Atmos. Chem. Phys. Discuss., 8, 19989-20018, 2008 =k “Atmospheric

www.atmos-chem-phys-discuss.net/8/19989/2008/ Chemistry
© Author(s) 2008. This work is distributed under G and Physics
the Creative Commons Attribution 3.0 License. Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Calibrated sky imager for aerosol optical
properties determination

A. Cazorla'?, J. E. Shields®, M. E. Karr®, A. Burden®, F. J. Olmo'?, and
L. AIados-ArboIedas1’2

1Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Granada,
Fuentenueva s/n, 18071, Granada, Spain

2Centro Andaluz de Medio Ambiente (CEAMA), Junta de Andalucia-Universidad de Granada,
Avda. del Mediterraneo s/n. 18071, Granada, Spain

3Marine Physical Lab, Scripps Institution of Oceanography, University of California San Diego,
9500 Gilman Dr., La Jolla CA 92093-0701, USA

Received: 27 August 2008 — Accepted: 7 October 2008 — Published: 28 November 2008
Correspondence to: L. Alados-Arboledas (alados @ugr.es)

Published by Copernicus Publications on behalf of the European Geosciences Union.

19989

ACPD
8, 19989-20018, 2008

Sky imager for
aerosol optical
properties

A. Cazorla et al.

40


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/19989/2008/acpd-8-19989-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/19989/2008/acpd-8-19989-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

The calibrated ground-based sky imager developed in the Marine Physical Laboratory,
the Whole Sky Imager (WSI), has been tested to determine optical properties of the
atmospheric aerosol. Different neural network-based models calculate the aerosol op-
tical depth (AOD) for three wavelengths using the radiance extracted from the principal
plane of sky images from the WSI as input parameters. The models use data from a
CIMEL CE318 photometer for training and validation and the wavelengths used corre-
spond to the closest wavelengths in both instruments. The spectral dependency of the
AOD, characterized by the Angstrdm exponent a in the interval 440-870, is also de-
rived using the standard AERONET procedure and also with a neural network-based
model using the values obtained with a CIMEL CE318. The deviations between the
WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncer-
tainty assigned to the AERONET AOD calculation (+£0.01), in 80% of the cases. The
explanation of data variance by the model is over 92% in all cases. In the case of a,
the deviation is within the uncertainty assigned to the AERONET a (£0.1) in 50% for
the standard method and 84% for the neural network-based model. The explanation
of data variance by the model is 63% for the standard method and 77% for the neural
network-based model.

1 Introduction

Atmospheric aerosol interacts both directly and indirectly with the Earth’s radiation bud-
get and climate. Directly, aerosol scatters sunlight back into space, and indirectly,
aerosol in the lower atmosphere modifies the size of cloud particles, changing how
clouds reflect and absorb the Earth’s energy budget, i.e. changing the cloud albedo,
and increasing the cloud lifetime (Foster et al., 2007).

IPCC (IPCC, 2007) reported that the anthropogenic contributions to aerosol (primar-
ily sulphate, organic carbon, black carbon, nitrate and dust) together produce a cooling
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effect, with a total direct radiative forcing of —0.5 [-0.9 to —0.1]Wm‘2 and an indirect
cloud albedo forcing of —0.7 [-1.8 to -0.3]Wm™2 (Foster et al., 2007). This is com-
parable in magnitude to the forcing induced by the increase of the greenhouse effect
gases concentration during the last century (Foster et al., 2007). However, radiative
forcing induced by aerosol has a factor of two uncertainty, and may thus have much
more importance in the overall energy balance.

Knowledge of the parameters that determine the optical properties of atmospheric
aerosol is essential for the determination of their climate effects (Kaufman et al., 2002).
Nevertheless, there are many difficulties in evaluating the climate effects of the aerosol
due to the great spatial and temporal variability of their concentrations and properties.
In this sense long range transport events like Saharan dust outbreaks (Lyamani et al.,
2005; Lyamani et al., 20064, b) or global scale events like stratospheric aerosols follow-
ing major volcanic eruptions like EI Chichon and Mount Pinatubo (Olmo and Alados-
Arboledas, 1995) represent extreme cases of this variability. Remote sensing appears
to be a valuable tool for characterizing the physical and optical properties of the aerosol.
Sun-photometry is the most common way to characterize aerosol in daytime from the
ground. An instrument such as a CIMEL CE318 photometer gives useful information
about column-integrated physical and optical properties of the atmospheric aerosol
(Holben et al., 1998). Sun-photometer networks such as Aerosol Robotic Network
(AERONET) (Holben et al., 1998) address the spatial problem in aerosol characteriza-
tion, but temporal resolution remains a problem. Another problem is the assessment of
valid measurements, i.e. the CIMEL CE318 requires that the sun not be obscured by
clouds, and sometimes it is difficult to perform the cloud rejection test (Smirnov et al.,
2000).

Ground-based sky imagery has been used for years for cloud cover assessment e.g.
Cazorla et al. (2008), Long et al. (2006), Sabburg (2000) and Shields et al. (1993,
1998b, 2003). Previous work with the All-Sky Imager developed in the Atmospheric
Physics Group revealed the potential of the ground-based sky imagery for aerosol
characterization (Cazorla et al., 2008b). By developing techniques to extract aerosol
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characteristics from sky imagers, we can supplement the existing aerosol data bases.

In this paper, the Whole Sky Imager (WSI), a calibrated ground-based sky imager,
developed in the Atmospheric Optics Group (Marine Physical Laboratory, Scripps In-
stitution of Oceanography, University of California San Diego) (AOG) has been tested
to determine optical properties of the atmospheric aerosol. Different neural network-
based models estimate the aerosol optical depth for three wavelengths using the ra-
diance extracted from the principal plane of sky images from the WSI (i.e. at constant
azimuth angle equal to the solar azimuthal angle, with varied zenithal angles) as input
parameters. The Angstrém coefficients @ and 8 (Angstrém, 1964) are also derived
from the aerosol optical depth estimated with the models and a neural network-based
model also estimates the Angstrém exponent a. The models use data from a CIMEL
CE318 photometer (Holben et al., 1998) for training and validation.

2 Site and instrument description
2.1 Experimental site

This work is the result of cooperation between the Atmospheric Physics Group
(Dept. Applied Physics, University of Granada) and the Atmospheric Optics Group
(Marine Physical Laboratory, Scripps Institution of Oceanography, University of Cali-
fornia San Diego). This group has been researching and developing sky imagers for
decades (Johnson et al., 1989; Shields et al., 1993, 1998b). They have different sky
imagers in different locations. The WSI used in this work was located in the Southern
Great Plain (SGP) in the United States during 2000-2004 (an earlier WSI was at the
site from 1995-2000).

The SGP site was the first field measurement site established by the Department of
Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov).
Scientists are using the information obtained from the SGP to improve cloud and ra-
diative models and parameterizations and, thereby, the performance of atmospheric
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general circulation models used for climate research. The SGP site consists of in situ
and remote-sensing instrument clusters arrayed across approximately 143 000 square
kilometers in north-central Oklahoma. Figure 1 shows a map of the facility. The cen-
tral facility is a heavily instrumented location on 0.65 square kilometers of cattle pas-
ture and wheat fields southeast of Lamont, Oklahoma (36.61° N, 97.5° W, 320 ma.s.l.).
More than 30 instrument clusters have been placed around the SGP site, at the Central
Facility and at Boundary, Extended, and Intermediate Facilities. The locations for the
instruments were chosen so that the measurements reflect conditions over the typical
distribution of land uses within the site.

Both instruments, the CIMEL CE318 and the WSI are located in the central facility
(Shields, 1998a).

2.2 The sun-photometer CIMEL CE-318

Sun photometry is the most widely used technique for atmospheric aerosol character-
ization in daytime. The CIMEL CE318 automatic sun tracking photometer (Holben et
al., 1998) has been designed to measure sun and sky radiance in order to derive to-
tal column water vapor, ozone and aerosol properties using a combination of spectral
filters and azimuth/zenith viewing controlled by a microprocessor.

The CIMEL CE318 is the standard instrument in the AERONET network (Holben
et al.,, 1998). AERONET collaboration provides globally distributed observations of
spectral AOD, inversion products (Dubovik et al., 2002, 2006) and precipitable water in
diverse aerosol regimes. AOD data are computed for three data quality levels: Level 1.0
(unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-
assured).

The CIMEL CE318 used in this work has operated in the AERONET program since
1994. We use the level 2.0 data (quality-assured) and the parameters extracted are
AOD at 440, 675 and 870 nm and «a in the interval 440-870 nm.
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2.3 The Whole Sky Imager

The Atmospheric Optics Group has been very active in the development of digital sky
imager for over two decades. The original concept for the WSI evolved from a measure-
ment and modeling program using multiple sensors for monitoring sky radiance, atmo-
spheric scattering coefficient profiles and other parameters related to vision through
the atmosphere (Johnson et al., 1980, 1989). With the use of very low noise 16 bit
CCD cameras and an occultor designed to handle both sun and moon, these systems
were further developed into the Day/Night WSI (Shields et al., 1993, 1998a, 1998b,
and 2003).

The Day/Night WSI is a 16-bit digital imaging system that acquires images of the
full sky (2 hemisphere) under both day and night conditions in order to assess cloud
fraction, cloud morphology, and radiance distribution. The WSI measures the sky ra-
diance in approximately 185000 directions simultaneously by using a 512x512 CCD
sensor. The result is a 34 usteradian field of view (FOV) in each direction, to cover the
full 27 steradian dome. Images are acquired in visible and near infrared (NIR) wave-
bands with filters at 450 nm (blue), 650 nm (red), and 800 nm (NIR) under sunlight or
moonlight. Open hole is used for starlight and most moonlight conditions. The FWHM
of the filters is 70 nm. A picture of the instrument fielded at the Oklahoma Cloud and
Radiation Testbed (CART) site at SGP is shown in Fig. 2. The primary features seen
in this figure are the environmental housing that protects the sensor and electronics,
the optical dome, and the solar occultor that shades the optics. Even though the cam-
era would not be damaged by direct sun radiation, this shading is desirable because
it minimizes stray light especially near the sun. Figure 3 shows a daytime image. The
center of the image is the zenith and the edges are the horizon.

One of the capabilities of the WSI is the determination of the absolute sky radiance
distribution. The fisheye lens directs the light from different directions onto different
pixels in the image plane, and the signal of each pixel may be calibrated to yield a de-
termination of the absolute sky radiance, in W/mzum sr, in that direction. The FOV for
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each pixel is approximately 34 usteradians. Thus, this radiance product is equivalent
conceptually to a radiance distribution determined by a scanning radiometer, except
that all radiances are acquired simultaneously (at 185000 points) and at a very high
spatial resolution (Shields et al., 1998b).

The instrument follows a process to get the radiance and geometric calibration
(Shields et al., 1998b).

3 Methodology

The sky radiance depends directly on the aerosol load through several parameters
connected with extensive and intensive aerosol properties. While previous investiga-
tions have related AOD to radiances measured in a restricted range of scattering angle
to simulate the spaceborne point of view (e.g. Kaufman, 1993; Sanchez et al., 1998),
here the development is focused on surface measurements.

There is a dependency between radiance along the principal plane and the aerosol
optical parameters (Olmo et al., 2008). Radiance along the principal plane is affected
by the particle size, which in turn has impacts on the a parameter and the turbidity
factor (8 parameter). The impact of the a parameter and @ parameter on the radiance
are shown in Fig. 4a and b. Both parameters are directly related with the aerosol optical
depth (Angstrom, 1964).

These previous works, along with the results obtained with the All-Sky Imager char-
acterizing the atmospheric aerosol (Cazorla et al., 2008b) are the basis of this work.
We also have considered the use of sky radiance in the principal plane since the ob-
struction of the image due to the shadow system is smaller.

The data set selected in this work comprises the period from 1 October 2001 to 29
September 2002. This data set is from a whole year so we can model the seasonal
variability of the atmospheric aerosol. Using the cloud decision images processed by
AOG we sorted out all the cases with clouds, to work with the clear-sky results. A
total of 1047 clear-sky image sets (i.e. 3 spectral images acquired in one set) were
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associated with a synchronous CIMEL measurement, applying a £5 min margin. This
image set has been used to create and validate the model.

3.1 Retrieving the radiance over the principal plane of the sky images

Knowing the Sun position we can locate the principal plane making the azimuthal angle
equal to the Sun azimuthal angle or that angle plus 180 degrees, and varying the zenith
angle. The radiance over the principal plane has been extracted for the whole data set
from scattering angle 1° to 100°. The cloud decision image provided by the WSI has
been used to apply a mask over the non valid values (horizon obstruction and shadow
system obstruction). The stored values from the principal plane are calibrated values,
i.e. sky radiance, in W/m? um sr, for every scattering angle in the principal plane. Thus,
we have the sky radiance over the principal plane for scattering angles from 1 to 100°
and the Solar Zenith Angle in degrees (SZA®) as inputs. The AOD at 440, 675 and
870 nm from the CIMEL data is used as the target data in the neural network model
that we will describe in the next section.

3.2 Neural networks and radial basis function networks

According to Haykin (1994) a neural network resembles the human brain in two as-
pects: the knowledge is acquired by the network through a learning process, and in-
terneuron connection strengths known as synaptic weights are used to store the knowl-
edge. Once a neuron is set up, it can learn to emulate behaviors such as classification,
pattern recognition, function approximation, control system, etc.

Neural networks have been widely used in atmospheric science recently (e.g.
Gutiérrez et al., 2004) and we have experimented with them in several research ap-
plications (Alados et al., 2004, 2007; Cazorla et al., 2005, 2008b; Gil et al., 2005). The
radial basis function (RBF) networks (Gutiérrez et al., 2004; Yee and Haykin, 2001) are
especially suitable for function approximation. The inputs of the radial basis networks
are the variables of the function, and the output is the function approximation.
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RBF’s emerged as a variant of artificial neural networks in the late 80s. However,
their roots are entrenched in much older pattern recognition techniques as for example
potential functions, clustering, functional approximation, spline interpolation and mix-
ture models (Tou and Gonzalez, 1974). RBF’s are embedded in a two layer neural
network, where each hidden unit implements a radial activated function. The output
units implement a weighted sum of hidden unit outputs. The input into an RBF net-
work is nonlinear while the output is linear. Their excellent approximation capabilities
have been studied by Poggio and Girosi (1990) and Park and Sandberg (1991). Due
to their nonlinear approximation properties, RBF networks are able to model complex
mappings, which perceptron neural networks can only model by means of multiple
intermediary layers (Haykin, 1994).

In order to use a RBF network we need to specify the hidden unit activation function,
the number of processing units, a criterion for modeling a given task and a training
algorithm for finding the parameters of the network. Finding the RBF weights is called
network training. If we have at hand a set of input-output pairs, called a training set, we
optimize the network parameters in order to fit the network outputs to the given inputs.
The fit is evaluated by means of a cost function, usually the mean square error. After
training, the RBF network can be used with data whose underlying statistics is similar
to that of the training set.

The topology of the RBF networks consists in a two-layer feed-forward neural net-
work. Such a network is characterized by a set of inputs and a set of outputs. In
between the inputs and outputs there is a layer of processing units called hidden units.
Each of them implements a radial basis function. Figure 5 shows the topology of the
RBF networks.

RBF networks are characterized for the transfer function which is the RBF. In this
case input to the transfer function is the vector distance between its weight vector w
and the input vector p, multiplied by the bias b

n=|w -plb (1)
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The transfer function for a radial basis neuron is a Gaussian function
a(n) = exp(-n?) )

The RBF has a maximum of 1 when its input is 0. As the distance between w and
p decreases, the output increases. Thus, a radial basis neuron acts as a detector that
produces 1 whenever the input p is identical to its weight vector w. The bias b allows
the sensitivity of the neuron to be adjusted.

This topology allows a very simple training for function approximation or interpola-
tion. Every sample in the training set creates a new neuron in the hidden layer. The
weight of the connection input-neuron is set to the input value. Therefore nin Eq. (1) is
0 and a in Eq. (2) is 1. The last layer gathers the hidden layer’'s outputs and readjusts
the output to provide the correct function value. A typical input would activate several
neurons (the weight is not exactly the same as the input since the input is not in the
training set), i.e. 0<a<1 for several neurons output and the final output to the network
is a combination of the different neuron outputs. This feature allows to the network to
interpolate the function values and, therefore learn the shape of the function. Assum-
ing that the training set is well spread along the input range, the RBF network learns
the shape of the function with the training set. An independent set, the test set, is used
to evaluate the function approximation. It works like a spline interpolation with the ad-
vantage that N-dimensional functions can be approximated easily but the disadvantage
that the function is unknown.

3.3 Development of a neural network-based model for the AOD estimation

We need to relate the wavelengths of the WSI filters with the wavelengths used to
measure the direct irradiance with the CIMEL CE318. We used the nearest wavelength
and, therefore the 450 nm filter is associated with the 440 nm in CIMEL, the 650 nm filter
is associated with the 675nm in CIMEL and the 800 nm filter is associated with the
870 nm in CIMEL. Thus, we developed a RBF network model for each WSI wavelength
obtaining an estimation of the AOD at 440, 675 and 870 nm.
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Inputs to the RBF network are the SZA® corresponding to the measurement and the
radiance at several scattering angles over the principal plane.

3.3.1 Neural network-based model

The whole data set consists of the radiances over the principal plane of the 1047 im-
ages, the SZA® at the time of the measurement and the synchronous CIMEL measure-
ment. This set is divided randomly in two subsets, a training set using 2/3 of the whole
data set and a test set using 1/3 of the whole data set. All values are normalized to the
range [0,1], i.e. the values are rescaled to that range where the minimum and maximum
values correspond to 0 and 1 respectively. Inputs (radiances over the principal plane
and SZA’) and outputs (AODs) are normalized. During the training every measurement
is used to adjust the internal values of the neural network (the weights) so the output
is the desired variable amount, i.e. the AOD corresponding to the wavelength we are
trying to estimate. Once the network is trained we use the test set to evaluate the per-
formance of the network. The coefficient of determination (/-?2) calculated between the
AOD measured with the CIMEL and the values estimated with the network using the
test set is our estimator of the performance.

The performance depends on the selection of the training and test sets. These sets
are created randomly out of the whole data set. Hence we repeat the process nine
times and select the best partition, i.e. the one that yields the best performance.

3.3.2 Input selection algorithm

Radiation reaching the Earth surface is directly related to the SZA®, therefore it is an
input to the neural network. The other inputs are the sky radiance in several scattering
angles over the image principal plane.

The selection of those scattering angles is done by means of a greedy algorithm
(Cormen et al., 2001). The greedy algorithms are iterative algorithms that build a string
solution getting the best item every loop. The information to calculate the AOD is in the

19999

ACPD
8, 19989-20018, 2008

Sky imager for
aerosol optical
properties

A. Cazorla et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/19989/2008/acpd-8-19989-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/19989/2008/acpd-8-19989-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

principal plane, but not all the scattering angles are necessary. The first iteration of the
algorithm creates 100 networks using the radiance at one of the scattering angles. All
of them are evaluated and the best one is added to the solution. The second iteration
of the algorithm creates 99 networks using the radiance at the best scattering angle
of the previous iteration and the radiance at a different scattering angle. Once again,
the best one is added to the solution. This process is repeated until the performance
decreases, i.e. no more scattering angles are needed.

During the process we applied a mask to eliminate the measurements with non valid
values (obstruction due to the horizon or shadow system). As a result, the final data
set may vary depending on the scattering angles used.

3.3.3 Results

Every wavelength has an independent model. The inputs and, therefore the training
and test sets, are different for each AOD estimation.

The greedy algorithm selected only one scattering angle for each AOD model. For
the blue WSI channel (450 nm associated to the 440 nm AOD), it selected the 37°
scattering angle. Therefore the model has two inputs: the radiance of the sky at that
scattering angle over the principal plane and the SZA°. 117 measurements had to be
eliminated from the original 1047 measurements due to shadow system obstruction,
so the model was created from the remainder of this set with 930 measurements.

The greedy algorithm for the model with the red WSI channel (650 nm associated
to the 675 nm AOD) selected the 71° scattering angle. The number of valid measure-
ments after applying the mask is 968.

The greedy algorithm for the model with the NIR WSI channel (800 nm associated
to the 870 nm AOD) selected the 83° scattering angle. The number of valid measure-
ments is 973 in this case.

Fig. 6a, b and ¢ show estimated values of AOD at 440, 675 and 870 nm respectively
versus calculated values of AOD with the CIMEL at those wavelengths. The analysis
has been done over the test set. The linear fit was forced through zero so the slope
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provides information about the over — or underestimation associated with the model.
The coefficient of determination provides an evaluation of the experimental variance
explained by the model. The root mean square deviation (RMSD) and the mean bias
deviation (MBD) have been also evaluated as quality estimators. These quality es-
timators allow us to evaluate the differences between the experimental data and the
model and the presence of a systematic over — or underestimation. Table 1 shows the
statistics for the three models. Figure 7 show histograms of the differences between
measured and estimated AOD at 440, 675 and 870 nm.

As we can see in Fig. 6a and Table 1, 96% of the data variance is explained by the
model that estimates the AOD at 440nm. MBD and the slope of the linear fit reveal
a slight systematic underestimation. Figure 7 shows a histogram of the differences
between the calculated and estimated values. It reveals that 81% of the estimated
AOD values at 440 nm had a deviation less than 0.01 with respect to the CIMEL result
which is the AERONET AOD estimated uncertainty (Holben et al., 1998).

Figure 6b and Table 1 reveal that 94% of the data variance is explained by the model
that estimates the AOD at 675nm. MBD and the slope of the linear fit also indicate a
slight systematic underestimation. Figure 7 shows that almost 80% of the estimated
AOD at 675 nm has a deviation less than 0.01.

Finally, Fig. 6¢ and Table 1 reveal that 92% of the data variance is explained by the
model that estimates the AOD at 870 nm. While MBD suggests a slight overestimation,
the slope of the linear fit indicates an underestimation. Figure 7 shows that 90% of the
estimated AOD at 870 nm has a deviation less than 0.01.

Figure 6a, b and c reveal that the data set is not homogeneously distributed along
the whole range of values. There are a lot of points with low AOD and very few with
higher AOD. This can explain the slight systematic underestimation of the model. The
linear fit is forced to zero and there are a lot of points close to zero, but the very few
values far from the zero introduce a variance that, in this case makes the slope be
slightly below 1.

The coefficient of determination decreases when we estimate AOD at longer wave-
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lengths. This can be because of the difference between the central wavelength of the
filters of the WSI and the CIMEL increases with the wavelength. That is, the AOD at
440 nm is estimated with measurements at 450 nm (10 nm of difference), the difference
is 25 nm for AOD at 675 nm and it is 70 nm for AOD at 870 nm. In other words, at 440
and 675 nm there is an overlapping of the filters because the FWHM of the WSI filters
is 70 nm, but at 870 nm the filters do not overlap, hence this can produce a decrease
in performance.

3.4 Estimation of the a parameter

Two different approaches have been tested to estimate the a parameter. First, we use
the same procedure as in AERONET using the AODs estimated with the neural net-
works as seen in Sect. 3.3, and § parameter is also estimated. Secondly, a new neural
network has been trained using the calculated @ by AERONET. The AERONET algo-
rithm calculates a using a different interval of wavelengths. The interval 440-870 nm
includes the values we estimate, and therefore this is the interval used to compare the
results in both approaches.

For the first method, Fig. 8a shows estimated versus calculated values of a with the
CIMEL in the interval 440-870 nm using the standard AERONET procedure. Figure 8¢
shows the histogram of the differences between calculated and estimated a.

Figure 8a reveals that 63% of the data are explained by the model that estimates «a.
Figure 8c shows that 48% of the estimated a has a deviation less than 0.1, which is
the estimated uncertainty in the AERONET procedure for a calculation (Holben et al.,
1998).

The a estimation is affected by the error introduced in the AOD estimation. The AOD
at 870 nm introduces an error in the calculation of a by linear fitting of In(AOD) vs.
wavelength. For this reason, we tried a new neural network-based model using RBFs
to estimate the value of a using the radiance over the principal plane of the sky images
for the three wavelengths. The inputs for this model are the same for the estimation
of the AOD together, i.e. we combined the radiance at different scattering angles over
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the principal plane for the three wavelengths, and the SZA°. The model is trained and
validated to calculate a in the interval 440—-870 nm in the same way the model for the
AODs were created. Figure 8b shows estimated versus CIMEL calculated values of a
in the interval 440-870 nm using this method. Figure 8c shows the histogram of the
differences between measured and estimated a. Figure 8b reveals that 77% of the
data are explained by the model that estimates a. Figure 8c shows that 84% of the
estimated a has a deviation less than 0.1, which is the estimated uncertainty in the
AERONET procedure for a calculation. This represents a clear improvement in the
estimation of a from WSI images.

Even though the uncertainty in the estimation of a is large with the standard method,
the estimation is still useful for the interpolation of the AOD at different wavelengths.
We have tested it calculating the AOD at 500 nm with the a and § estimated with the
first method using Angstrém Law (Angstrém, 1964) and compared it with the AOD at
500 nm obtained from CIMEL CE318 measurements. Figure 9 shows estimated values
of AOD at 500 nm versus calculated values of AOD with the CIMEL. 96% of the data
variance is explained by the model that estimates the AOD at 500 nm. As we can see,
the use of this estimation yields a very good estimation of AOD in different wavelengths
(one of the main uses of a). However, if we need a more precise estimation of a, for
example as input in an inversion model, we also have the most accurate estimation
using the neural network-based model.

4 Conclusions

Three neural network-based models using RBFs has been created to estimate the
value of the AOD at three different wavelengths using the radiance over the principal
plane of the sky images from the calibrated sky imager WSI. The correlation constants
are close to unity and the number of cases within measurement error is very large.
Only one scattering angle per channel has been used: 37, 71 and 83° corresponding
to the blue, red and NIR channel respectively. The estimation of @ parameter has been
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performed in two ways. First, it has been calculated using the standard procedure
in AERONET using the AODs estimated with the neural network (the G parameter is
also calculated) and secondly, it has been estimated with a new neural network-based
model using RBFs. Inputs to this RBF are the radiances in the same scattering angles
used for the AOD models.

The three AOD models provide an estimation that, according to validation, is inside
the nominal error of the AERONET (£0.01) in approximately 80% for the blue and red
channels and 90% for the NIR channel. In all cases the models explain up to 92% of the
variance of the experimental data. The coefficient of determination decreases when we
estimate AOD at longer wavelengths. This can be caused by the difference between the
central wavelength of the filter in the sky imager and the CIMEL. This difference is larger
with longer wavelengths and, therefore, the overlap of the wavelength decreases and
so the performance. Nevertheless, all estimations have a coefficient of determination
over 0.92.

Concerning the scattering angles selected with the greedy algorithm, these reveal
that to estimate the AOD at 450 nm (blue) it is necessary to use a point close to the
sun. The estimation of the AOD at 870 nm (NIR) requires a point farther from the sun.
At 675 nm the behavior can be catalogued as in the middle of the behavior presented
in the other two wavelengths.

The a estimation using the Aeronet method is affected by the cumulative error of all
the AOD estimations. However, almost 50% of the data are inside the nominal error of
the AERONET program for a calculation using the standard procedure in AERONET.
The neural network-based model for a estimation increases the explanation of the data
to 63% and the data inside the nominal error is increased to 77%. The neural network
process is complex but increases substantially the estimation. The neural network
model forces the result to be the same as that estimation of a for the interval 440—
870 nm.

The results are promising in the sense that it seems to be feasible that a sky imager
can estimate the AOD and the algorithm could be applied in the field. Furthermore, the
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absolute radiance of the WSI lets us think that this model could be applied to different
WSiIs in different locations without a new training and validation process. The two
methods for the a estimation differ, however we consider that the standard AERONET
procedure is simple and useful for the interpolation of AODs at different wavelengths.
Nevertheless, the more complex and accurate one (the neural network-based one)
might be better as input for inversion model algorithms.
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Table 1. Statistical results of the validation for the radial basis networks for estimation of AOD
at 440nm, AOD at 670nm and AOD at 870nm. The column B represents the slope of the
linear fitting through zero of the data, R? is the coefficient of determination, MBD is the mean
bias deviation and RMSD is the root mean squared deviation.

Channel Setsize Scatt. angle B R? MBD RMSD
BLUE (AOD440) 930 37 0.96 096 -0.02 0.05
RED (AOD675) 968 71 0.93 094 -0.01 0.07
NIR (AOD870) 973 83 096 092 0.03 0.06
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Fig. 1. SGP facility map (image from the ARM Program web site).
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Fig. 2. Day/Night WSI fielded at SGP CART site.
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Fig. 3. Raw red image. The edge is the horizon and the center is the zenith. The arc is the

shadow system.
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(a) a and (b) 5. The wavelength correspond to the NIR.
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Fig. 5. RBF network topology.
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Fig. 6. Scatter plot of estimated AOD values from the WSI versus values calculated from the
CIMEL for (a) AOD at 440 nm, (b) AOD at 675 nm and (c¢) AOD at 870 nm. The line represents
the linear fit through zero and the dashed lines are the upper and lower prediction bars at 95%.
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Fig. 8. Scatter plot of estimated versus measured values for @ parameter (440-870 nm) (a)
using the AERONET standard procedure and (b) using a neural network-based model with
RBFs. (c) Histogram of the differences between measured and estimated values for a param-
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Fig. 9. Scatter plot of estimated versus measured values for AOD at 500 nm. The estimation
has been done using a and B parameters calculated with the standard AERONET procedure
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