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Abstract 

This report is on the lattice–theoretical characterization of the ‘shape’ of topological sets. The reported procedure 
is abstract enough to have a wide area of applications in those fields, where the classification relies on 
‘similarity’ or ‘neighborhood-ness’. A possible huge field is the searching for molecules with predetermined 
pharmacological properties. The targets of comparison can be the various type electron densities of the 
interacting molecular systems, when the procedure is able to give a hierarchically ordered set of more and more 
detailed shape characterizations, a distance concept and topology. Actually the shapes of continuous n–variable 
functions are investigated and the electron densities are chosen for representatives of this class, but instead of 
real–life computations an easy to grasp artificial example is given. 
Keywords. Lattice theory; shape theory; similarity measures. 

Abbreviations and notations 
EDSs, electron density surfaces PESs, potential energy surfaces 

1 INTRODUCTION 

Although the ‘common sense’ meaning of the ‘shape’ of a 3–dimensional object is quite familiar 
to everyone, this meaning is not unique and not even well–defined in a mathematical sense. Our 
practice in comparing and classifying objects as ‘identical’, ‘similar’, or ‘different’ is based on 
learning, taste, actual conditions and so on. The mathematical definition is not a trivial problem 
either, because the ‘shape’ of the object can be described in a number of ways. These descriptions 
are not equivalent and emphasize different characteristics of the object. This is the reason that 
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various branches of universal algebra, topology [1], or algebraic topology [2–5] can serve for 
suitable (but not equivalent!) tools of the ‘shape–description’ problem. To characterize the shape is 
a widespread intention [7–8]. Classification problems relying on the ’similarity’ of the elements of a 
set are important, but require a mathematically sound and in the practical sense suitable definitions 
of the shape. Practical applicability prefers such a schemes, which can provide gradually more and 
more detailed characterization of the objects, a distance concept and a neighborhood–topology, 
which is a mathematically well–established close analogue of our perception. A shape 
characterization of this kind gives a result which corresponds to our common, every–day practice, 
when approaching a set of objects and coming closer more and more details appear. Since a 
possible application of this scheme is in quantum–chemistry instead of ’topological sets’ we talk 
about the shape of continuous n–variable functions and as representative about electron densities. 
Our intention is the theoretical foundation of the scheme and no real–life but only an easy artificial 
example will be given. 

In quantum chemistry the notion of shape occurs mostly in relation with atomic or molecular 
orbitals, electron density surfaces (EDSs), potential energy surfaces (PESs), exchange–correlation 
hole, nuclear wave and density functions [1–2,4–6], etc. The shapes of these mathematical objects 
are in relationships with the physical behaviors of the associated systems. 

Our primary interest is focused on EDSs. From the simple model of Thomas and Fermi [9] grew 
a whole new branch of computational quantum mechanics based on local density approximation 
[10–11]. By the theorems of Hohenberg and Kohn [8], the one–electron density function plays the 
central role in all these methods. Besides the one–electron densities, also the two–electron and 
transition densities are of great importance concerning the correlation effects and dynamic 
molecular interactions. This is the reason, why the ‘shapes’ of electron density functions attract 
considerable attentions, when explaining molecular properties. But, beyond the theoretical interest, 
there is also a great practical significance in the shape–description problem, because it helps to 
select molecules with prespecified chemical or pharmacological behaviors. In this way the hunting 
for pharmacologically active compounds can be shortened significantly. 

Our aim is to give a general lattice–algebraic scheme, where a distributive lattice is associated 
with each electron density function and the ‘structures’ of the shapes of electron densities are 
characterized by the structures of the associated lattices. We want to give measures, which assign 
‘distances’ to couples of lattices/functions and induce topologies. The measures are intended to 
quantify the fine details in the similarity of the compared functions making the similarity 
‘structured’. The subjects of our shape characterization scheme are the electron density functions, 
but only implicitly. The method will be discussed in abstract terms referring to the class of 
continuous functions. Since also electron densities belong to this class, the generality of our 
discussion will not mean lose speaking. To focus our attention to the method itself, the illustrations 
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will refer to unspecified functions. The report is structured as follows: the next section is devoted to 
technicalities, then the shape lattices are defined with measure, then come the main results and 
finally the conclusions close the discussion. To make the reading easier, the proofs of assertions are 
collected into a separate section (Appendix 1) and some background material on lattice theory is 
given in Appendix 2. 

2 THE LATTICE OF CONGRUENCIES

The presented scheme is intended to compare objects in relation of ‘geometrical identity’ and 
those, which arise from each other by ‘continuous deformations’. In this report we adhere to objects 
that can be represented in a single coordinate frame, as (n+1)–dimensional point sets of the form: 

{( , ( )) : }, ( ) , ( ) : ,n nO x f x x f x is absolutely continuous f xR R R (1)

where ( )f x  can be a density function. 

Figure 1. The graph of ( )f x  partitioned into building blocks. 

To keep the forthcoming discussion formally simple and concrete, let the co–ordinate space be 
two–dimensional ( 2n ), the function be restricted to the closed domain nD R , which is 
partitioned (by a regular grid) into disjoint cells: 

{ : 1,..., , 1,..., , }.kl K L kl k lD d k M l M kl k l d d (2)

(To avoid an abuse of indexes, the double–indexes will not be separated, ( ) ( , ))kl k l . Each cell 
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supports a restriction of ( )f x , which is illustrated on Figure 1 by a (6 6) –element set of “sample 

building blocks”. 

The building blocks will be represented by abstract ‘brackets’: 

( , ( )) {( , ( )) : },klkl kl x f x x d (3)

where the first element of the ordered pair is the double–index of the cell, the second element is a 
set function (denoted shortly) ( ) ( )klkl d R , and we call it ‘property’ function. A set function 

 is an admissible property function, if refining the partitioning infinitely, it converges to f . This 
means for every contracting sequence of measurable sets n

i R :

(lim ( ) 0, { } ) ( ) ( ).i i i ii
diam x f x (4)

Some of the possible choices are the integral mean 1
| |( ) ( )

kl klkl d dd f x dx  (where | |kld  indicates 

area), the inf ( ), sup ( ), ( )klf x or f x x d , respectively. Choosing a set function to characterize the 

building blocks is equivalent with the substitution of the continuous surface patches by a step 
function, as displayed on Figure 2. 

Figure 2. The graph of ( )kl .

Although in finitely dense grids a more detailed picture is obtained, if a whole parameter vector 
(for instance set functions of partial derivatives) is assigned to each cell, for practical simplicity 
only one parameter will be considered here. To construct a lattice over the brackets, the brackets are 
embedded into a Cartesian product set. The double–indexes are separated into 

{ : 1,..., }KK k k M  and { : 1,..., }LL l l M  sets providing the Cartesian product: 
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{( , ) : , )},K L KL k l k K l L (5)

where KL  is shorthand for K L .

Figure 3. The graph of ( )kl  isomorphic to ( )kl  on Figure 2. 

The property function ( )kl  is concentrated to discrete points of a closed interval range of the 
real line. The function values are indexed by kl  and ordered by the usual ordering ( ) . The set of 
points includes the distinct function values { ( ) : }kl kl KL . Concerning the cardinalities, 
| | , | |K LK M L M , but | | K LM M , where we assume 2, 2, | | 2K LM M . The Cartesian 

product of these sets is the set of ’generalized’ brackets, 

{( , ( )) : , },KL KL kl k l kl k l KL (6)

(where KL  is again a shorthand notation). The ’diagonal’ elements (for which kl k l ) are the 
’true’ brackets, which belong to the primordial building blocks. The ’non–diagonal’ elements (for 
which kl k l ) arise ’by transposing the surface patch ( )k l  into the cell ( )kl ', if a pictorial 

explanation is given. The lattices over K , L  and  are simple chains. The operations are defined 
identically (in K  for example), the meet and join will be: 

Definition 1.

min{ , }, max{ , }k k k k k k k k (7)

and the lattices are ( ), ( )K LL L  and ( )L  . If investigating the congruence relations of a lattice, a 
deeper insight is gained into the algebra. A congruence relation will be symbolized by  (or i ),
that particular congruence class, which includes elements congruent with a given k  one is [ ] /k .

All congruence relations of a lattice algebra can be partially ordered by inclusion into a ‘congruence 
lattice’, as ( ( )), ( ( )), ( ( ))K LCon L Con L Con L . In the congruence lattice, the meet is the set–

theoretical intersection, the join is the transitive closure [14]. For example, 
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( ( )) ( ( )), ,K Con KCon L L  is the algebra with base set ( ( ))Con KL  including all congruence 
relations and operations ,  (the base set is not boldface!, see Appendix 2.). The number of 

congruences is very large, therefore we shall only use an appropriately selected subset of all 
congruencies in ( ( )), ( ( ))Con K Con LL L  and ( ( ))Con L . Allowed congruence relations (except 

the 0̂ –congruence relation) will be those, which have only one congruence class with 1m
element (this is called 'main class'), while all other classes have a single element. The main class 
will sometimes be denoted [ ] . To make a clear distinction from the general set of congruence 

relations, our specially chosen subset will be symbolized by lowercase letters, as 
( ( )), ( ( )), ( ( ))con K con L conL L L .

Definition 2. In any chain lattice those elements ( , )k k K , which satisfy

, ( ]i i i rk k k k k k (8)

are equivalent with respect to the congruence relation generated by the 'principal ideal'
( ] : { : }r i i rk k K k k . Those elements, which satisfy

, [ )i i i sk k k k k k (9)

are equivalent with respect to the congruence relation generated by the ‘principal dual ideal’
[ ) : { : }s i i sk k K k k  ( ’principal filter’ ) . 

We shall call these two types of congruence relations ‘basis’ congruence relations. Congruent 
elements will be denoted (mod )k k . The universal bounds 0̂K  and 1̂K  determine the smallest 

and largest congruence relations: 
ˆ ˆ(mod 0 ), , ( (mod 1 )).K Kk k if k k and k k k k (10)

Lemma 1. The congruence classes form convex sublattices (intervals) in the chain lattices
( ), ( )K LL L and ( )L .

In the set of chosen congruence relations, the operations are defined as follows: 

Definition 3.

i j k , (mod ), ( (mod )) ( (mod )),k i jp p if p p p p (11)

where the meet collapses those elements, which are congruent with respect to both relations. The
join of two allowed congruence relations is specially constructed to ensure, that the resulting
relation be in the allowed subset:

i j k , 1 1 2 2(mod ), (mod ( ) ( )))k i j i jp p if p p or or (12)

where 1 2i i i  , 1 2j j j and 1 1,i j are of type (  8 )  , 2 2,i j of type (  9 ) . 

The join is the smallest (allowed) congruence relation, which collapses the classes of the 
operands. The whole set of allowed congruence relations ( ( ))con KL  arises through a single 
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application of the above operations onto the set of basis congruence relations. Our specially chosen 
congruence lattices will be the (lowercase!) algebras ( ( )) ( ( )), ,K con Kcon L L ,

( ( )) ( ( )), ,L con Lcon L L  and ( ( )) ( ( )), ,concon L L . Since the congruence relations 

are generated by (11) and (12) from the basis congruence relations, the main classes are intervals of 
chain lattices. The elementary congruence relations of a 3–element and a 5–element chain are 
displayed on figure 4. (4.1, 4.2 and 4.3, 4.4). Abandoning chain lattices, 

( ) ( ) ( ) ( )KL K LL L L L  is defined on the Cartesian product set. The operations are imposed 

on the ordered pairs ‘component–wise’. 

Figure 4. A 3–element and a 5–element chain with lattices of allowed congruence relations (Congruence relations are 
identified with collapsed elements). 

Definition 4.
( , ( )) ( , ( )) ( , ( ) ( )),kl k l k l k l kl k l k l k l (13)

( , ( )) ( , ( )) ( , ( ) ( )),kl k l k l k l kl k l k l k l (14)

which means that for elements of the ordered pairs, the meet and join come from ( )KLL  and ( )L .

It is stressed, that also the double–index is understood component–wise, i.e.
( ) {( , ) ( , )}kl k l k l k l .

Lemma 2. Lattice ( )KLL is distributive.

To have also a visual impression about ( )KLL , the Hasse–diagram of a (2 2) –partitioned 

(density) function is displayed on Figure 5. The marked dots denote true brackets associated with 
the following three distinct property function values (11) (12) (22) (21) .

Since congruence relations of different chain lattices are independent, as well as the lattice 
operations in the Cartesian lattice are component–by–component defined, also the congruence 
relations of ( )KLL  are of product structure. 
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Figure 5. The Hasse–diagram of a (2 2) –partitioned density function with three different ( )kl  values. 

Definition 5. Any congruence relation ( ( ))i con KLL of a Cartesian lattice is the Cartesian
product of the congruence relations of the component lattices ( ( ))KL

i con KLL and
( ( ))i con L

,KL KL
i i i (15)

where any of the components may be ˆ ˆ0 , 0KL or ˆ ˆ1 , 1KL .

Henceforth, the component congruence relations will always be distinguished by superscripts 
KL K L

i i i  and i , while an unlabelled symbol is understood as KL
i i .

Definition 6. Two brackets in KL are congruent, if the first and second elements of the
ordered pairs are congruent separately,

( , ( )) ( , ( )) (mod ),KL
i ikl k l k l k l

(mod ) ( ) ( ) (mod ).KL
i iif kl k l and k l k l

(16)

The universal bounds 0̂KL  and 1̂KL  of ( ( ))KLcon L  determine the smallest and largest 

congruence relations, 
ˆ( , ( )) ( , ( )) (mod 0 ), ( , ( )) ( , ( )),KLkl k l k l k l if kl k l k l k l (17)

ˆ( , ( )) ( , ( )) (mod 1 ), ( , ( )), ( , ( )).KLkl k l k l k l kl k l k l k l (18)
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Figure 6. The congruence lattice ( ( ))KLcon L  of the lattice on figure 5. 

The congruence classes [( , ( ))] / ikl k l  of allowed congruence relations ( ( ( )))i con KLL

determine convex one–, two–, or three–dimensional intervals (points respectively). Although each 
elementary congruence relation has only one main class (with more than one element), this property 
is lost in the product formation and the product congruences have several multi–element classes. A 
congruence class [( , ( ))] / ikl kl  generated by a true bracket contains all those brackets, which 
belong to the rectangle [( )] / KL

ikl  with property function values in the interval [ ( )] / ikl . The 
congruence lattice ( ( ))KLcon L  associated with the (2 2) –partitioned (density) function with 
three distinct ( )kl  values (Figure 5.) has 16 allowed congruence relations listed in table 1. The two 
non–trivial congruence relations of ( ( ))con L  have the main classes 1 1 2[ ] { , }  and 

2 2 3[ ] { , }, as seen on Figures 4 and 5. The corresponding Hasse–diagram is displayed on 

Figure 6. 

Table 1. The list of allowed congruence relations of the lattice on Figure 5 

Lemma 3. The elementary congruence lattices ( ( )), ( ( )), ( ( ))K Lcon L con L con L are lower

(dually) semi–modular.

Since it is known [12] that the Cartesian product of semi–modular lattices is itself semi–modular, 
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( ( ))KLcon L  is a lower (dually) semi–modular lattice. For the congruence lattice of a lattice 
algebra is distributive [12–14], ( ( ))KLcon L  is differing from the general ( ( ))KLCon L . This is 

because the actual algebra is defined only on a subset of all congruence relations, according to the 
special choice of the join operation. 

Let us make a short summary on the ideas and results obtained up to this point. The density 
function under study has been decomposed into a set of building blocks. The building blocks have 
been mapped bijectively onto a set of abstract brackets defined as ordered pairs of a ‘location index’ 
and a ‘property function’. The set of brackets has been embedded into the Cartesian product set of 
the indexes and the property function points and a Cartesian lattice was constructed over these 
generalized brackets. Congruence relations were defined on the component lattices, as well as on 
their product and a specially chosen subset of all congruence relations was selected. These allowed 
congruence relations formed the base set of the algebra resulting in the congruence lattice 

( ( ))KLcon L .

3 SHAPE LATTICE AND MEASURE

To have a deeply structured picture on the shape, ( ( ))KLcon L  alone is not enough. The aim is 
to give a measure for the similarity of two density functions, but ( ( ))KLcon L  is not distributive, 

therefore not admitting a measure. We shall construct a new lattice carrying the full information on 
the shape and admitting a measure, too. 

Table 2. The congruence classes generated by the bracket 0 (11, (11))l

Each congruence relation ( ( ( )))i con KLL  structures the base set KL  into congruence 

classes. Each class is an ensemble of true and generalized brackets mixed. In case of several 
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(density) functions, the identical partitionings of the co–ordinate domains result in identical 
( ), ( 1,..., )j KL j mL  lattices. If the cardinalities | |, ( 1,..., )j j m  are also identical, then 
( ( )), ( 1,..., )j jKL j mcon L  coincide and do not characterize the individual shapes. However, the 

congruence classes generated by the true brackets are fully specific in each lattice and carry all 
informations on the shape. To be definite, the congruence classes generated by the true brackets 

0 6 7( (11, (11)), (12, (12)), (22, (22))l l l  and 9 (21, (21)))l  (identified on figure 5.) are 

listed in Tables 2–5. 

Table 3. The congruence classes generated by the bracket 6 (12, (12))l

Table 4. The congruence classes generated by the bracket 7 (22, (12))l
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Although the elements of congruence classes form convex sublattices of ( )KLL , the set of 

elements of those congruence classes, which are generated by the true brackets do not form 
generally a distributive lattice. Therefore a set of n –vectors is constructed by mapping only the true 
elements of congruence classes. The ensemble of these vectors characterizes the shape and proves 
to be suitable for constructing a distributive lattice admitting a measure, too. 

Table 5. The congruence classes generated by the bracket 9 (21, (21))l

Definition 7. For every congruence class [ ] /ji j io l , where ( ( ))i con KLL and jl is an

arbitrarily chosen true bracket

( ) , ( , ( ))
( )

0, .ji

kl ji
o

kl if kl kl o
kl

otherwise
(19)

where vector ( (11),..., ( ))
ji ji ji

T
o o o k lM M is called (shape) 'property–vector'. The non–zero

elements are the property function values ( )kl multiplied by the kl measure of the cell kld . The 

image of all congruence classes is the vector set { }
jioV .

Lemma 4. The mapping { : [ ] / , ( ( )), }ji ji j i i jo o l con KL l is a true bracket VL is

surjective and order–preserving,

.
ji j iji j i o oo o (20)

The vectors are ordered according to the vector lattice operations specified in the sequel. To 
proceed in a formal generality, the operands will be denoted by capital letters , , ,...X Y Z .

Definition 8. The meet and join are constructed component–by–component, as the minimum and
the maximum of the operands,

, : min{ , }, .kl kl klX Y Z Z X Y kl KL (21)

, : max{ , }, .kl kl klX Y Z Z X Y kl KL (22)
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The order relations and lattice operations are connected in the usual way. The closure set V  is 
obtained by finite applications of the specified operations. The constructed lattice ( ) , ,V VL

is characteristic to the shape and will be called ‘shape (property) lattice’. The universal bounds are 
0̂

ji

V
ji o  and 1̂

ji

V
ji o .

Lemma 5. The shape (property) lattice ( )VL is distributive.

Unfortunately our example the (2 2) –partitioned density function has 10  distinct congruence 

classes, therefore the closure set V  has too many elements to draw its Hasse–diagram. The lattice 
( )VL  is characteristic to the shape and distributive, too. In any distributive lattice one can define a 

non–negative function  with the following properties. If ,X Y  are elements of the lattice, then: 

( ) ( ),X Y X Y (23)

0̂ ( ) ( ) ( ).X Y X Y X Y (24)

Under these circumstances  is a (finitely additive) measure and it is strictly positive, if: 

ˆ( ) 0 0.X X (25)

Lemma 6. The function

( ) : ,X X X X V (26)

(where denotes scalar product) is a strictly positive measure on the distributive lattice ( )VL .

If ji jiO o , then 1̂V
O  and measure ( / || ||)OX  is a density function. It provides 

information about the distribution of the considered property among the congruence classes 
generated by the true brackets. We shall call it ‘property density function’. 

4 THE MAIN RESULTS 

This section is devoted to the implications of the former results. The aim is to obtain appropriate 

algebraic tools for finding those (density) functions in a set, which are ‘similar’ in some lattice–

theoretical sense. The lattice–theory based similarity concept does not rely on the direct comparison 

of two functions, but the compared functions are decomposed into appropriate building blocks and 

the internal relationships of these building blocks are compared by means of lattice–theory. This 

way allows considering also the abstract internal structures of the functions, beyond the point–wise 

or integral differences. 

Definition 9. The function set under further study is a family of continuous (density) functions
: , ( )w wf D w WR . The supports are isometrically partitioned ( , , )w uD D w u W

( 11.)Definition , the indexes are running identically, the resulting index–lattices are identical
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( ( ) ( ), , )w uKL KL w u WL L . Each function wf is associated with the lattice ( )w wKLL ,
relating to an admissible property function ( )w kl .

Definition 10. Two domains , , ,n
w uD D w u WR are isometrically isomorph with respect to

bijection : w uD D ( )w uD D domain congruent , if 2 2, , || || || ( ) ( ) ||wx y D x y x y .

Definition 11. Two isometrically isomorph domains are ‘isometrically partitioned’, if bijection
induces a one–to–one mapping of the partitions.

Property function ( ) ( )w w klkl d  is a set function with argument labeled by the index of the 
supporting cell. It is a piecewise constant approximation function to the shape–generating wf . The 
lattice–ordering ( )w wL  orders the points of set ( ( )) ( )w w wRange kl KL , therefore neither 

( )w wL , nor ( )w wKLL  reflects the connections between function values ( )kl  and arguments. 

As a consequence, the concept of isomorphism can be strengthened for ‘strong isomorphism’. 

Definition 12. Two continuous (density) functions ,w uf f  ( 9.)Definition are ‘strongly

isomorphic’, if their associated lattices are strongly isomorphic,
( ) ( ), ( , )w w st u uKL KL w u WL L .

Definition 13. Two lattices are 'strongly isomorphic' ( ( )) ( ( ))w w st u uKL KL KL KLL L , if their

elements satisfy,

, ( ) ( ) ( ) ( ) , , .( )w w u ukl k l kl k l kl k l kl k l KL (27)

From the two–way implication of strong isomorphism condition follows that the property 
function lattices are isomorphic ( ) ( )w w u uL L , i.e. the number of distinct function values are 

equal in w  and u . In consequence ( ) ( ), ( , )w w u uKL KL w u WL L  supporting the ‘strong 

isomorphism’ terminology. Strong isomorphism asserts that under the conditions of Definition 9,

the lattice–ordering of property function values induces the identical permutations of their 

arguments. It is an important concept, because the strongest condition for the 'similarity' of two 

functions and easy to detect. It is enough to check, whether the pairing by arguments 
( ) ( )w ukl kl  is order–preserving. Although strong isomorphism ensures ‘similarity’, a further 

condition is needed to ensure the equality of two functions. 

Definition 14. Two strongly isomorphic continuous (density) functions ,w uf f  ( 9.)Definition
are 'exchange isomorphic' ( ( ) ( ), , )w w ex u uKL KL w u WL L , if their associated lattices are

exchange isomorphic.

Definition 15. Two strongly isomorphic lattices ( ), ( ), ( , )w w u uKL KL w u WL L are
exchange isomorphic ( ) ( )w w ex u uKL KLL L , if and only if 0 0k l ,
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0 0 0 0 0 0 0 0 0 0( \ ) ( ) ( \ ) ( ) , .( ) ( )( ) ( )( )w w u st u u wKL KL k l k l KL KL k l k l k l KLL L (28)

Exchange isomorphism requires that interchanging systematically every element 
0 0( {11,..., })k lk l M M  of the approximation function ( )w kl , the generated lattices remain strongly 

isomorphic. 

Definition 16. Two continuous (density) functions ,w uf f  ( 9.)Definition are identical
( w uf f 'shape–congruent'), if ( ( ) ( ( )),w u wx f x f x x D .

Theorem 1. Two continuous (density) functions ,w uf f  ( 9.)Definition are identical ( )w uf f , if

and only if the coupled elements of lattice sequences ( ( ) ( ), )n n
w n n u n nK L K L nL L  (belonging to

monotone and infinitely refining isometric partitionings of wD and uD

( ( ) ( ) 0))w urefin D refin D are exchange isomorphic for all n , ( ) ( )n n n n
w n n w ex u n n uK L K LL L  .

Exchange isomorphism ensures that isomorphism coupled elements of two strongly isomorphic 

lattices do not differ more, than they differ from their immediate lattice neighbors (covering and 

preceding elements). If this property is invariant in the infinite refinement limit, the two functions 

are identical. Although Theorem 1 asserts a known result (that two different sequences with 

infinitely approximating elements have a common limit), this global statement (on the identity of 

two functions) is established by the lattice structure of their discretized parts. While the identity of 

two (density) functions is (more or less) easily recognizable, the strong isomorphism does not 
define easily perceptible similarity. This is illustrated on Figure 3, where the displayed ( )kl  –

function is strongly isomorphic with ( )kl  on Figure 2, although they look different. Strong 

isomorphism represents a deeply rooted relationship. If two density functions are strongly 

isomorphic, their inherent similarities are indisputable. However, the ‘basically similar’ molecular 

interactions are affected by individual effects characterizing the system. In this report we only deal 

with strongly isomorphic (density) functions and the weaker types of similarity will be discussed 

elsewhere.

The strong and exchange isomorphism concepts are important in qualitative sense, but do not say 

anything about the ‘degree of correspondence’ of two functions, or the territorial distribution of the 
considered property. The assembling of elements in ( ( ))KLcon L  provides only qualitative 

information on the internal dependencies of the elements, but the measure on the distributive shape 
property lattice ( )VL  provides quantitative information. 

Definition 17. If given two continuous (density) functions ,w uf f  ( 9.)Definition associated with

strongly isomorphic lattices,
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( , ) : ( )
w uw u O OGlobDist L L (29)

is the ‘lobal shape distance’ and

( , ) : ( )w u
ji pq

w u
ji pq o o

PartDist o o (30)

is the ‘partial shape distance’, where ( )w w wKLL L , ( )u u uKLL L and /w
ji w io L is

generated by the true bracket jl , while /u
pq u qo L is generated by the true bracket pl  (or both

belong to the same factor lattice).

Lemma 7. ( , )w uGlobDist L L and ( , )w u
ji pqPartDist o o  ( , )w u W satisfy the conditions to be a

metric.

Theorem 2. If given two continuous (density) functions ,w uf f  ( 9.)Definition and exchange
isomorphic, infinitely refining lattice sequences ( 1.)Theorem , the global shape distance

approaches 0 in the infinite refinement limit,

( , ) 0, .n n
w uGlobDist if nL L (31)

In case of partial shape distance, the assertion is implied for every strong isomorphism coupled
congruence class. This means that:

, ,( , ) 0,n w n u
ji jiPartDist o o if n (32)

where , ( ) /n w n n
ji w n n w io K LL and , ( ) /n u n n

ji u n n u io K LL .

Measure  separates strongly isomorphic, but not exchange isomorphic density functions 

assigning a single scalar to couples of lattices. Function PartDist  does the same with a couple of 

congruence classes. The meaning of the former is the ‘degree of similarity’ in the whole co–
ordinate domain and full range of ( )kl . The meaning of the latter is the 'degree of similarity' in a 

sub–domain of the coordinates space and a subinterval of the property function range. If 
systematically applying PartDist  to every pair of congruence classes in wL  and , ( , )u w u WL

(can be also identical), the matrix: 

, ,[ ( , )]
w u

w u
L L ji pq ji pqPD PartDist o o (33)

of partial shape distances is obtained. Unlike the single parameter GlobDist , this matrix carries a 

well structured characterization of similarity. 

If given a set of density functions with associated strongly isomorphic lattices 
{ ( ) : }w wKL w WL , two –neighbor (metric) topologies can be established. The open sets of 

these topologies include those lattices, which are ‘similar enough’ to a chosen lattice. This lattice is 
in the center of a ball with radius of length  and all its –neighbors are in the open interior of the 
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ball. In the one topology, the distance is measured by GlobDist , in the other, by PartDist .

Definition 18. Given a set of continuous strongly isomorphic (density) functions ( 9.)Definition
with associated lattices ( ), ( )w wL KL w W  , a global –neighbor ( ( ))u uGlobNb KLL is a set of

lattices in the –ball around the central lattice,

( ( )) { ( ) : ( , ) , }, .u u w w u wGlobNb KL KL GlobDist w W u WL L L L (34)

The partial –neighbor is defined analogously, by the distances between elements of a set of
congruence classes : { : ( ) / , }W w w

pq pq pq w w qo o o KL w WL and the fixed element

( ) / , ( )u
ji u u io KL u WL ,

( , ) { ( ) : ( , ) , }, .u W u w
ji pq w w ji pqPartNb o o KL PartDist o o w W u WL (35)

Lemma 8. The closure sets GlobNb and PartNb constructed by the set–theoretical unions and
intersections of ( ( ))u uGlobNb KLL and ( , )u W

ji pqPartNb o o are topologies.

The –neighbor of a given lattice includes exactly those lattices we are looking for. In general, 

if a set of density functions is given, our aim is to select those functions, which are similar to each 
other. The global distances can be arranged into the matrix ,[ ( , )]u w u wGlobDist L L , while the partial 

distances into the hyper–matrix , ,[ ] , ( , )
u wL L u wPD u w W . These measures satisfy the triangle 

inequality and serve for generalized (similarity) distance functions. The intersections and unions of 

the open sets of established topologies include lattices satisfying entangled metric conditions 
concerning distances from several fixed lattices. The open sets of PartNb  allow to find those 

lattices, which are ‘similarly shaped’ only partially, in some (important) domains. The partial 

similarity distances allow defining any combination of similarity requirements and provide versatile 

tools for structuring a set by the similarity properties of their elements. Since the lattices and 

discretized density functions are in one–to–one relationship, a set of density functions can be 

structured in any required accuracy by studying the lattices of their building blocks. 

5 CONCLUSIONS 

In the general case, there is a set of continuous (shape determining) functions or more 

specifically a set of (electron) density functions and the aim is to select those functions, which are 

similar in some sense. The practical significance of this task might be quite challenging. The shape 

of the appropriately chosen kinds of the electron density functions of the molecular systems are 

closely related to their chemical and pharmacological behaviors. This is the reason, why studying 

their shapes is of long-term interest. We have chosen a lattice algebraic approach to this question, 

because the nature of lattice theory especially fits the problem. Although in this report only a tiny 
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portion of the whole problem is attacked, some useful results could be obtained. 

For analyzing the shape of a function, the function was discredited in a way, which ensured that 

in the infinite refinement limit the original function was recaptured. The set of discrete ‘brackets’ 

became the carrier of the properties of the original function and the immediate subject of our 

investigation. A distributive lattice was constructed on the brackets and two functions were 

compared by their associated lattices. If they exhibited the so called strong isomorphism property, 

the functions were said to be ‘similar’, in spite of the fact that the everyday experience might have 

judged such functions quite different looking. The established exchange isomorphism concept 

provided a necessary and sufficient condition for being two functions shape–congruent in the 

infinite refinement limit. But, such a deep–lying similarity as embodied in the strong isomorphism 

concept is not satisfactory for the demands of application. Therefore, the brackets were collected 

into congruence classes using a special subset of all congruence relations. The congruence classes 

express the connections of the brackets. The connections are characterized by the locations of 

elements, as well as by the associated properties. Because of the nature of congruence relations 

these connections are relative. Since the applications required a tool to define also the degree of 

similarity, the congruence classes were projected onto a set of vectors and a distributive vector 

lattice was constructed with a measure. The measure served for a property density function yielding 

detailed information about the distribution of the studied property, as well as for a distance function. 

The measure allowed to define a 'global' and a 'partial' shape distance of two functions. The main 

goal of applications was to find all those functions in a set, which were 'similar' in some specified 
degree. The distance functions provided appropriate tools to establish a 'global' and a 'partial' –

neighbor topology. The open sets of these topologies included those functions, which were similar 

in a specified degree in the whole coordinate domain and property function range, or only partially 

in a sub–domain and subinterval. The partial similarity distance made the similarity structured 

allowing very fine statements on the shapes of the functions. In accordance, the topologies 

decomposed a set of functions on the basis of the fine details of this structured similarity. 

In a set of electron density functions (or any other continuous functions), the global and partial 

shape distances and the associated neighborhood topologies accomplished our goal exactly. We are 

able to pick out those functions, which correspond to each other in some sense. But, this 

correspondence can be much more intricate, than mere ‘close overlapping’. Although in this report 

we restricted ourselves to strongly isomorphic systems, strong isomorphism allows a very wide 

class of shapes far beyond of the similarity judgment of our everyday experience. In spite of the 

analytically based similarity concepts, the lattice theoretical footing of the procedure provides a 
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firm basis to make separate statements on the similarity of (density) functions in the qualitative 

sense of strong isomorphism and on the degree of similarity in the quantitative sense of similarity 

distances. 
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Appendix 1 (Proofs of the assertions)
Lemma 1.
Proof. Let us choose ( )KL  for example and let ( ( ))Kcon L  . It is assumed, that exists , ,a b c K  with a b c
and [ ] / [ ] / [ ] /a c b  . Since a c  and b b  , the substitution property implies ( ) ( )a b c b a b  and 
( ) ( )a b c b b c  proving the convexity by contradiction. 

Lemma 2.
Proof. The proof will be restricted to ( )KL  , since the operations in ( )KLL  are defined component–by–component, 
therefore distributivity is preserved. The distributive identity is , ,a b c K

( ) ( ) ( ), ( ) ( ) ( ).a b c a b a c a b c a b a c
Taking into account Definition 1., this means, for the first identity  

min{ ,max{ , }} max{min{ , }, min{ , }}a b c a b a c
and similarly for the second  

max{ ,min{ , }} min{max{ , },max{ , }}.a b c a b a c
But in a chain lattice, these equalities are always obeyed. 

Lemma 3.
Proof. Lower (dual) semi–modularity requires ( ) ( )i j i i j j  . Since the elementary lattices are chains 
and their congruence relations are restricted to have one mainclasses, the covering relation means, that the larger 
mainclass collapses one more element of the chain. Taking into account the definitions of the meet and the join, the 
following sequence of implications proves the statement,  

( ) | [ ] | | [( )] | 1 | [ ] | | [ ] |i i j i i j i j

| [ ] | | [ ] | | [( )] | | [ ] | 1 ( ) .i j i j j i j j

Lemma 4.
Proof. The surjectivity is trivial, the isotonicity follows from the definitions of the operations and the subsequent 
implications,  

( ( ) ( )), .
ji j iji j i o oo o kl kl kl KL

Lemma 5.
Proof. The vector lattice ( )VL  can be considered for products of chain lattices defined over the components. But, for 
chain lattices the statement has been proved in Lemma 2. 

Lemma 6.
Proof. Condition (23) and (25) are satisfied trivially. If the vectors have empty intersection, then for kl KL  either 

( )
jio kl  or ( )

j io kl  is 0  . Since (24) is satisfied component–by–component, it is satisfied also for the sum of the 
components, i.e. by the properties of the scalar product. 

Theorem 1.
Proof. The two lattices ( )w wKLL  and ( ), ( , )u uKL w u WL  are strongly isomorphic. The conditions of exchange 
isomorphism ensure that for every lattice interval ( ) ( ) ( )n n n

w w wk l kl k l  ( n  refers to the n  –th refinement!) also 
( ) ( ) ( )n n n

w u wk l kl k l  is satisfied. If ( ) ( ) 0w urefin D refin D  , then  
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(| ( ) ( ) | 0) (| ( ) ( ) | 0) | ( ) ( ( )) | 0,n n n n
w w w u w uk l k l kl kl f x f x

, ( ) .w ux D x D
The sequence of opposite implications is trivial. 

Lemma 7.
Proof. The following conditions are satisfied for all , ,w u vL L L  lattices,  

( , ) ( , ) 0 ( , )w u u w w wGlobDist GlobDist GlobDistL L L L L L

( , ) ( , ) ( , ),w u u v w vGlobDist GlobDist GlobDistL L L L L L
since the above functions are defined for the usual Euclidean distance. The assertion is implied for the 

( , )w u
ji pqPartDist o o  function. 

Theorem 2.
Proof. If n

kl  ( n  refers to the n  –th refinement!) is the measure of the cell n
kld  in the n  –th refinement, then 

( , )n n
w uGlobDist L L  is the square integral of ( )n n

w u  , which are the n  th approximations to the function ( )w uf f  . 
From Theorem 1. follows that, , ( ) ( )n n n n

w w u u w u w un f f f f  and 
2 2( ) 0 ( ( ) ( ( ))) 0n n n

w u w uf x f x dx  , what is exactly the statement. 

Lemma 8.
Proof. The ( , ), ( , )w u

w u ji pqGlobDist PartDist o oL L  functions satisfy the conditions to be a metrics. Therefore, the 

( ( ))u uGlobNb KLL  and ( , )u W
ji pqPartNb o o  are open neighbourhoods including the empty set, as well as the total base 

set, too. Their closures contain also all unions and intersections forming the referred  –neighbourhood topologies. 

Appendix 1. (Basics of lattice theory)
The content of this section is to be found in many textbooks of algebra or lattice theory [12–16]. It is included here only 
for convenience, therefore the statements are given without formal proofs. The forthcoming discussion refers to finite 
lattices. It is more general than our actual topic and the notation will distinctly differ from the previous symbolism. 
Lattice theory, as a branch of algebra refers to a set endowed with some operations. The ordered pair ,L  specifies a 
lattice, if L  is a non–empty set and { : }i i I  is an ensemble of operations obeying some conditions. Set L  is 
the 'universe' of the (lattice) algebra and , ( )i i I  are the basic operations in it. The operations can be of rank 
0,1,2  and they are functions from the product sets 0 1 2, ,L L L  into L  . Set 0L  is identified with { }  , therefore the rank 
0 operation selects only a special element of L  , but in the actual report only operations of rank two appear explicitly. 
By a convention we shall use boldface letters ( L  ) to denote algebras and simple uppercase letters ( L  ) for their 
universes. Lattices can be seen equivalently as special (partially) ordered sets or binary (rank 2) algebras. To be a 
(partially) ordered set, (order) relation  must be, 

i.) reflexive, i.e. ( )b b b
ii.) anti–symmetric, i.e. ,b b b b b b
iii.) transitive, i.e. , .b b b b b b

If L  is a (partially) ordered set with order relation  , properties i.)–iii.) are obeyed and if every non–void subset 
X L  has a least upper bound (l.u.b.) [ a L  is an upper bound of X  , if x a  for all x X  and a L  is a least 

upper bound of X  , if b  is also an upper bound of X  and a b  ], as well as a greatest lower bound (g.l.b.) [ a L  is 
a lower bound of X  , if a x  for all x X  and a L  is a greatest lower bound of X  , if b  is also a lower bound of 
X  and b a  ], then L  is a lattice. If considering lattices as binary algebras with operations denoted by  and  , the 

following identities must be satisfied for every , ,x y z L  : 
1.) ;x x x x x x  (idempotency). 
2.) ;x y y x y x x y  (commutativity). 
3.) ( ) ( ) ; ( ) ( )x y z x y z x y z x y z  (associativity). 
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4.) ( ) ( )x x y x x y x  (absorption law). 
The lattice operations and order relations are consistent in the following way,  

, .a b if a a b and b a b
 The lattice operations assign to each couple of elements their l.u.b. (  ) and g.l.b. (  ). The lattice is complete if 
every subset has a g.l.b and a l.u.b.. The least element is 0̂  , the greatest is 1̂  . An element b  covers a  , if a b  and 
a c b a c  or c b  . The upper covers of 0̂  are the 'atoms' of the lattice, while elements exactly below 1̂  are 
the 'dual atoms'. Elements ,a b  are comparable, whenever a b  or b a  and incomparable ( ||a b  ), otherwise. Those 
elements, which are comparable pairwise form a chain, while those which are incomparable form an anti–chain. Using 
the covering relation, finite lattices can be displayed by drawing a Hasse diagram. Here the elements of L  are 
represented by points on a plane, where each point is connected to the (point–)representatives of upper and lower cover 
elements. Some subsets of L  are closed with respect to one or both of the lattice operations. If U  is non–empty, 
U L  and for all b L  , if b a b U  , furthermore , ( )a b U a b U  , then U  is an 'ideal' of the lattice 
denoted by ( ]U  . By dualization we arrive at the concept of the 'filter' of the lattice. If U  is non–empty, U L  and for 
all b L  , if b a b U  , furthermore , ( )a b U a b U  , then U  is a filter (dual ideal) of the lattice denoted 
by [ )U  . If a U  , the 'principal ideal' and 'principal filter' is obtained. A sublattice is closed with respect to both of the 
operations, i.e. if U  is non–empty, U L  and ( , ) ( )a b U a b U  , ( )a b U  , then U  is a sublattice. The 
sets of ideals (filters, sublattices) can be ordered by the set–theoretic inclusion giving the ideal lattice ( )LI  . 
The morphism concept covers mappings from a lattice into a lattice (possible the same one). Let : 1 2L L  be a 
function from 1L  to 2L  . The mapping is isotone, if ( ) ( )x y x y  . It is a meet morphism, if 

( ) ( ) ( )x y x y  , a join morphism, if ( ) ( ) ( )x y x y  and a lattice (homo)morphism, if both properties 
are fulfilled. The mapping is an isomorphism, if it is a bijection, an epimorhism, if it is onto, an endomorphism, if it is a 
homomorphism and 1 2L L  and an automorphism, if it is isomorphism with 1 2L L  . 
A congruence relation is a special kind of equivalence relation. An equivalence relation exhibits similar properties as 
.) .)i iii  , except .)ii  , which is replaced by 

ii'.) symmetric, i.e. .b b b b
An equivalence relation  is a congruence relation, if the so called ’substitution property’ is fulfilled, 

0 0 1 1 0 1 0 1 0 1 0 1( ), ( ) ( ), ( )x y x y x x y y x x y y  , where x y  was substituted with the notation 
( )x y . All congruences of a lattice L  can be ordered by inclusion to form the congruence lattice 

( ( )) ( ( )), ,L Con LCon L L , where the meet is the set–theoretic intersection and the join is the transitive closure 
[14]. 
The lattices can be classified by those identities, which their elements satisfy. The 'modular' lattices are characterized by 
the modular identity,  

( ) ( ) , , , , .x y z x y z if x y z L z x
 In the class of 'distributive' lattices, the modular law appears in unrestricted form,  

( ) ( ) ( ), , , .x y z x y x z if x y z L

The Boolean lattices are distributive, contain the universal bounds 0̂  and 1̂  and every element has a unique 
complement x  , with the following properties ˆ ˆ0, 1x x x x  . 
We do not intend to pick out further elements of lattice theory, this short overview hopefully covers the topic we are 
interested in.
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