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Abstract 

Motivation. Although inter–molecular interaction in water cluster has been a subject of significant interest for 
many years, there have been very few of fully quantum mechanical studies because of the numerical difficulties 
associated with the multi–dimensional Schrödinger equation. In this study, vibrational eigenstates/eigenenergies 
with respect to three–dimensional hydrogen flipping motion in the water trimer (WT) are solved by utilizing a 
hybrid micro genetic algorithm (µ–GA). 
Method. Hybrid µ–GA is employed to solve the Schrödinger equation, in which the conventional variational 
calculation is combined at the final stage to overcome the µ–GA’s disadvantage, namely the slow convergence 
to the exact solution. 
Results. Eigenstates and eigenvalues calculated by hybrid µ–GA are found to be in good agreement with the 
ones obtained by the discrete variable method. From the eigenvalue differences, tunneling time associated with 
the flipping motion of WT is evaluated to be 1.2 ns. 
Conclusions. Hybrid µ–GA together with the stochastically defined fitness score makes it possible to calculate 
efficiently the three–dimensional vibrational eigenenergies/eigenstates of the hydrogen flipping motion in WT. 
Keywords. Water trimer; micro genetic algorithm; flipping motion; tunneling splitting. 

Abbreviations and notations 
µ–GA, micro genetic algorithm WT, water trimer 
EPEN, empirical potential using electrons and nuclei  

1 INTRODUCTION 

Microscopic understanding of the intermolecular interactions in the water cluster is significantly 
important, since it is closely related to the chemical property of the water as a universal solvent [1–
12]. On the other hand, far-infrared spectroscopy data have brought new insight into the low-
frequency vibrational excitations of the water trimer (WT) [13–16]. The spectra lines observed in 
the region 40–90 cm–1 are experimentally assigned to the large–amplitude flipping motion of the 
free O–H bonds. For quantitative theoretical analysis of such spectral structures, fully-quantum 
                                                           
# Dedicated to Professor Haruo Hosoya on the occasion of the 65th birthday. 
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mechanical calculation is expected. However, despite of recent development of the computer 
technology, quantum calculation of the M–dimensional (especially for M > 3) quantum system still 
remains to be a difficult problem. The conventional basis set expansion method rapidly becomes 
unfeasible as dimensionality increases. Moreover, for the system such as WT, in which the 
exchange tunneling is present, one cannot resort to approximation techniques for reducing the 
dimension, such as self-consistent field method based on the adiabatic approximation. Because of 
such difficulties, there exist very few full-quantum calculations with respect to the water clusters 
[5,6,9–11]. Since the discrete variable representation (DVR) is essentially one of the variant of 
orthodox basis function expansion methods, it still suffers from the severe increase of the basis 
functions with respect to the system dimension, which makes its application to N–water clusters 
difficult. The alternative stochastic method based on the Monte Carlo sampling can avoid such 
crucial difficulty originating from the multi-dimensionality by introducing the idea of “importance 
sampling” [6,11]. However, the conventional diffusion Monte Carlo method is restricted to the 
ground state calculation. The projector Monte Carlo method, which can take the excitation process 
into account, is still lacking in the capability of handling the excited state wave functions directly. 

In this study, we utilize the hybrid genetic algorithm to calculate the eigenstates of the flipping 
motion of WT quantum mechanically, which possesses both advantages of stochastic and 
deterministic variational calculations. We employ the micro–GA (µ–GA) [17] for searching the 
optimal placing and shaping of the basis functions in the multi–dimensional coordinate space. The 
exact final solution is obtained by the variational calculation using the basis functions optimized by 
the µ–GA, which makes it possible to reduce the number of basis functions drastically. 

2 CALCULATION METHODS 

2.1 Micro Genetic Algorithm 
In this section, we briefly summarize the µ–GA’s procedure. Shown in Figure 1 is the algorithm 

of µ–GA schematically expressed as a flow–chart. First, all the parameters subject to the 
optimization are coded as a “GA–string”, since the µ–GA works on a coding of the variables. In this 
study, we employ the conventional binary coding, in which a set of real parameter values are 
represented as a binary bit–string (see Step 0 in Figure 1). The initial population is prepared as 
randomly created bit–strings, while the population size is set adequately depending on the number 
of unknown parameters or the bit–length of GA–string. Each string in the population corresponds to 
the solution candidate. Next, the population proceeds to the evaluation and selection stage. All the 
strings in the population are evaluated by calculating the fitness score, which is defined so as to 
represent how much the string is fit to the current objective. During the evaluation procedure, the 
GA–strings are converted to the corresponding real parameter values. 
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Figure 1. Schematic flow–chart of the micro–genetic algorithm. 
 
 

In order to simulate the selection process we utilize the tournament selection strategy, in which a 
pair of strings is randomly selected from the population and the one with higher fitness is kept for 
the next generation. Such one–to–one competition is repeated until sufficient numbers of the strings 
are collected for the next generation. Next, the population is updated through mating and crossover 
operations. We employ the uniform crossover, in which multiple crossing points are utilized as 
follows. Consider parent strings pa and pb: 

( )Njjiia aaaaaap ,,,,,,,, 111 LLL ++=  (1)
 

( )Njjiib bbbbbbp ,,,,,,,, 111 LLL ++=  (2)
 

where ai and bi represent binary digits. Two offsprings o1 and o2 are given as 

( )Njjii aabbaao ,,,,,,,, 1111 LLL ++=  (3)
 

( )Njjii bbaabbo ,,,,,,,, 1112 LLL ++=  (4)
 

The number of the crossing points and their positions (i, j, …) are randomly determined. 
Convergence check is carried out as a final step at every generation. The measure of the population 
convergence D is defined as average bit differences between the best string among the population 
and other strings. If the population still evolves, or D is larger than the threshold value ε, µ–GA 
breeding proceeds to the next generation. If the µ–GA population reaches to the stationary state, 
i.e., D < ε, the population is reset with the randomly initialized bit–strings, leaving the best string 
from the previous generation. 
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2.2 Application to Quantum Calculation 
In this section, we consider the application of µ–GA to the quantum mechanical calculation. 

Here, we aim to solve the stationary state Schrödinger equation given as 

)()(ˆ xx Ψ=Ψ EH  (5)
 

Here, Ĥ  and E denote the system Hamiltonian and the eigenvalue, respectively, whereas x = ( x1, 
x2, …xM ) is a set of coordinate variables for M–dimensional quantum system. Under the Cartesian 
coordinate representation, Ĥ is given as 

)(
2

ˆ 2
2
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m
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h  (6)

 

where m and V(x) are mass of a particle and the potential function. In order to solve the Schrödinger 
equation by µ–GA, we introduce the fitness score f defined as 
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It is readily seen that f gives the maximum value, unity, when Ψ(x) and E coincide with the 
eigenfunction and the corresponding eigenvalue, respectively. Thus, solving the Schrödinger 
equation turns out to be the maximization problem of the fitness score f. However, carrying out the 
numerical evaluation of f with respect to all the GA–strings in the population is quite a burdensome 
task because of the multi–dimensional integrations in Eq. (7). In order to surmount such difficulty, 
we reduce the computational load by introducing a new fitness score defined as 
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Here, lx  denotes the evaluation point, which is randomly distributed over the coordinate space. 
The evaluation point set { }lx  is renewed at every generation while the common set is used for the 

fitness evaluation for the strings belonging to the same generation. The effects of using the 
stochastically defined fitness score such as Eq. (8) on the evolution profile and overall convergence 
are discussed in Ref. [18]. 

In this study, we adopt the trial function expressed as a linear combination of M–dimensional 
Gaussian functions given as 

( )[ ]∑ ∏ −−=Ψ
N

i

M

j
jijjii rxac 2exp)(x  (9)

 

Here, N is the number of Gaussian functions, while ci, ri, and ai denote center position, width 
parameter and expansion coefficient of the i–th Gaussian basis function, respectively. Using µ–GA, 
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we seek the optimal parameter values for ci, ri, and ai together with the eigenvalue E that maximize 
the fitness score given as Eq. (8). 

It is well known that the major drawback of GA is its slow convergence to the exact optimal 
values. We consider the hybridization with the deterministic optimization method in order to avoid 
the inefficient final search by the µ–GA. After the GA–breeding with appropriate generations, we 
apply the conventional variational calculation. The system Hamiltonian matrix for the 
diagonalization is constructed with the adapted basis functions given as elite strings (characterized 
by high fitness scores) in the µ–GA population. Upon the selection of elite stings, we have 
considered not only the fitness scores but also the overlaps between the strings to avoid the 
numerical difficulties arising from the linear dependencies. Note that the Hamiltonian matrix 
elements are effectively evaluated by using Gaussian quadrature, since we adopt the Gaussian–type 
trial function 

2.3 Water Trimer Model System 
Now, we consider the application of the present method to the three–dimensional vibrational 

calculation of the water trimer. We employ the model Hamiltonian proposed by van der Avoird 
[15], in which the coordinates of the flipping motions are defined as angles between three free 
(non–hydrogen bonded) O–H bonds and O–O–O plane. The torsional angle space { }321 ,, ωωω  is 

defined as shown in Figure 2. The three hydrogen bonds in the WT are considered to be rigid. Thus, 
all the hydrogen bond lengths and internal angles are fixed except the three torsional angles stated 
above. 
 

 
 

Figure 2. Definition of the free internal coordinates, ‘torsional angles’, of the water trimer. 
 

The model Hamiltonian of the flipping motion of the WT is given as [12]: 
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where Λ denotes the effective moment of inertia, which is taken to be -12 cm39.21)2/( =Λh  [12]. 

The potential function is analytically given in kcal/mol unit as 
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which is called empirical potential using electrons and nuclei (EPEN) potential function. Subscripts 
i, j specify the water molecules consisting the trimer, whereas k, l denote effective point charge sites 
(for nuclei or electron pairs) and m, n indicate the sites for electron pairs [12]. 
 

 
 

Figure 3. Positions of effective point charges for EPEN are shown as black dots. Unit length is angstrom (Å). 
 

In Eq. (11), ijR denotes the inter–nuclear distance between Oi and Oj and klr  ( mnr ) denotes the 

distance between the point charge sites k and l (m and n) on the water molecules i and j. The 
effective point charge kz  and the EPEN parameters a, b, and c are determined so as to reproduce 

the ab initio calculated energy surface. We adopt the parameters proposed by Bürgi et al.; a = 
119.26 kcal/mol, b = 0.51793 Å and c = 3299 kcal/mol [12]. The EPEN has six global minima at 
around o50±≅νω . One of such minima corresponds to the structure with two H atoms above the 

O–O–O (O3) plane (denoted as “up” = u) and one H below the O3–plane (denoted as “down” = d), 
which we refer to (u,u,d). Then, other five structures corresponding to global minima are given as 
(u,d,d), (u,d,u), (d,d,u), (d,u,u), (d,u,d). We collectively denote these six structures as {uud}. Since 
the EPEN possesses S6 symmetry, as shown above, we introduce symmetry adapted trial functions 
corresponding to the four irreducible representations of S6, Ag, Eu, Eg and Au, as follows. 
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We have carried out the hybrid–GA calculation for each irreducible representation with the 
population consisting of 80 strings up to 500 generations. The convergence check parameter ε for 
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the µ–GA breeding is taken to be 0.05. We use 3 Gaussians ( N = 3 in Eq. (9) ) to expand the trial 
function and the number of the random points used for the evaluation of f~  are taken to be 6000. 

3 RESULTS AND DISCUSSION 

Listed in Table 1 are the eigenvalues and energy differences (in cm–1) calculated by the µ–GA. 
Shown in GA+Var. columns are the refined values obtained by the final variational calculation. For 
the diagonalization, four elite strings are selected from the GA–populations bred with different 
random seeds. In order to avoid the numerical instability, we choose the elite strings whose mutual 
overlap integrals are not extremely close to unity. The values displayed in the ‘difference’ column 
indicate energy differences between the excited eigenstates and the Ag ground state. 
 
 

Table 1. Eigenvalues and Energy Differences (cm–1) of the Water Trimer Calculated by µ–GA 
 GA GA+Var. GA GA+Var. DVR [9] 
 eigenvalue eigenvalue difference difference difference 
Au –231.56 –233.24 63.79 57.32 61.35 
Eg –248.76 –245.47 46.59 45.08 43.26 
 –247.83 –245.84 47.52 44.70 43.26 
Eu –274.08 –278.13 21.27 12.41 13.63 
 –274.73 –277.86 20.62 12.68 13.63 
Ag –295.35 –290.54 0.00 0.00 0.00 

 
 

The energy differences calculated by DVR method with 151515 ××  basis functions are shown 
together in the Table 1 for comparison [9]. Most of the calculated values are in good agreement 
with the results of the Blume’s DVR calculation except the ones corresponding to Eu state. Since 
the µ–GA results contain the stochastic errors, it is considered that the calculated eigenvalues of Eu 
states have not been converged enough to the exact values. These discrepancies in the results of Eu 
states are corrected by the post–optimization, i.e., the variational calculation. The results shown in 
Table 1 seem to contradict the variational principle, that is, some eigenvalues refined by the 
variational calculation take larger values than the ones obtained by the µ–GA search. This can be 
explained by the fact that the eigenvalues sought by µ–GA do not necessarily correspond to the 
expectation values of the system Hamiltonian Ĥ , since the eigenvalue E is optimized 

independently in the µ–GA breeding process. It is confirmed that the Hamiltonian expectation value 
Ĥ  decreases through the final variational calculation in all cases. 

Shown in Figure 4 is the fitness profile of the µ–GA calculation for Ag state. As is well–
acknowledged, the convergence efficiency in the early generations is excellent. The abrupt jump on 
the profile at around the 400th generation corresponds to the fact that the GA–population escapes 
from one of the local minima in the search space. 
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Figure 4. Fitness profile of the GA–breeding process in the calculation of Ag state. 

 
Shown in Figure 5(a) is the eigenfunction of Ag state drawn as a function of Aω  and Cω  by 

fixing Bω  to o48 , while its contour plot is shown in Figure 5(b). Three peaks in the Figure 5 at 

around o48±  correspond to the global potential minima, (u,u,d), (d,u,d), and (d,u,u) structures. 
 

 
 

Figure 5. (a) 3D–plot of the eigenfunction of the Ag state. (b) Contour–plot of the eigenfunction of the Ag state. 

 

For comparison, we have carried out the µ–GA calculation with the deterministic fitness score f 
defined as Eq. (7). The integrations that appear in f are evaluated numerically by introducing three–
dimensional grid. The µ–GA calculation carried out with f evaluated by 8000 grid points fails to 
produce satisfactory results since the population is trapped in the local minima of the search space. 
On the other hand, the calculation with the stochastic fitness f~  evaluated by 6000 sampling points 
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gives the appropriate results shown above. Thus, it is found that the stochastic fitness is quite an 
efficient fitness evaluation approach which works fine together with the µ–GA [18]. Finally, we 
introduce the self–correlation function in order to estimate the tunneling time from the energy 
differences in the Table 1. Consider that the wave function of the WT is initially localized in one of 
the 3–D potential wells, which is expressed as ket ϕ . Since ϕ  is the wave packet, or the linear 

combination of the eigenfunctions of WT (as shown in the following equation), it evolves as 
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Here, we define the self–correlation function as )(tϕϕ . Then, the returning probability to the 

initial state ϕ  at t = t, P(t), is given as 
2

)()( ttP ϕϕ= . By using the obtained eigenvalues, P(t) 

can be readily calculated through Eq. (18). Shown in Fig. 6 is the time–dependence of P(t). It is 
seen that partial recurrences due to the tunneling effects occur frequently. However, to achieve the 
complete recurrence, that is, P(t) = 1, one needs to await about 1200ps (= 1.2 ns), which can be 
considered as the overall tunneling time of the flipping motion of WT. 

 
 

 
 

Figure 6. Time–dependence of the returning probability with respect to the flipping motion of WT. 
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4 CONCLUSIONS 

We have calculated the vibrational eigenfunctions with respect to “flipping motion” of the water 
trimer. In order to solve the three–dimensional Schrödinger equation, we employed the hybrid µ–
GA method together with the stochastically defined fitness score. To overcome the GA's slow 
convergence to the exact solution in the final stage, we utilized the variational calculation using the 
elite strings bred by the µ–GA. The trial functions were expanded in the three–dimensional 
symmetry adapted Gaussian functions, with which one can readily evaluate the Hamiltonian matrix 
elements. By adopting the stochastic fitness evaluation, we have largely reduced the actual 
computation, which makes it possible to carry out the multi–dimensional calculation effectively. 
Although we employed the variational calculation as a final optimizer in this study, there exist other 
possibilities in the choice of deterministic optimizer, such as steepest descent method, which was 
used in our previous work [18]. 

Finally, it should be stressed here that the µ–GA’s future potential applicability to the multi–
dimensional quantum mechanical calculation is promising. This is because GA is an intrinsically 
parallel algorithm and the GA–related computation can be efficiently distributed over several 
workstations/personal computers. 
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