary and 1 March 2006, and distribution coefficients derived empirically (Kair/snow) and calculated

from previous reports (K b
air/snow

).

Sampling time 24 February 2006 12:45 1 March 2006 14:50

Ambient T=−13,7◦C (259.3 K) T=−24◦C (249 K)
temperature

Cair Ca
snow Kair/snow Cair Ca

snow Kair/snow Kb
air/snow

[µg m−3] [ng L−1] [µg m−3] [ng L−1]

benzene 0.37 69 0.0054 0.33 69 0.0048 0.0062
toluene 0.15 397 0.0004 0.19 558 0.0003 0.0028
o-xylene 0.05 166 0.0003 0.07 238 0.0003 0.0011
m/p-xylene 0.04 104 0.0004 0.06 169 0.0004 0.0013
ethylbenzene 0.04 172 0.0002 0.06 285 0.0002 0.0015
1,3,5-TMB 0.15 42 0.0036 0.23 68 0.0034 0.0052
1,2,4-TMB 0.04 203 0.0002 0.06 477 0.0001 0.0005

a Fries et al. (2008).
b Calculated using Eq. (4) by Lei and Wania (2004), and Eq. (5) by Roth et al. (2004), extrapo-
lated to −13.7◦C.
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Figure 1. Physico-chemical transport model of organic compounds in the troposphere. 
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Fig. 1. Physico-chemical transport model of organic compounds in the troposphere.
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Figure 2. Geographical setting of the Jungfraujoch high alpine research station, Switzerland    

               (Rough Guides/Map published on http://Switzerland.isyours.com). 

 

 

 

Fig. 2. Geographical setting of the Jungfraujoch high alpine research station, Switzerland
(Rough Guides/Map published on http://Switzerland.isyours.com).
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Figure 3. Initial (Jc) and final (J´c) fluxes (after wet deposition) of VOCs in the ambient air at 

temperatures below 0°C during CLACE 5 (2006). 

 

 

 

Fig. 3. Initial (Jc) and final (J
′

c) fluxes (after wet deposition) of VOCs in the ambient air at
temperatures below 0◦C during CLACE 5 (2006).
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Figure 4. Removal efficiency of VOCs by snow under various atmospheric conditions.  

 

 

 

Fig. 4. Removal efficiency of VOCs by snow under various atmospheric conditions.
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