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Abstract 

Quantitative structure–activity relationships (QSAR) models for the bone resorption inhibition of 29 aryl–
substituted bisphosphonates (ABP) were established with the CODESSA program. The QSAR models for the 
ABP bone resorption inhibition are obtained by selecting descriptors from a wide diversity of constitutional, 
topological, electrostatic and quantum structural indices. Standard quantum chemistry packages are used for 
optimizing the molecular geometry and for semi–empirical quantum computations at the AM1 level. A heuristic 
algorithm selects the best multiple linear regression equation according to the highest statistical indices; the 
predictive power of each QSAR model is estimated with the leave–one–out (LOO) cross–validation method. For 
the whole set of 29 compounds, the best QSAR model (r2 = 0.8328, r2

LOO = 0.7479, s2 = 0.251, F = 29.88) is 
obtained with four quantum descriptors (minimum total interaction for a C–P bond, maximum valency of a N 
atom, minimum total interaction for a C–C bond, and hydrogen–acceptors surface area). A significant 
improvement of the statistical indices is obtained by deleting three outliers, when a fairly good QSAR is 
obtained (r2 = 0.8827, r2

LOO = 0.8231, s2 = 0.118, F = 39.51) also with four quantum descriptors (minimum 
electron–electron repulsion for a H–N bond, minimum coulombic interaction for a C–P bond, maximum one–
electron reactivity index for a N atom, and minimum total interaction for a H–O bond). These results 
demonstrate the ability of AM1 quantum indices in modeling the bone resorption inhibition of aryl–substituted 
bisphosphonates. 
Keywords. QSAR; quantitative structure–activity relationships; aryl–substituted bisphosphonates; bone 
resorption inhibition; CODESSA. 

1 INTRODUCTION 

The bone resorption inhibition activity of geminal bisphosphonates makes them important 
compounds for the treatment of patients with postmenopausal osteoporosis, osteolytic bone 
metastases arising from breast cancer or multiple myeloma, tumor–induced hypercalcemia, and for 
Paget’s disease of bone [1–5]. Bisphosphonates contribute up to $5 billion to the global 
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pharmaceutical market, and the design of new bone resorption inhibitors with improved potency is 
an active field of investigation. 

In this paper we develop quantitative structure–activity relationships (QSAR) models for the 
bone resorption inhibition of aryl–substituted bisphosphonates (ABP). The relationships between 
ABP chemical structures and their activity in inhibiting bone resorption were established by 
selecting the structural descriptors for the multilinear regression equation from a wide range of 
topological, geometrical, electrostatic, and quantum indices. 

2 MATERIALS AND METHODS 

The success of the QSAR approach can be explained by the insight offered into the structural 
determination of chemical properties, and the possibility to estimate the properties of new chemical 
compounds without the need to synthesize and test them. The main QSAR hypothesis is that all 
properties (physical, chemical, and biological) of a chemical substance are statistically related to its 
molecular structure. 

Table 1. Compound Number (See Figure 1 for Structure), Number from Ref. [4], 
Experimental ED50 ( g/kg) [4], and pIC50 Experimental and Computed with Eq. (2) 

No Ref. [4] ED50 pIC50 exp pIC50 Eq. (2)
1 5r 0.33 9.209 9.099 
2 4j 0.4 8.979 8.422 
3 5d 0.5 8.885 8.397 
4 5f 0.6 8.835 8.348 
5 4g 0.7 8.778 8.223 
6 5p 0.7 8.741 8.417 
7 4d 1 8.586 8.178 
8 4i 1.0 8.565 7.964 
9 5c 1.2 8.488 8.156 

10 5h 1.2 8.546 8.814 
11 5g 1.3 8.506 8.534 
12 4b 1.4 8.407 8.259 
13 4f 1.5 8.405 8.104 
14 5a 1.5 8.402 8.605 
15 5b 1.7 8.385 8.563 
16 5e 1.7 8.369 8.307 
17 5l 4 7.997 8.162 
18 5q 7 7.741 7.903 
19 5s 7.8 7.745 8.426 
20 5j 10 7.624 7.697 
21 4e 15 7.405 7.537 
22 4c 20 7.253 8.023 
23 4k 20 7.306 8.136 
24 5i 20 7.142 8.070 
25 5n 100 6.609 6.434 
26 4a 300 6.053 6.168 
27 5k 500 5.930 5.203 
28 4l 1500 5.436 5.374 
29 5m 7500 4.754 5.557 
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Figure 1. Structures of the 29 Aryl–Substituted Bisphosphonates [4]. 

The investigation of large and diverse molecular databases was made possible by the advent of 
general QSAR programs which integrate the computation of structural descriptors with the 
generation of structure–property models. CODESSA [6–8] is a widely used QSAR software [9–12] 
that describes numerically the chemical structure with more than one thousand structural descriptors 
from five classes: constitutional, graph theoretic and topological indices, geometrical, electrostatic, 
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and quantum–chemical descriptors. Using statistical methods, such as multiple linear regression 
(MLR) or PCA, the best descriptors are selected in the final structure–activity model. The bone 
resorption inhibition QSAR equations from this study were developed with CODESSA. 
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Figure 1. (Continued). 
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2.1 Chemical Data 
The experimental values for the bone resorption inhibition of 29 aryl–substituted 

bisphosphonates (Figure 1) taken from the literature [4] are presented in Table 1. 

2.2 Previous QSAR Models 
Using the Cerius2 molecular field analysis QSAR, Kotsikorou and Oldfield [5] obtained a fairly 

good model for the set of 29 ABP: 

pIC50 = 5.137 – 0.021 H+/326 + 0.052 CH3/335 – 0.073 H+/514 – 0.041 H+/564
n = 29 r2 = 0.900   F = 54.28 r2

LOO = 0.799 (1)

where H+/i represents the interaction energy between a proton probe and the molecule at the grid 
point i, and CH3/j represents the interaction energy between a methyl probe and the molecule at the 
grid point j.

2.3 Molecular Modeling 
In the present investigation, the chemical structures were generated with HyperChem [13], the 

geometry optimization was performed with MOPAC [14] using the semiempirical quantum method 
AM1 [15] and the QSPR models were computed with CODESSA [16]. 

2.4 Structural Descriptors 
The HyperChem structure files and the MOPAC output files were used by CODESSA to 

calculate 603 descriptors. CODESSA computes five classes of structural descriptors: constitutional 
(number of various types of atoms and bonds, number of rings, molecular weight); topological 
(Wiener index, Randi  connectivity indices, Kier shape indices, information theory indices); 
geometrical (principal moments of inertia, shadow indices, molecular volume and surface area); 
electrostatic (when atomic charges are computed on the basis of atomic electronegativity: minimum 
and maximum partial charges, polarity parameter, charged partial surface area descriptors, hydrogen 
bond donor and acceptor surface indices); quantum (minimum and maximum partial charges, Fukui 
reactivity indices, dipole moment, HOMO and LUMO energies, molecular polarizability, 
minimum/maximum valency of an atom, minimum/maximum electron–electron repulsion for an 
atom, minimum/maximum exchange energy for a chemical bond, etc). 

2.5 Multiple Linear Regression Model 
From the whole set of 603 descriptors generated with CODESSA we have discarded descriptors 

with a constant value for all molecules in the data set. Descriptors for which values were not 
available for every molecule were assigned a zero value for the missing position. In the next step 
the number of descriptors was reduced by eliminating those with F–test values less than 1, t–test 
values less than 0.1 or correlation coefficients with pIC50 less than 0.1; as a result of this descriptor 
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selection procedure, 348 descriptors remained for the 29 aryl–substituted bisphosphonates. 
CODESSA develops MLR models by a heuristic method that includes the following steps: (a) All 
quasi–orthogonal pairs of structural descriptors are selected from the initial set. Two descriptors are 
considered orthogonal if their intercorrelation coefficient rij is lower than 0.1. (b) CODESSA uses 
the pairs of orthogonal descriptors to compute the biparametric regression equations. The most 
significant 10 pairs of molecular descriptors are used in the third step. (c) To an MLR model 
containing n descriptors a new descriptor is added to generate a model with n+1 descriptors if the 
new descriptor is not significantly correlated with the previous n descriptors (intercorrelation 
coefficient lower than 0.8). Step (c) is repeated until MLR models with a given maximum number 
of descriptors are obtained. 

2.6 Model Validation 
QSPR correlations can be observed not only because a causal relationship exists between a set of 

descriptors and a property, but also due to statistical bias resulting from errors in determining 
structural descriptors, experimental errors in measuring the property, or even due to chance alone. 
Model validation techniques are needed in order to distinguish between true and random 
correlations and to estimate the predictive power of the model. Although the QSAR equations 
developed with CODESSA are obtained by selection of descriptors from a large pool, several 
descriptor selection techniques are used in order to minimize the possibility of chance correlations. 
In a first step, from the initial pool of descriptors, CODESSA eliminates descriptors that do not 
correlate with pIC50, thus greatly reducing the dimensionality of the problem. 

Table 2. Notation of the CODESSA Descriptors Involved in the QSAR Models 
Notation Descriptor 
SD1 Maximum partial charge for a C atom (electrostatic) 
SD2 Maximum partial charge for a O atom (electrostatic) 
SD3 Maximum partial charge for a P atom (electrostatic) 
SD4 Minimum total interaction for a C–P bond 
SD5 Maximum valency of a N atom 
SD6 Maximum electron–electron repulsion for a C atom 
SD7 Maximum atomic state energy for a N atom 
SD8 Minimum total interaction for a C–C bond 
SD9 HASA H–acceptors surface area (quantum) 
SD10 HBCA H–bonding charged surface area (quantum) 
SD11 HBSA H–bonding surface area (quantum) 
SD12 Minimum electron–electron repulsion for a H–N bond 
SD13 Minimum coulombic interaction for a C–P bond 
SD14 Minimum exchange energy for a C–N bond 
SD15 Maximum one–electron reactivity index for a N atom 
SD16 HA dependent HDSA–2/SQRT(TMSA) (electrostatic) 
SD17 Minimum total interaction for a H–O bond 
SD18 FPSA–3 Fractional PPSA (PPSA–3/TMSA) (electrostatic) 



T. Ivanciuc and O. Ivanciuc 
Internet Electronic Journal of Molecular Design 2003, 2, 403–412 

409 
BioChem Press http://www.biochempress.com

Then, as described in the previous section, a heuristic algorithm selects only quasi–orthogonal 
groups of descriptors that are tested for correlation with pIC50 of aryl–substituted bisphosphonates. 
This selection algorithm ensures that the probability of obtaining a chance correlation is low, and 
maintains a reasonable searching time. Finally, the leave–one–out (LOO) cross–validation 
procedure is applied to each MLR equation in order to estimate the prediction power of bone 
resorption inhibition QSAR. 

3 RESULTS AND DISCUSSION 

Table 2 presents the notation and a short description of the structural descriptors involved in the 
QSAR models reported in this investigation; more complete definitions of the descriptors can be 
found in the CODESSA manuals [16]. In Table 3 we present the descriptors and correlation 
coefficients for the best three QSAR models with one and two descriptors and with 29 and 26 
compounds, respectively. For the whole set of 29 ABP, the best descriptors in monoparametric 
models are the electronegativity–based maximum partial charge for a C, O, and P atom, 
respectively. An improvement of r is obtained in QSAR models two descriptors, when r2 is between 
0.7324 and 0.7431. All four descriptors involved in the biparametric QSAR are quantum–based, 
namely: minimum total interaction for a C–P bond, maximum valency of a N atom, maximum 
electron–electron repulsion for a C atom, and maximum atomic state energy for a N atom. 

Table 3. Descriptors and Correlation Coefficients for the Best Three QSAR Models 
with One and Two Descriptors and with 29 and 26 Compounds, Respectively 

n = 29  n = 26 
x1 x2 r2 x1 x2 r2

SD1  0.5899  SD1  0.4143 
SD2  0.5899  SD2  0.4143 
SD3  0.5899  SD3  0.4143 
SD4 SD5 0.7431  SD6 SD12 0.7784 
SD6 SD5 0.7327  SD13 SD12 0.7741 
SD6 SD7 0.7324  SD13 SD14 0.7594 

The QSAR statistics increase further in equations with three and four descriptors. Because 
adding more descriptors does not significantly improve the statistical indices, we have selected the 
QSAR with four descriptors as the best for the 29 ABP. The best three such QSAR models are: 

pIC50 = –357.35 + 2.903 SD4 + 74.89 SD5 + 3.894 SD8 + 1.867·10–2 SD9
n = 29 r2 = 0.8328 s2 = 0.251   F = 29.88 r2

LOO = 0.7479 (2)

pIC50 = –381.83 + 3.145 SD4 + 79.49 SD5 + 4.038 SD8 + 2.630·10–2 SD10
n = 29 r2 = 0.8313 s2 = 0.253   F = 29.56 r2

LOO = 0.7374 (3)

pIC50 = –351.95 + 2.921 SD4 + 73.07 SD5 + 3.691 SD8 + 1.773·10–2 SD11
n = 29 r2 = 0.8296 s2 = 0.255   F = 29.22 r2

LOO = 0.7428 (4)

Eqs. (1)–(3) shows that starting with a large selection of structural descriptors it is possible to find 
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several combinations of descriptors that provide models with similar good statistics. Moreover, 
owing to the errors in the experimental data, small statistical differences between QSRR equations 
are not significant, and it is almost impossible to select a “best” modeling equation in such cases. 
The plot of experimental vs. calculated pIC50 for Eq. (2) is presented in Figure 2, and the pIC50

calculated with Eq. (2) can be found in Table 1, column 5. Four quantum descriptors computed with 
the AM1 method are used in the QSAR model from Eq. (2), namely the minimum total interaction 
for a C–P bond, maximum valency of a N atom, minimum total interaction for a C–C bond, and 
hydrogen–acceptors surface area. 

Figure 2. Experimental vs. calculated pIC50 for Eq. (2). 

Because the pIC50 calculated with Eq. (2) for compounds 24, 27, and 29 have large deviations 
from the experimental values, we have removed these compounds and developed QSAR models 
with 26 ABP. In Table 3 we present the descriptors and correlation coefficients for the best three 
QSAR models with one and two descriptors, respectively. The best three QSAR models for the 26 
ABP are: 

pIC50 = –59.18 + 3.172 SD13 – 5.608·10–2 SD12 – 1.081·103 SD15 + 4.985 SD16
n = 26 r2 = 0.8860 s2 = 0.115   F = 40.79 r2

LOO = 0.8055 (5)

pIC50 = 1.214·102 + 2.839 SD13 – 5.240·10–2 SD12 – 9.812·102 SD15 – 13.07 SD17
n = 26 r2 = 0.8827 s2 = 0.118   F = 39.51 r2

LOO = 0.8231 (6)

pIC50 = –5.636·10–1 + 3.099 SD13 – 5.500·10–2 SD12 – 1.073·103 SD15 + 1.341·102 SD18
n = 26 r2 = 0.8816 s2 = 0.120   F = 39.09 r2

LOO = 0.8221 (7)

Compared with the QSAR obtained with 29 ABP, both calibration and LOO cross–validation r
are significantly improved in Eqs. (5)–(7). Because r2

LOO has a maximum value for Eq. (6), in 
Figure 3 we present the plot of experimental vs. calculated pIC50 for Eq. (6). Four quantum 
descriptors computed with the AM1 method are used in the QSAR model from Eq. (6), namely the 
minimum electron–electron repulsion for a H–N bond, minimum coulombic interaction for a C–P 
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bond, maximum one–electron reactivity index for a N atom, and minimum total interaction for a H–
O bond. Starting from a large collection of 603 constitutional, graph theoretic and topological 
indices, geometrical, electrostatic, and quantum–chemical descriptors, only electronic indices were 
selected in the best QSAR models, as can be seen from Table 2. These electronic indices, either 
based on the AM1 calculations or electronegativity–derived, offer good models for the ABP bone 
resorption inhibition. All these results suggest that electronic factors that control the molecular 
structure and inter–molecular interactions are the main factors that determine the bone resorption 
inhibition of aryl–substituted bisphosphonates. 

Figure 3. Experimental vs. calculated pIC50 for Eq. (6). 

4 CONCLUSIONS 

Quantitative structure–activity relationships (QSAR) models for the bone resorption inhibition of 
29 aryl–substituted bisphosphonates were established with the CODESSA program. The QSAR 
models for the ABP bone resorption inhibition are obtained by selecting descriptors from a wide 
diversity of constitutional, topological, electrostatic and quantum structural indices. Standard 
quantum chemistry packages are used for optimizing the molecular geometry and for semi–
empirical quantum computations at the AM1 level. A heuristic algorithm selects the best multiple 
linear regression equation according to the highest statistical indices; the predictive power of each 
QSAR model is estimated with the leave–one–out (LOO) cross–validation method. For the whole 
set of 29 compounds, the best QSAR model (r2 = 0.8328, r2

LOO = 0.7479, s2 = 0.251, F = 29.88) is 
obtained with four quantum descriptors (minimum total interaction for a C–P bond, maximum 
valency of a N atom, minimum total interaction for a C–C bond, and hydrogen–acceptors surface 
area). A significant improvement of the statistical indices is obtained by deleting three outliers, 
when a fairly good QSAR is obtained (r2 = 0.8827, r2

LOO = 0.8231, s2 = 0.118, F = 39.51) also with 
four quantum descriptors (minimum electron–electron repulsion for a H–N bond, minimum 
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coulombic interaction for a C–P bond, maximum one–electron reactivity index for a N atom, and 
minimum total interaction for a H–O bond). These results demonstrate the ability of AM1 quantum 
indices in modeling the bone resorption inhibition of aryl–substituted bisphosphonates. Together 
with the QSAR models proposed in this study, these three descriptors could be used to estimate the 
bone resorption inhibition for not yet synthesized or laboratory tested aryl–substituted 
bisphosphonates.
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