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Abstract

Emission inventories (EIs) are key-tools for air quality management. However, EIs are
expensive, and they have uncertainties. A way to improve the accuracy of EIs is data
assimilation. Multiple inverse methods have been used at various scales. However,
typically, when applying these methods at the city scale, one encounters, in addition to5

problems related to the precision of the first guess, or the reliability and representativ-
eness of the observations, or the shortcomings of the dispersion model, the problem of
co-location of sources and observation sites. The latter problem results in spurious co-
rrections to the a priori EI. Here we present a methodology to improve an EI of carbon
monoxide over a city. We use a 3-D variational approach, in which a cost function10

that includes balanced terms addressing observation and emission errors is minimized
to obtain an ameliorated EI. In addition to positivity, the method addresses the co-
location of sources and observations by means of a factor that multiplies the emission
error covariance matrix. The factor is chosen so that the reliability of the initial inventory
is increased at the observation sites, reducing the local influence of the observations,15

avoiding spurious corrections to the EI and increasing the temporal and spatial extent
of the corrections. The method is applied to Santiago de Chile. We find that the a
posteriori inventory shows a decrease in total emissions of 8% with respect to the a
priori inventory. Nevertheless, locally over 100% changes are found in the eastern area
of Santiago during the morning hours.20

1 Introduction

Emission inventories (EIs) are a compilation of emission estimates classified according
to source types, processes, species, etc. They constitute key-tools for air quality mana-
gement, allowing the assessment of responsibilities and identifying measures to curb
air quality degradation. Air quality control policies generally start addressing acute pro-25

blems (extreme pollution events), and aim at reducing emissions of primary pollutants
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from stationary sources. As the attainment objectives become more ambitious (e.g.,
long-term health effects) and measures must deal with the more elusive control of
secondary pollutants and mobile sources, the need for more reliable and accurate EIs
becomes apparent. EIs have large uncertainties that hamper our ability to diagnose
and forecast air quality and its impacts (Lindley et al., 2000). In the case of emissions5

from mobile sources uncertainties have multiple origins, ranging from random errors in
measurements devices when establishing emission factors to systematic errors due to
incomplete statistics (e.g., fleet distribution), and poorly constrained processes (e.g.,
gas-to-particle transformation).

A way to reduce the uncertainties referred to earlier is to use inverse modeling or data10

assimilation. There are in fact numerous applications of inverse modeling to enhance
emission inventories, from global (Pétron et al., 2002, e.g.,) to continental scales (e.g.,
Elbern et al., 2007) and local or urban scale (e.g., Quélo et al., 2005). Many of them
use a variational approach, often called 3-D-Var in meteorological data assimilation
(Kalnay, 2002), which was also chosen in this work. However, modifications were made15

to apply this method for the city scale that includes solving the minimization function
with constraints to assure positive solutions, add an error balancing factor and add
a term to address the co-location of sources and observations. The latter is a major
problem when applying inverse modeling at the city scale.

This work aims at presenting and applying a methodology to improve an EI of carbon20

monoxide (CO) or any other linear atmospheric tracer over a city with observations from
an air quality monitoring network with hourly observations. For that purpose we apply
a state-of-the-art dispersion model previously used under diverse weather conditions
(Polyphemus, Mallet et al., 2007). Regional and mesoscale weather simulations were
conducted followed by direct CO dispersion runs feeding Polyphemus with the weather25

fields and with the EI. After comparing models outputs (meteorological and dispersion)
against available observations, an inverse modeling approach was applied to correct
the CO inventory, both in space and time. Finally, the optimized emissions were vali-
dated for a period out of the assimilation window. The case analyzed corresponds to
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Santiago de Chile, a six million inhabitant city exposed to severe air pollution, but the
method is general and it can be applied elsewhere.

In the next section, we describe observations and set up of the models used. Sec-
tion 3 describes weather and direct dispersion simulations using the a priori inventory.
The inverse methodology and simulations are presented in Sect. 4. We summarize our5

results and allude to future work in Sect. 5.

2 Observations and set-up of models

2.1 Meteorological observations

In our analysis we consider synoptic data from the reanalysis from the National
Centers for Environmental Predictions (NCEP, Kalnay et al., 1996), and soundings10

(00:00, 12:00 UTC) collected by the Chilean Weather Office (DMC) at Santo Domingo
(33.39◦ S, 71.37◦ W, 75 m.a.s.l) about 100 km south west of Santiago. In addition, we
analyze hourly averaged meteorological data (wind speed and direction, temperature
and relative humidity) sampled at the air quality and meteorological stations in Santiago
(Fig. 1). Finally, we include observations collected at Santiago’s international airport15

(DMC), in which in addition to wind, temperature and humidity, surface pressure and
cloud cover are reported.

According to the reanalysis (not shown), January 2002 is characterized by the pre-
dominance of the Pacific high, particularly during 2–11 January. Between 12 and 20
January a trough disrupts the zonal flow in the mid troposphere. The zonal fl ow is re-20

covered for the rest of the period. These changes are also apparent in the observations
at the sounding station (Fig. 2) and at the airport (not shown). In fact, during 15 through
20 January there is a weakening of the subsidence inversion and a strengthening of the
vertical mixing below 1000 m.a.s.l. Previously, around 10 through 15 January there is
evidence of coastal low, which induces easterly winds over the Santiago basin as well25

as warmer temperatures and dryer air, generally resulting in a higher pollutant loading
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(Gallardo et al. 2002; Garreaud et al., 2002). The latter is partially counteracted though
by the strong radiatively driven mixing allowing a substantial development of the mixing
layer.

2.2 CO observations in Santiago

Since the late 1990s, the Metropolitan Sanitary Authority (www.asrm.cl) in Santiago5

maintains an air quality monitoring network, whose hourly averaged validated data are
available over the internet. This network consists of eight stations that are distributed
over Santiago in order to represent different exposure conditions in the city (Fig. 1), not
necessarily dispersion patterns. CO, along with other criteria pollutants, is measured
with nominal instrumental precision of ±0.1 ppm and detection limit of 0.04 ppm. The10

samplers are subject to zero-span validation procedures and a daily record sheet for
each station is kept (V. Berŕıos and P. Villavicencio, personal communication). Station
Providencia was excluded due to the fact that it is located just a few meters away from
a highly loaded road, and it representativity is therefore doubtful.

Our analysis refers to January 2002. We visually inspected CO time series of all15

stations to detect any misleading data. This led us to exclude part of the data from
stations Cerrillos and El Bosque, which showed at that period values out of range
suggesting a possible malfunctioning of the instruments.

The inspection of the data showed similar diurnal cycles for all stations except for
Parque O’Higgins and Las Condes. The majority of the stations showed a sharp morn-20

ing maximum around 8 a.m. (LT) and a broad evening maximum around 21 p.m. (LT)
associated to traffic rush hours (Fig. 3). In the case of Parque O’Higgins the after-
noon maximum is absent. Las Condes showed a mid-morning maximum at 11 a.m.
(LT) and an evening maximum. This behavior is present in all years of analyzed data
(1997–2006).25

Another relevant aspect is that the variance of the observations is generally higher
during night-time than during day-time. This is explained by the calm conditions (winds
slower than 1 or 2 m/s, Fig. 4) and the ten times smaller emission rates that prevail
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during night compared to daytime (Fig. 1).

2.3 Emissions

Emissions used in this work correspond to the Santiago official inventory for year 2002
(www.conama.cl). Total emissions of CO estimated for year 2002 are 200 ktons CO
per year, accounting for mobile and stationary sources. Mobile sources add up to5

90% of total CO emissions within the Metropolitan Region. The inventory is temporally
disaggregated in hourly emission rates for a typical working day, at a spatial resolution
of 2×2 km2 over a domain that covers the whole urban area (Fig. 1).

Mobile emissions are estimated according to a bottom-up methodology (MODEM
model, Corvalán and Osses, 2002) considering official traffic modeling results (ES-10

TRAUS model, De Cea et al., 2003), comprehensive traffic counts, analysis of
databases for vehicle technology distribution and emission factors from COPERT III
model (Ntziachristos and Samaras, 2000) and local measurements.

The emission rates show a typical diurnal cycle, strongly related to traffic activity, with
a primary maximum around 8 a.m. and secondary but wider maximum between 17 and15

20 p.m. There is a third peak which appears at noon with variable intensity depending
on the area under analysis (Fig. 1). Night values of vehicle emissions are less reliable
due to scarce and less accurate traffic information (Corvalán and Osses, 2002).

2.4 Meteorological model

In this work, weather fields to drive the dispersion model are generated by the Penn-20

sylvania State University/National Center for Atmospheric Research numerical model
MM5 (Grell et al., 1995). We chose this model since it is used for producing opera-
tional forecasts by the DMC. The model is run in a nested mode at 54, 18, 6 and 2 km
horizontal resolution, with the highest resolution domain of roughly 200×140 km2 cen-
tered on Santiago. Vertically, the model covers from the surface up to 100 hPa in 3125

levels. We use a similar set of parameterizations as used in the operational forecast at
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DMC. In particular, we use MRF scheme for characterizing the boundary layer (Hong
and Pan, 1996). NCEP reanalyzes (Kalnay et al., 1996) are used for providing bound-
ary and initial conditions. We extract three-dimensional fields for wind, temperature,
humidity, etc., from the MM5 simulations for the inner most domain (2 km horizontal
resolution). These fields are interpolated into a latitude, longitude and altitude domain5

with twelve vertical levels, which we use to drive the dispersion model (see Sect. 2.5).
Further details can be found in Saide (2008).

2.5 Dispersion model

We use the Polyphemus platform (e.g., Mallet et al., 2007, and references therein).
The core of Polyphemus consists in the chemistry-transport-deposition model Polair3d10

(Boutahar et al., 2004), which is an Eulerian model that solves the continuity equa-
tion using operator splitting. Polair3d was configured to solve only transport for CO,
given its relatively long turn-over time of 2–4 months (Seinfeld and Pandis, 2006). No
scavenging is considered as summers are dry in Santiago and the solubility of CO is
negligible at this scale. Dry deposition is not included since CO has a very low depo-15

sition velocity (<1 cm/s). To compute vertical diffusion coefficients we use the Louis
parameterization (Louis, 1979). Boundary conditions are Dirichlet homogeneous and
zero for the inflow, and Neumann homogeneous for the outflow. The zero inflow as-
sumption is justified since emission rates in Santiago are very high and no relevant
sources are found up-wind from the city. We start the simulations from null values,20

leaving 24 h of spin-up time.
The Polyphemus domain is centered at Santiago, with 70 (longitude)×63 (latitude)

grid-cells of 2×2 km2, and twelve vertical levels: 13, 38, 188, 463, 750, 1050, 1400,
1800, 2250, 2750, 4000 and 6000 m above the surface. We use a fine resolution in the
boundary layer (BL) since CO is mainly found near the surface. A sensitivity analysis25

was made increasing the vertical resolution from 12 to 24 vertical levels. The outputs
show no significant difference, thus we kept the 12 levels configuration.
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3 Direct simulations

3.1 Simulated meteorological fields versus observations

Figure 2 shows the temporal evolution of temperature and wind direction and speed
below 5 km at Santo Domingo as observed and modeled. Overall, the model captures
the observed synoptic variations, particularly the coastal low event described earlier.5

However, increased vertical mixing between 15th and 20th January is underestimated.
Most weather models show an unsatisfactory representation of low level clouds (e.g.,
EOL, 2006, and references therein). Regarding wind, temperature and humidity con-
ditions in the Santiago basin as described by the meteorological stations within the ur-
ban area of Santiago, the model is able to reproduce most observed features (Fig. 4).10

Wind speed and temperature are generally reproduced within a couple of measure-
ment units, showing a high correlation (>0.7). Nevertheless, modeled wind speed val-
ues are higher than observations, particularly during night-time. This might be related
with shortcomings in the BL parameterization discussed later or an inadequate repre-
sentation of the surface roughness. Relative humidity is generally represented within15

25% of the observed values. Wind direction is modeled less accurately than the other
variables, particularly during night-time when winds are weaker (<2 m/s). However,
prevailing winds are reproduced within roughly 50 degrees or less.

The model is able to capture the marked diurnal cycle characteristic of the summer
radiatively driven circulation. However, the amplitude of the diurnal cycle is somewhat20

underestimated. During night-time, the model tends to uphold warmer temperatures,
more humid air and stronger winds than observed. This can be explained since BL
parameterizations fail to represent very stable nocturnal conditions as those that pos-
sibly prevail in the Santiago basin (e.g., Zhong and Fast, 2003). Unfortunately, there
are no observational data to support or disprove this hypothesis. However, by calculat-25

ing the temperature gradient between station Independencia (downtown Santiago) and
station Lo Prado (1060 m.a.s.l. over the mountain range west of the Santiago basin)
we find that the model systematically underestimates nocturnal gradients, suggesting
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an exaggerated vertical mixing during night-time (not shown), which is coherent with
the proposed hypothesis.

In summary, we evaluate the model performance as adequate for the air quality
simulations we are interested in, particularly during daytime.

3.2 Simulated CO fields versus observations5

Accordingly with the prevailing winds in the Santiago basin during summer, during day-
time the large emissions of CO that take place in Central Santiago are transported
towards and accumulated in Eastern Santiago. During night, when the winds turn to
down-slope winds, CO is transported westwards. This is illustrated in Fig. 5. The daily
CO values are generally captured by the model except at Parque O’Higgins, Las Con-10

des and to a lesser extent at La Florida, where discrepancies are evident (Fig. 3). At
Parque O’Higgins the morning maximum is somewhat overestimated and no evening
maximum appears in the observations, differently from the simulation that shows a dis-
tinct secondary maximum. We attribute these mismatches largely to an inadequate
characterization of the emissions, rather than to shortcomings in the representation of15

the transport processes. In fact, wind speed is overestimated at this station, which
should result in higher and not lower concentrations. The observations at Las Condes
and at La Florida show a mid-morning maximum (arround 11 a.m.) instead of (Las
Condes) or in addition to (La Florida) the morning maximum associated to the morning
rush-hour emissions prescribed in the model. Both the simulations and the observa-20

tions show a sharp transition in wind direction between 8 a.m. and 10 a.m. denoting the
transition from the nocturnal (easterly, downslope) and the diurnal (westerly, upslope)
regimes (Fig. 4). Again, we suspect the emissions rather than the transport. Although
the characterization of the diurnal cycle in emissions has uncertainties, we find no
evidence of a missing mid-morning maximum, suggesting the presence of unknown25

stationary sources.
The nocturnal values are generally underestimated at all stations. We hypothesize

that this may depend on too strong a mixing in the model. Since this is difficult to
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assess and, as stated before, emission rates are less reliable for night-time, we will
exclude the night-time values in the inverse simulations.

A normalized Taylor diagram (Taylor, 2001) in Fig. 6 shows the error statistics for
the period between 2 and 29 January 2002. The model results are divided into three
categories: diurnal, nocturnal and weekend’s values. In addition to the disagreement5

between simulations and observations for nocturnal values, a mismatch is also appar-
ent for weekend values. These values will also be excluded from the inverse modeling
exercise.

Overall, the present simulations show better or comparable error statistics than pre-
vious works (e.g., Gallardo et al., 2000; Schmitz, 2005). It is worth noticing that these10

authors found similar systematic errors for the stations located on the easterly bound
of Santiago.

4 Inverse simulations

4.1 Method

The basic idea of the 3-D-Var approach is to take the dispersion model as a function15

(H) that connects the emission (x) space to the observation (y) space. This function
is linearly expanded around an a priori or first guess (xb), in this case the official EI
for CO. Since the chemistry is switched off and only advection and turbulent mixing is
applied, the source-receptor relationship is linear afine, obtaining:

H(x) = y0 + Hx (1)20

where y0 is the concentration coming from emissions not optimized, initial and bound-
ary conditions and H is the Jacobian of the model or sensitivity matrix with respect to
emissions and it is evaluated close to the a priori guess xb. Then a cost function (J(x))
that balances the errors in the simulated values versus the observations (model error)
and in the emissions (parameter error) is minimized to obtain an estimate of the optimal25
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emissions, i.e., those that minimize the cost function:

J(x) =
1
2

(H(x) − yobs)TR
−1

(H(x) − yobs)

+
α
2

(x − xb)T (F−1B)−1(x − xb) (2)

F−1 = diag((f1)−1(f2)−1 . . . (fn)−1) (3)

where R is the normalized error covariance matrix for the observations, B the normal-5

ized error covariance matrix for the emissions, α is a regularization parameter, diag()
represents a diagonal matrix with the diagonal elements in brackets and F is a matrix of
normalizing factors for B matrix to avoid spurious temporal variability for the emission
areas co-located with observations. The terms in the expressions above are explained
in the following subsections. It can be shown (e.g., Kalnay, 2002) that the optimal10

solution is given by:

xa = xb + W(yobs −H(xb)) (4)

W =
[
HTR

−1
H + (α−1F−1B)−1]−1HTR

−1

= (α−1F−1B)HT (R + H(α−1F−1B)HT )−1
(5)

Pa =
[
HTR

−1
H + (α−1F−1B)−1]−1

(6)

where xa is the analysis (a posteriori inventory), and Pa is the covariance matrix for the15

analysis.
The key aspects of this algorithm are, on the one hand the calculation of the sen-

sitivity matrix H, and on the other hand, the choice of the error covariance matrices.
The choice of α and F, as we explain later, are useful for balancing the model and the
parameter errors.20
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4.1.1 Sensitivity matrix H

To obtain H there are at least two methods: either use the direct model or use the
adjoint of the model (e.g., Davoine and Bocquet, 2007). In general, if the number of
parameters is much larger than the number of observations, it is preferable to use the
adjoint approach. In our case, H can be estimated either way. We use an approxi-5

mate adjoint for a linear trace by using the direct model running backwards on time
and with the opposite of the wind fields (Davoine and Bocquet, 2007). Figure 7 shows
a comparison between both estimates showing a significant correspondence (correla-
tion higher than 0.99). For computing sensitivities, we run the adjoint with a unitary
volume emission at the observation sites and recover sensitivities at each emission10

time and site.

4.1.2 Covariance matrices and balancing term

The error covariance matrix for the emissions is assumed to be diagonal representing
the error variance at each grid-cell and hour in the inventory. No covariance is as-
sumed given the lack of information on the emission model errors. Since the whole EI15

is obtained with the same methodology (Corvalán and Osses, 2002), we assume the
error variance to be equal for every emission parameter. In the same way, the error co-
variance matrix for the observations is taken as diagonal with the same error variance
for each station given that the monitoring stations are surveyed by the same institution
and according to the same protocol. The use of diagonal matrices is a common as-20

sumption because the error covariances are very difficult to assess (e.g., Quélo et al.,
2005). These matrices can be decomposed into a correlation matrix and a diagonal
matrix of the variances (Kalnay, 2002). This formula can be factorized by the error
variance mean value, obtaining the normalized error covariance matrices that appear
in Eq. (2):25

R = Do
1/2CoDo

1/2 = σ
2
obsDo

1/2
CoDo

1/2
= σ

2
obsR (7)
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B = Dp
1/2CpDp

1/2 = σ
2
parDp

1/2
CpDp

1/2
= σ

2
parB (8)

where Co and Cp are the correlation matrices for R and B respectively, Do and Dp the

diagonal matrices of error variances and σ
2
obs and σ

2
par the mean value of the error

variances. The error variance in the observations must take into account instrumental
error and representativeness error (errors due inability of the model to reproduce one5

given observation). The former is easy to asses (around 5% for our case) but the latter
is not clear and generally is bigger than the former. Also, error variances in emissions
are not well constrained given the uncertainities in the emission inventories. For this
reason, instead of taking uncertain values on the variances, a regularization parameter
is defined:10

α =
σ

2
obs

σ
2
par

(9)

where α compensates the weights between the two errors (observations and param-
eters) in the cost function. There are many techniques to obtain this factor such as
maximization-expectation algorithm, unbiased predictive risk estimator, generalized
cross validation, generalized maximum likelihood, and others (Davoine and Bocquet,15

2007). Here we choose the L-curve method because it is easy to implement, it has
been used with good results and it is applicable when constraints on the solution are
used (Hansen and O’Leary, 1993). The method consists in comparing the growth of
the observation error term with the growth of the emissions error term in a log-scale
plot when α is changed. The errors terms then would be:20

oe(α) = ln
((

H(xα
a ) − yobs

)T R
−1 (

H(xα
a ) − yobs

))
ee(α) = ln

((
xα
a − xb

)T (F−1B
)−1 (

xα
a − xb

))
(10)
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with oe and ee the errors in the observations and in the emissions respectively. An
L-shaped curve is obtained by comparison. The chosen α corresponds to the point
of maximum curvature of the L-curve, where there is a balance between both errors.
In our application, given the form of the resulting curve, we tested several values of
α finding a minor sensitivity to the choice of the exact value. We adopted a value of5

1.4E+7 (Fig. 8).

4.1.3 Positive emissions

When using the 3-D-Var solution (Eqs. 4 and 5) the optimized emissions obtained are
not constrained to be positive. To enforce this condition the L-BFGS-B code (Zhu et
al., 1997) was used to minimize the cost function in Eq. (2). Results show that the10

emissions obtained with Eq. (4) are similar (when positive) with the ones obtained
through minimization.

4.1.4 Co-localization of sources and observations

When retrieving emissions by assimilation of ground measurements, an unrealistic in-
fluence by the observation sites has been found when spatial resolution is increased15

(Bocquet, 2005). This problem raises because the sensitivity matrix has local maxima
at the observation sites. In simple words, if the resolution is increased, in the limit one
can only modify emissions at the grid-boxes containing the observation sites and leave
the rest of the emission field unchanged (Issartel et al., 2007), which is the behavior
found in our case when assimilating data without a co-localization factor. There are20

many ways to deal with this problem. For instance one can decrease the resolution,
i.e., reduce the number of parameters by combining emission grid-boxes. This can be
done by adding the columns in the sensitivity matrix (H) or by using a non-diagonal
B matrix by means of defining a radius of influence (e.g., Peters et al., 2005). Both
approaches reduce the local influence of the observations, however they do propagate25

the observed variability to the neighboring grid-boxes, which might not always be realis-
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tic. Another way to solve the co-localization problem is to use a renormalized geometry
by computing a renormalization weighting function that lessens the local influence of
observations (e.g., Issartel et al., 2007). It can be demonstrated (using Eqs. 4 and 5)
that when R=0, xb=0 (full confidence in observations and no prior) and B is taken as
diagonal, equal to the identity the renormalization weighting function is equal to the5

diagonal of F. So, from another point of view, the resolution problem can be solved ap-
plying a factor over the B matrix that can be computed as the renormalization weighting
function described in Issartel et al. (2007). This function has been developed for re-
trieving point sources and further work is needed to apply it to dense sources (like
those associated to mobile sources in a city) co-localized with observations and when10

a guess or prior is used.
In this work, we developed an approach in which a F factor is chosen so that the

reliability of the initial inventory is increased at the observation sites, reducing the local
infuence of the observations. As stated before, the norm for the columns of the H matrix
corresponding to emission spots co-located with observations is very high compared15

to that of the rest of the columns and the closer to the observation site, the higher
the sensitivity. Also, there are differences between sensitivities at different hours of
the day due to the changes in meteorological conditions affecting mixing. One would
want to smooth these differences by applying a factor but, as seen in Eq. (5), in the
solution B matrix multiplies H matrix, so applying a factor to the B matrix would finally20

mean to apply a factor to the H matrix columns. To obtain the factor, we first compute
the module norm of all columns of the H matrix normalized by the maximum value
obtaining a preliminary factor:

fi ,j =

∑
k,l

∣∣hi jkl

∣∣
Max

{∑
k,l

∣∣hi jkl

∣∣} (11)

where i and j are emissions spatial and the temporal indexes, k and l the observations25

spatial and temporal indexes and h stands for the elements of H. Figure 9 displays the
spatial and temporal distribution of this factor, showing the features described above.

6339

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/6325/2009/acpd-9-6325-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/6325/2009/acpd-9-6325-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 6325–6361, 2009

Inverse modeling of
CO emissions at the

city scale

P. Saide et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The anticorrelation between F and the atmospheric mixing is apparent with higher F
values when advection (wind speed) and vertical mixing (BL) are low resulting in higher
sensitivity. Thus, dividing matrix B by this factor will decrease the variances in places
with higher sensitivities, producing the required effect. The final factor to apply to the
B matrix has to be between the value of the preliminary factor and the square of the5

value of the preliminary factor (Eq. 5, B appears 2 times in the equation multiplied by
H on both sides and from one side). We chose to use the value without modifications
because better results are obtained when applying the methodology with synthetic
observations (Sect. 4.3). This factor represents a way to include strongest a priori
information over the system and avoids spurious propagation of the observations to10

neighboring grid-boxes.

4.2 System set-up

Regarding the selection of observations, in addition to the criteria discussed in
Sect. 3.2, we restrict our inversion to emissions over a threshold of 0.5 (µg/m2/s) (tem-
poral mean) representing emissions occurring within the urban area. In this way we15

reduce the number of parameters to be improved, reducing the computing time. Now,
the observations reflect the influence from all emissions whereas the H matrix only re-
flects the information for the reduced inventory. To account for the missing emissions,
a run is made with all the removed emissions (night values and emissions below the
threshold) to estimate their impact at the observation points. The estimated impact is20

subtracted from the observations.
Altogether, the number of parameters to be determined is 3615, i.e., 241 cells, with

15 h of temporal resolution from 6 a.m. to 20 p.m. The total number of observations is
1344 given by hourly outputs for 8 days (total of 10 days subtracting the 2 days of the
weekend) and 7 stations. Hence, matrix H has m=1344 rows and n=3615 columns. In25

sum, we use the same emissions for every week-day, considering a diurnal variation at
each grid-cell, and excluding week-ends and nocturnal values.
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4.3 Testing with synthetic observations

In order to test the methodology and see what can be expected from the modified 3-D-
Var approach, a synthetic run is performed. We take the official inventory as accurate
or “true” and produce synthetic or pseudo-observations. These pseudo-observations
are perturbed with a Gaussian error of 5% to simulate the error in the observations.5

Then an a priori inventory (xb) is generated by adding to all grid cells a positive bias
of 5 (µg/m2/s), and the inversion procedure is applied. Table 1 shows a comparison
between different assumptions over the emission error covariance. Three tests were
performed, considering no a priori information, covariance between nearby emissions
given by a radius of influence (r.o.i.) of 2.5 grid cells (e.g., Peters et al., 2005) and using10

F as defined before. It can be seen that improved statistics are obtained using the F
factor.

Figure 10 shows results obtained with the F factor. In both a) and b) it can be seen
that the difference between simulated concentrations (using the corrected inventory,
xa) and pseudo-observations is diminished. An interesting aspect to note is that the15

lack of an arbitrary radius of influence given by the monitoring stations, allows to im-
prove the emissions even far from the observation sites. Also, emissions at different
hours of the day are modified in a similar way. These two features are the reason why
this methodology shows better results than using a covariance matrix with a radius of
influence (Table 1). Another aspect to take into account is that using the F factor the20

emission error covariance matrix is diagonal decreasing computing time with respect
the use of a radius of influence, where this matrix is non-diagonal.

4.4 Using real observations

When applying the method with actual observations, we split the analysis into two
parts. First we analyze the spatial changes and then the temporal changes. Given that25

we only consider 10 days of data, we concentrate on the average diurnal cycle.
Figure 11 shows the difference between the a priori inventory and the a posteriori
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inventory for the time average of morning hours (left) and afternoon hours (right). The
assimilation of observations suggests that the official inventory overestimates the emis-
sions in the center-west part of Santiago, and it underestimates the emissions over the
eastern bound of the city.

When looking at the diurnal cycles of the retrieved emissions at different areas of5

Santiago (Fig. 12), we find that overall the changes are larger in the morning hours,
between 6 and 12 a.m. (LT), than in the afternoon. During the rest of the day, the
a posteriori inventory shows a similar behavior to that of the a priori inventory. Thus,
the assimilation of CO concentrations does not bring major changes in emissions for
any of the stations in the afternoon. Changes occur mainly in the morning coinciding10

with the morning traffic rush-hour. These features are illustrated in Fig. 12.
In summary, the a posteriori inventory shows a decrease in total emissions of 8%

with respect to the a priori inventory. Nevertheless, locally over 100% changes are
found which is the case for emissions located near Las Condes (north-east of the city)
during morning hours (Fig. 12).15

4.5 Validation of the improved inventory

To address the question of the robustness of the changes to the inventory, we per-
formed simulations for a ten-day period starting on 3 January, when no observations
were assimilated. We run the model with both the a priori and a posteriori inventories.
Overall, the new inventory results in improved error statistics (see Table 2), particularly20

in the morning. For instance, Fig. 3 shows the comparison between the simulated diur-
nal cycles with the old and the new inventories and the observations. Overall, and as
explained earlier (Sect. 4.3), major changes occur only during the morning. Thus, the
changes to the a priori inventory seem robust, and adequate for both periods simulated.
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5 Conclusions

We have presented a methodology to improve emission inventories at a city scale.
This methodology takes into account the question of having positive solutions, and
more importantly, it deals with the co-localization of sources and observations. This
is particularly important when dealing with relatively high resolution inventories. We5

applied this inverse modeling procedure over Santiago de Chile for hourly observations
for a ten day period in summer 2002, optimizing the emission temporal and spatial
resolution running the Polair3d dispersion model and its approximate adjoint. Overall,
the assimilation indicates that total amounts of emissions in the official inventory are
slightly overestimated (around 8%). Nevertheless, the assimilation induces significant10

changes at several areas (e.g., near Las Condes station in morning hours). Also, an
underestimate of the emissions in eastern Santiago is apparent. In particular, we found
a mid-morning maximum at stations Las Condes and La Florida that is difficult to recon-
cile with observed traffic patterns, suggesting the presence of undetermined stationary
sources.15

The results described above are robust for the analyzed diurnal summer conditions,
when circulation in the Santiago basin has a strong radiatively driven diurnal cycle,
and no significant synoptic changes occur. In fact, agreement between simulated and
observed CO values is also improved outside the assimilation window and when using
the new corrected inventory instead of the official one. In future work, we will evaluate20

the assimilation approach during winter conditions that are by far more synoptically
variable than summer conditions.

We tackled the problem of co-location of observations and emissions by weighting
the emission error covariance matrix (B) so that the reliability of emissions is increased
at the observation sites. Also, the weighting is useful to avoid a radius of influence25

around monitoring stations and differences in the estimates in different hours of the day.
The choice of appropriate weighting factors, including the balancing effect introduced
by the L-curve approach used here, remains somewhat arbitrary. It appears necessary
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to further explore the use of more physically based corrections.
All in all, we have shown a method that provides an inexpensive way to improve and

update emission inventories. The key-constraint for the use of this method, and any
other inverse method, is the availability of reliable and representative observations en-
abling the accurate evaluation of models and meaningful data assimilation. In the case5

of Santiago the network is reliable but its representativity still requires amelioration. In
this respect, inverse modeling is again an useful tool that we will apply in our future
work.
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Table 1. Statistics for synthetic case (see Sect. 4.3 for details). Three inversion methods are
compared for different assumptions regarding the emission error covariance matrix.

R RMSE (µg/m2 s) Bias (µg/m2 s)

F factor 0.99 0.9 0.4
L=2.5 r.o.i. 0.99 2.8 1.9

no F, diag B. 0.99 4.3 4.0
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Table 2. Error statistics simulations using the optimized and the guess inventories for a period
out of the assimilation window. Correlation coefficient (R), root mean square error (RMSE, units
in µg/m3) and bias (units in µg/m3) were calculated for each station.

Station R RMSE Bias
Guess Opt Guess Opt Guess Opt

Independencia 0.45 0.43 501 451 –396 –349
La Florida 0.65 0.67 365 364 199 204
Las Condes 0.3 0.41 316 305 232 226
P. O’Higgins 0.51 0.48 566 493 –458 –403
Pudahuel 0.66 0.65 236 174 –144 –104
Cerrillos 0.61 0.58 390 302 –281 –230
El Bosque 0.72 0.73 191 181 –29 –9
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 9

Fig. 1. Left panel: Official EI averaged in time (logarithmic scale, units in µgr/m2/s), topography over Santiago basin and location of air
quality monitoring stations. 1: Providencia, 2: Independencia, 3: La Florida, 4: Las Condes, 5: Parque O’Higgins, 6: Pudahuel, 7: Cerrillos,
8: El Bosque. Right panel: Normalized emission diurnal cycles for different zones of the city

Fig. 2. Observation and model vertical profiles of temperature and wind for Santo Domingo station, values are obtained at 00 and 12 UTC
daily for January 2002.

Table 1. Statistics for synthetic case (See Section 4.3 for details).
Three inversion methods are compared for different assumptions
regarding the emission error covariance matrix.

R RMSE [µgr/m2s] Bias [µgr/m2s]
F factor 0.99 0.9 0.4

L=2.5 r.o.i. 0.99 2.8 1.9
No F, diag B. 0.99 4.3 4.0

Fig. 1. Left panel: Official EI averaged in time (logarithmic scale, units in µg/m2/s), topography
over Santiago basin and location of air quality monitoring stations. 1: Providencia, 2: Indepen-
dencia, 3: La Florida, 4: Las Condes, 5: Parque O’Higgins, 6: Pudahuel, 7: Cerrillos, 8: El
Bosque. Right panel: Normalized emission diurnal cycles for different zones of the city.
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 9

Fig. 1. Left panel: Official EI averaged in time (logarithmic scale, units in µgr/m2/s), topography over Santiago basin and location of air
quality monitoring stations. 1: Providencia, 2: Independencia, 3: La Florida, 4: Las Condes, 5: Parque O’Higgins, 6: Pudahuel, 7: Cerrillos,
8: El Bosque. Right panel: Normalized emission diurnal cycles for different zones of the city

Fig. 2. Observation and model vertical profiles of temperature and wind for Santo Domingo station, values are obtained at 00 and 12 UTC
daily for January 2002.

Table 1. Statistics for synthetic case (See Section 4.3 for details).
Three inversion methods are compared for different assumptions
regarding the emission error covariance matrix.

R RMSE [µgr/m2s] Bias [µgr/m2s]
F factor 0.99 0.9 0.4

L=2.5 r.o.i. 0.99 2.8 1.9
No F, diag B. 0.99 4.3 4.0

Fig. 2. Observation and model vertical profiles of temperature and wind for Santo Domingo
station, values are obtained at 00:00 and 12:00 UTC daily for January 2002.

6351

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/6325/2009/acpd-9-6325-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/6325/2009/acpd-9-6325-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 6325–6361, 2009

Inverse modeling of
CO emissions at the

city scale

P. Saide et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

10 Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case

Fig. 3. Diurnal cycle for ten days outside the inversion period for observations and results of the dispersion model using optimized and guess
EI. Vertical bars represent standard deviation from observations. Units in microgram/m3.

Fig. 4. Mean diurnal cycles for meteorological variables during January 2002 for 11 ground stations located in Santiago basin. Red and blue
lines represent the model and the observations respectively and doted lines represent the standard deviation.

Table 2. Error statistics simulations using the optimized and the
guess inventories for a period out of the assimilation window. Cor-
relation coefficient (R), root mean square error (RMSE, units in
µgr/m3) and bias (units in µgr/m3) were calculated for each station.

Station R RMSE Bias
Guess Opt Guess Opt Guess Opt

Independencia 0.45 0.43 501 451 -396 -349
La Florida 0.65 0.67 365 364 199 204

Las Condes 0.3 0.41 316 305 232 226
P. O’Higgins 0.51 0.48 566 493 -458 -403

Pudahuel 0.66 0.65 236 174 -144 -104
Cerrillos 0.61 0.58 390 302 -281 -230

El Bosque 0.72 0.73 191 181 -29 -9

Fig. 3. Diurnal cycle for ten days outside the inversion period for observations and results of
the dispersion model using optimized and guess EI. Vertical bars represent standard deviation
from observations. Units in µg/m3.
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Fig. 4. Mean diurnal cycles for meteorological variables during January 2002 for 11 ground sta-
tions located in Santiago basin. Red and blue lines represent the model and the observations
respectively and doted lines represent the standard deviation.
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 11

Fig. 5. Concentration (µgr/m3) and wind (m/s) fields at the first level of the dispersion model. Panels (a) and (b) are mean fields for 8 AM
and 16 PM LT respectively. Point filling colors represent observation mean values in each station at the same hour. For topography values
and station number refer to Fig. 1. Concentration scale is logarithmic.

Fig. 6. Taylor diagram of CO simulated and observed, distinguish-
ing weekend, night and day values for January 2nd to 29th using the
official inventory.

Fig. 7. Scatter-plot comparing direct and adjoint concentrations.
Direct obs. are obtained running the model with the emissions
to be optimized, and adjoint obs. are obtained computing H ma-
trix trough the adjoint and multiplying by the emissions. Units in
µgr/m3.

Fig. 5. Concentration (µg/m3) and wind (m/s) fields at the first level of the dispersion model.
Panels (a) and (b) are mean fields for 8 a.m. and 16 p.m. LT respectively. Point filling colors
represent observation mean values in each station at the same hour. For topography values
and station number refer to Fig. 1. Concentration scale is logarithmic.
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 11

Fig. 5. Concentration (µgr/m3) and wind (m/s) fields at the first level of the dispersion model. Panels (a) and (b) are mean fields for 8 AM
and 16 PM LT respectively. Point filling colors represent observation mean values in each station at the same hour. For topography values
and station number refer to Fig. 1. Concentration scale is logarithmic.

Fig. 6. Taylor diagram of CO simulated and observed, distinguish-
ing weekend, night and day values for January 2nd to 29th using the
official inventory.

Fig. 7. Scatter-plot comparing direct and adjoint concentrations.
Direct obs. are obtained running the model with the emissions
to be optimized, and adjoint obs. are obtained computing H ma-
trix trough the adjoint and multiplying by the emissions. Units in
µgr/m3.

Fig. 6. Taylor diagram of CO simulated and observed, distinguishing weekend, night and day
values for 2 to 29 January using the official inventory.
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 11

Fig. 5. Concentration (µgr/m3) and wind (m/s) fields at the first level of the dispersion model. Panels (a) and (b) are mean fields for 8 AM
and 16 PM LT respectively. Point filling colors represent observation mean values in each station at the same hour. For topography values
and station number refer to Fig. 1. Concentration scale is logarithmic.

Fig. 6. Taylor diagram of CO simulated and observed, distinguish-
ing weekend, night and day values for January 2nd to 29th using the
official inventory.

Fig. 7. Scatter-plot comparing direct and adjoint concentrations.
Direct obs. are obtained running the model with the emissions
to be optimized, and adjoint obs. are obtained computing H ma-
trix trough the adjoint and multiplying by the emissions. Units in
µgr/m3.

Fig. 7. Scatter-plot comparing direct and adjoint concentrations. Direct obs. are obtained
running the model with the emissions to be optimized, and adjoint obs. are obtained computing
H matrix trough the adjoint and multiplying by the emissions. Units in µg/m3.
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12 Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case

Fig. 8. L-curve to obtain the optimal value for the alpha parameter.
Numbers at the right of each spot are the alpha value for that point.
α∗ is the optimal value chosen.

Fig. 8. L-curve to obtain the optimal value for the alpha parameter. Numbers at the right of
each spot are the alpha value for that point. α∗ is the optimal value chosen.
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 13

Fig. 9. Spatial and temporal distribution of the F factor. Left panel: Time average of the F factor in a log scale. Note the maxima at the
observation sites and the decay when increasing the distance from them. Right panel: Normalized values of diurnal cycle of the inverse of
F, wind speed and boundary layer height (BL).

Fig. 10. Synthetic simulation results. a) Mean in time of the differ-
ence between real and optimized EI. Note that values near 0 (green)
show good agreement thus good inversion and values near -5 mean
that the analyzed emissions are close to the guess emissions. b)
Temporal profiles of the real, optimized and guess emissions. Units
in µgr/m2/s.

Fig. 9. Spatial and temporal distribution of the F factor. Left panel: Time average of the F factor
in a log scale. Note the maxima at the observation sites and the decay when increasing the
distance from them. Right panel: Normalized values of diurnal cycle of the inverse of F, wind
speed and boundary layer height (BL).
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Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case 13

Fig. 9. Spatial and temporal distribution of the F factor. Left panel: Time average of the F factor in a log scale. Note the maxima at the
observation sites and the decay when increasing the distance from them. Right panel: Normalized values of diurnal cycle of the inverse of
F, wind speed and boundary layer height (BL).

Fig. 10. Synthetic simulation results. a) Mean in time of the differ-
ence between real and optimized EI. Note that values near 0 (green)
show good agreement thus good inversion and values near -5 mean
that the analyzed emissions are close to the guess emissions. b)
Temporal profiles of the real, optimized and guess emissions. Units
in µgr/m2/s.

Fig. 10. Synthetic simulation results. (a) Mean in time of the difference between real and
optimized EI. Note that values near 0 (green) show good agreement thus good inversion and
values near −5 mean that the analyzed emissions are close to the guess emissions. (b) Tem-
poral profiles of the real, optimized and guess emissions. Units in µg/m2/s.
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14 Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case

Fig. 11. Time average difference between the a priori (official) inventory and the optimized inventory assimilating real observations. Left
panel: morning, right panel: afternoon. Note that values over 0 (red) represent a decrease in the emissions and negative values (blue)
represent increase in emissions with respect to the official inventory. Units in µgr/m2/s.

Fig. 12. Daily cycle for reference and optimized emissions for a central zone of the city (left panels) and for an eastern zone of the city (right
panels). Units in µgr/m2/s. Station names represent the grid where they are located.

Fig. 11. Time average difference between the a priori (official) inventory and the optimized
inventory assimilating real observations. Left panel: morning, right panel: afternoon. Note that
values over 0 (red) represent a decrease in the emissions and negative values (blue) represent
increase in emissions with respect to the official inventory. Units in µg/m2/s.
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14 Saide et al: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case

Fig. 11. Time average difference between the a priori (official) inventory and the optimized inventory assimilating real observations. Left
panel: morning, right panel: afternoon. Note that values over 0 (red) represent a decrease in the emissions and negative values (blue)
represent increase in emissions with respect to the official inventory. Units in µgr/m2/s.

Fig. 12. Daily cycle for reference and optimized emissions for a central zone of the city (left panels) and for an eastern zone of the city (right
panels). Units in µgr/m2/s. Station names represent the grid where they are located.

Fig. 12. Daily cycle for reference and optimized emissions for a central zone of the city (left
panels) and for an eastern zone of the city (right panels). Units in µg/m2/s. Station names
represent the grid where they are located.
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