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Abstract
Motivation. The scope of this investigation is to develop a rapid, objective modeling method that will accurately
predict the estrogen receptor binding affinities for a diverse set of compounds.

Method. We have used simulated 2D *C—""C COSY NMR spectral data to develop a model for 130 diverse
organic compounds whose relative binding affinities (RBA) to the estrogen receptor are known. The simulated
2D C-"C COSY NMR spectra were generated by using the NMR spectral assignments for predicted carbon
chemical shifts to identify nearest neighboring carbon atoms and establish carbon—to—carbon through—bond
connectivity spectral patterns of each compound. We call the use of such patterns for model building
comparative structural connectivity spectra analysis (CoSCoSA).

Results. For the large number of estrogens, a CoSCoSA multiple linear regression (MLR) model using 16 bins
selected from the *C-"*C COSY spectral data had an 7 of 0.827, a leave—one—out cross—validation qlz of 0.78,
and a leave—13—out cross—validation average ¢,3> of 0.78. A second CoSCoSA model using 15 bins plus one
additional distance—related 3D constraint had an #* of 0.833, a ¢,® of 0.79 and an average ¢,5° of 0.78. The
predictions for 27 external compounds had qpredz 0f 0.53 for one CoSCoSA model.

Conclusions. The addition of more through—-space distance related 3D information, which presently awaits
software development to make pattern definition for each compound practical, should improve the predictive
accuracy of the CoSCoSA models.

Keywords. Estrogen; quantitative structure—activity relationships; QSAR; °C NMR.
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1 INTRODUCTION

The Food Quality Protection Act, passed in 1996, mandates that the United States Environmental
Protection Agency will develop screening and testing procedures for endocrine disrupting
chemicals [1]. An endocrine disruptor is defined as “an exogenous agent that interferes with the
production, release, transport, metabolism, binding, action, or elimination of natural hormones in
the body responsible for the maintenance of homeostasis and the regulation of developmental
processes.” Estrogenic compounds represent a significant subset of the endocrine disruptors to be
tested. Over 58,000 compounds are candidates to be screened for their estrogen receptor binding

level, and the number of compounds to be screened is growing every day.

This increasing list of substances that can mimic the effects of estrogen in the human body
includes environmental estrogens and phytoestrogens (plant-based estrogens). Categories of
environmental estrogens include pesticides such as 1,1'«(2,2,2—trichloroethane—1,1-diyl)bis(4—
chlorobenzene) (DDT), plasticizers such as bisphenol A, transformer oils such as polycholrinated
biphenyls, and many other types of compounds. Genistein and daidzein are two well-known
1soflavonoid phytoestrogens that are found in soybeans. There is conflicting evidence regarding the
reproductive and cancer risk effects of environmental and plant-based estrogens in humans. Some
studies suggest that certain phytoestrogens have beneficial effects on breast and prostate cancers [2—
4]; other studies suggest that they have no beneficial or negative effects on cancers [5,6]; and still
other studies suggest that environmental estrogens may have negative effects on cancer [7,8]. There
is a growing need to develop inexpensive, rapid, and accurate methods to identify compounds with
strong estrogenic activity. This would drastically reduce the number of compounds requiring

evaluation by biological assays.

In this paper, we developed a couple of two—dimensional quantitative spectrometric data—activity
relationship (2D-QSDAR) models for 130 compounds that bind to the estrogen receptor [9,10].
QSDAR and spectrometric data—activity relationship (SDAR) models are based on the spectral—
activity leg in the triangular structure—spectra—activity relationship. Three—dimensional quantitative
structure—activity relationship (3D-QSAR) [11,12] models are based on the structure—activity leg.
Earlier we developed qualitative SDAR models of estrogen receptor binding activity based on a
composite of 1D *C NMR and mass spec [13,14]. We have developed QSDAR models for
molecules binding to the corticosterone binding globulin [15], aromatase enzyme [16], and aryl
hydrocarbon receptor [17]. A similar method that combined ultraviolet (UV) spectra with 31 other
physicochemical parameters was used to build models of polychlorinated biphenyls aryl
hydrocarbon receptor binding and cytochrome P4501A induction [18]. Previous comparative
spectral analysis (CoSA) models were based on simulated 1D "C nuclear magnetic resonance
(NMR) data [15-17,19]. Advanced Chemistry Development (ACD) Labs [20] now sells software
that uses a chemical’s structure to predict its °C NMR spectrum. Other *C NMR prediction
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packages include an artificial neural network [21] and NMRscape software from Bio—Rad
Laboratories [22]. Because of the ability to predict NMR spectra accurately, the process of building
the CoSA models was simple and rapid. We improved the accuracy of CoSA models by displaying
all possible carbon—to—carbon connections with their assigned carbon NMR chemical shifts and
distances between the carbons in a 3D-connectivity matrix [23-25]. A three—dimensional
quantitative spectrometric data—activity relationship (3D-QSDAR) model was developed that is
built by combining predicted NMR spectral information with structural information in a 3D-
connectivity matrix. The method uses selected 2D “C-'>C COrrelation SpectroscopY (COSY)
(through-bond nearest neighbors) and theoretical 2D "*C—"°C through—space distance—related
connectivity spectral slices from the 3D—connectivity matrix to produce a relationship to biological
binding activity. We called this technique comparative structural connectivity spectra analysis
(CoSCoSA) modeling [23-25]. The CoSCoSA models for binding to the corticosterone binding
globulin and aromatase enzyme were based on principal component regression [23,24]. The
CoSCoSA model for binding to the aryl hydrocarbon receptor was based on multiple linear

regression of selected bins from the 3D—connectivity matrix [25].

The laws of quantum mechanics govern biological interactions when viewed at the atomic and
molecular level. Using NMR data is a way of providing the biological modeling process with
quantum mechanical information. An atom’s NMR chemical shift is directly related to the quantum
mechanically determined state of its nuclear magnetic dipole in a magnetic field [26]. The
diamagnetic term of a NMR chemical shift is directly related to the electrostatic potential at its
nucleus. While UV, infrared, and NMR spectra are all related to quantum mechanics, one advantage
with NMR spectra is that spectral features can be assigned to a specific atom, whereas this
simplifying characteristic is not true for UV or IR spectra. Thus, the distribution of a molecule’s
NMR spectral features directly corresponds to structural elements that, according to structure—
activity relationship theory, determine the biological activity of the molecule. Therefore, patterns
can be developed from the association of a set of NMR spectra with the known biological
characteristics of the compounds in the set. These patterns can then be used for predicting the

corresponding activities of any compounds not used in the model building process.

Standard NMR instrumental techniques include 2D 'H-"H COSY [27] experiments in which
connectivity relationships through three bonds are found for nearest neighbor protons with off
diagonal cross peaks. This experiment is analogous to 2D *C—">C through—bond nearest neighbor
connectivity spectral patterns synthesized for use in the models presented here. In these models a
molecule’s connectivity spectrum was produced using structurally assigned predicted spectra and
adding the nearest neighbor information as off-diagonal cross peaks on a two dimensional plot. As
explained below, the spectral/connectivity features were then reduced to bin occupancy levels for

the pattern definition used to build the models.
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Our CoSCoSA predictive methods bear comparison to several other multi—-dimensional NMR
experimental techniques. NMR 2D "C-'>C COSY spectral data is similar conceptually to
connectivity ideas that are used in the first order 'y connectivity indices [28], modified adjacency
matrix [29], and 3D connectivity indices [30]. A significant difference between these previous
topological studies and CoSCoSA modeling is that the topological descriptors are rigorously
calculated whereas the CoSCoSA descriptors are simulated from a known database of experimental
NMR chemical shifts. Results from our previous comparative structurally assigned spectral analysis
(CoSASA) models [15,16,25] suggested that assigned chemical shifts contain modeling information

similar to that derived from electrotopological—state indices [31].

In this paper we were limited to using only the 2D *C—">C COSY spectra. The lack of most
three dimensional distance information results from an unanticipated consequence of the available
ACD 2D NMR prediction software not using for each molecule’s predicted chemical shifts the
same atomic numbering system as those found in the “mol” or “pdb” files. To produce long-range
carbon—to—carbon distance correlations the numbering system for the three—dimensional structural
information must conform to the numbering system of the chemical shifts. It might be theoretically
possible by manual methods to renumber the predicted spectra and generate the multitude of long—
distance interactions for each molecule in a large, diverse training set. Indeed, we were able to
overcome this problem in previous 3D-QSDAR models because all the molecules in those models
were both structurally similar and rigid so that we only had to collect distances between atoms once
for the entire set of similar molecules [23—25]. This approach was impractical in the current study
because there were 130 structurally diverse molecules to model and many of these also exhibited
considerable flexibility. We could generate the most probable conformations by molecular
dynamics modeling but could not readily associate the resulting inter—atomic distances with the

predicted spectral features so as to populate long—distance associated 3D spectral bins.

To investigate potential advantages of long—distance—correlated spectral associations in
modeling biological activities for a large, structurally diverse compound training set, we added a
single long distance parameter to the otherwise 2D—CoSCoSA model. This long distance parameter
was a simple indicator of each molecule’s maximum distance possible between any two non—

hydrogen atoms.

2 METHODS

2.1 Relative Binding Activity Data

The log relative binding activity (RBA) data for 130 structurally diverse compounds was used to
train the CoSCoSA models. The data was produced at National Center for Toxicological Research

(NCTR) using a competitive estrogen receptor (ER) binding assay with radiolabeled estradiol
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([PH]E») in rat uterine cytosol, which was obtained from ovariectomized uteri of Sprague-Dawley
rats [9,10,32]. This data set spanned 7 orders in magnitude ranging from a log RBA value of —4 for
a weak estrogen, to a log RBA of 2 for a strong estrogen. For a particular molecule, the RBA to the
estrogen receptor is defined as one hundred times the ratio of the molar concentrations of 173—
estradiol and the competing compound required to decrease the amount of receptor—bound 173
estradiol by 50%. Thus 17p—estradiol had an RBA of 100 and a base ten log RBA of 2.0.

2.2 Predicting the "C NMR Spectral Data

For each of the 130 compounds, the °C 2D "*C-"*C COSY NMR experiment was simulated
using the ACD Labs CNMR version 5.0 2D predictor software [20]. The simulated COSY NMR
spectra could be saved with two tables per compound. One table showed the assigned carbon
chemical shifts and the other indicated through—bond coupling of nearest neighbor carbon atoms.
The use of predicted rather than experimentally measured NMR chemical shifts was not necessary
for developing the CoSCoSA models, but it saved time and money. Additionally, the use of *C
NMR spectra, each based on the same edition of prediction software (rather than collected from
spectral libraries or other sources) eliminated random variability due to the NMR solvent or other

experimental factors.

2.3 Producing the *C COSY Spectral Data

The 2D C-"*C COSY spectra were predicted for the compounds. We reduced the resolution of
all 2D *C-"C COSY spectra by defining bins, 2.0 parts per million (ppm) wide in both
dimensions. The inherent resolution of NMR is much greater than this, but any signal appearing
within a 2.0 ppm bin was counted toward the bin population. This choice was made so that many of
the bins would be multiply populated, a necessary characteristic for statistical analysis and model
validation. The use of such wide bins also reduced the confounding effects on the modeled patterns
caused by uncertainties or errors in simulated spectra. An average error of 0.50 ppm in predicted
13C NMR spectra of TAXOL has been reported by ACD Labs CNMR predictor version 6.12 [33].
This is consistent with a 0.53 ppm average uncertainty reported in a previous CoSA study [15]. The
specific 2.0 ppm value was chosen because that bin width was used successfully in prior CoSA and
CoSCoSA models [17,23-25]. Possible improvements in model efficacy through use of somewhat
wider or narrower bins were not investigated. The generally excellent results reported below for this
modeling approach probably leave some room for improvement from optimization of this factor

alone.

The spectra were saved as two—dimensional bins under the peak within a certain spectral range
and normalized to an integer. A single carbon—to—carbon connectivity was assigned an area of 100,
two carbon—to—carbon connections in a bin had an area of 200, and so forth. Occupancy of the 120-

126 ppm spectral bin represents the same spectral connectivity relationship as that in the 126-120
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ppm bin. The data are symmetric across the diagonal of the spectral plane. For this reason, the 240
by 240 ppm 2D spectral plane was consolidated into 7381 of these 2 x 2 ppm bins so that only the
bins above and including the diagonal were used. After binning all 130 compounds, only 605 bins
from the 7381 bins had “hits” in them. Of the 605 populated bins only 337 bins had more than one
“hit”. From the remaining 337 multiply populated bins, an increasing number of the mostly highly
correlated bins were selected by trial and error and used to construct MLR models until a model
was obtained that had an /* greater than 0.8 and an F-value greater than 30. We were able to

identify 16 bins this way.

The predicted NMR spectra were calculated by a substructure similarity technique called
hierarchically ordered spherical description of environment (HOSE) [34]. HOSE uses similar
substructural elements from a compound’s 2D structure and radial spheres to produce a set of
weights that are used to predict the chemical shift. Therefore, the errors produced in the simulated
NMR spectra were propagated through the similar structures found in the training set of the
QSDAR models. This conveniently reduced the effective error when using a training set to predict
unknown sample affinities for compound spectra if they also were predicted using the same HOSE

routine referenced to the same version of the predictor software.

2.4 Statistical Analysis

All statistical analysis was performed by Statistica version 6.0 software [35]. For each CoSCoSA
model, we used forward multiple linear regression (MLR) on a selected subset of spectral bins until
a model had an /* greater than 0.82, the F—value was still increasing with the addition of a bin, and
the p—value of the bin added was significant (p < 0.05). We did not select any bins that had less than
2 “hits”. The reason for this is that a bin with one “hit” can inappropriately add to the #* of a model
but can not improve the leave—one—out cross—validation (g 1) of a model. The use of a large number

of very small, singly populated bins is the reason that Bursi had a high * and very low ¢, [19].

2.5 Internal Model Tests

Evaluations of the CoSCoSA models were done using LOO or leave—multiple—out cross—
validation procedures in which one or more compounds were systematically excluded from the
training set and each developed model (missing any contribution from the excluded compound(s))
was used to predict binding activities of the excluded compounds [36]. The cross—validated »*
(termed ¢,%) that results from fitting predictions obtained by cross—validation experiments can be
derived from ¢, = 1 — PRESS/SSD. Here PRESS is the sum of the differences between the actual
and predicted activity data for each molecule during LOO cross—validation, and SSD is the sum of
the squared deviations between the measured and mean activities of each molecule in the training
set. During the LOO cross—validation, each compound was removed from the training and the Beta—

coefficients in the MLR equation were recalculated. This new MLR equation was used to
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recalculate the log RBA of the compound left out. To more rigorously test the validity of the
CoSCoSA models and two leave—13—out [10% of the data excluded) cross—validations were
performed on each of the models. In these “leave—multiple—samples—out” experiments, the
compounds omitted were varied and the results of the two corresponding experiments were

averaged.

Table 1. Training Set Predictions. The Table contains the compound number, compound name, experimental log RBA,
predicted log RBA from the 16 Bin CoSCoSA model, and predicted log RBA from the 15 Bin +L; 53 CoSCoSA model.

No Compound Name log RBA logRBA  CoSCoSA
Exp 16 Bin 15 Bin + L.;54
1 diethylstillbesterol 2.60 1.44 1.43
2 meso—hexestrol 2.48 2.86 2.70
3 ethinyl estradiol 2.28 1.44 1.43
4 4-hydroxyestradiol 2.24 245 2.39
5 4-hydroxytamoxifen 2.24 0.58 0.58
6 17p—estradiol 2.00 2.36 1.85
7 oa~—zearalenol 1.63 0.51 0.51
8 ICI182780 1.57 1.08 1.12
9 dienestrol 1.57 1.44 1.43
10 o~zearalanol 1.48 0.51 0.51
11 2-hydroxyestradiol 1.47 1.26 1.32
12 diethylstilbestrol monomethyl ether 1.31 1.44 1.43
13 3,3'-dihydroxyhestrol 1.19 0.75 0.60
14 droloxifene 1.18 1.63 1.63
15 dimethylstibestrol 1.16 0.04 0.15
16 ICI164384 1.16 1.08 1.12
17 moxestrol 1.14 1.44 1.43
18 17—-deoxyestradiol 1.14 0.62 0.79
19 2,6-dimethylhexestrol 1.11 0.64 0.62
20 estriol 0.99 0.62 0.79
21 monomethyl ether hexestrol 0.97 0.51 0.93
22 estrone 0.86 0.62 0.79
23 p-meso—phenol 0.6 1.35 1.26
24 17a~estradiol 0.49 1.17 0.79
25 dihydroxymethoxychlorolefin 0.42 —-0.10 —-0.10
26 mestranol 0.35 1.44 1.43
27 zearalanone 0.32 0.51 0.51
28 tamoxifen citrate 0.21 0.58 0.58
29 toremifene citrate 0.14 0.58 0.58
30 o,0—dimethylbethyl allenolic acid -0.02 —-0.04 -0.02
31 coumestrol —-0.05 0.43 0.05
32 4—ethyl-7-OH—(p—meoxyphenol)—dihydro—1-benzopyran—2—one ~ —0.05 0.11 0.15
33 nafoxidine —0.14 0.58 0.58
34 clomiphene citrate -0.14 -0.47 -0.47
35 1,3,5-estratrien—3,60~17p—triol -0.15 —0.60 -0.61
36 B—zearalanol -0.19 0.51 0.51
37 3-OH-estra—1,3,5—trien—16—one -0.29 —0.08 0.25
38 3—deoxyestradiol —0.30 -1.47 —-1.55
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Table 1. (Continued)

No Compound Name log RBA logRBA  CoSCoSA
Exp 16 Bin 15 Bin + Lo;54
39 3,6,4'-trihydroxyflavone -0.35 -0.33 -0.35
40 genistein -0.36 -2.66 -2.61
41 4,4'-dihroxystilbene —-0.55 —0.56 -0.51
42 dihydroxymethoxychlor (HPTE) —0.60 -1.47 -2.21
43 monohydroxymethoxychlorolefin -0.63 -0.10 -0.10
44 234 5—tetraCl-4'-biphenylol —0.64 -1.61 —-1.56
45 norethynodrel —0.67 -2.66 -2.61
46 2,2'44'-tetrahydroxybenzil —0.68 —0.80 -0.81
47 B—zearalenol —0.69 0.51 0.51
48 4,6—dihydroxyflavone —0.82 -2.07 -1.95
49 equol —0.82 —0.66 0.05
50 monohydroxymethoxychlor -0.89 -2.07 -1.95
51 3pB-androstanediol -0.92 -2.66 -2.61
52 bisphenol B -1.07 -2.66 -2.61
53 phloretin -1.16 —-0.80 —0.81
54 dietheylstilbestrol dimethyl ether -1.25 —0.66 —0.68
55 2'.4,4-trihydroxychalcone -1.26 -1.73 -1.71
56 2,5-dichloro—4'-biphenylol -1.44 -1.61 —-1.56
57 4,4'[1,2—ethanediyl)bisphenol —1.44 -2.66 -2.61
58 17B-estradiol-16B—OH-16—methyl-3—ether —-1.48 —-1.34 -1.34
59 aurin -1.50 —0.56 -0.51
60 nordihydroguariareticacid -1.51 -2.66 -2.61
61 4-nonylphenol —-1.53 -1.61 -1.56
62 apigenin —-1.55 -2.07 -1.95
63 kaempferol —-1.61 —2.66 -2.61
64 daidzein -1.65 -1.61 -1.56
65 3—methylestriol —1.65 -1.34 -1.34
66 4—dodecylphenol -1.73 -2.66 -2.61
67 2—cthylhexyl-4-hydroxybenzoate -1.74 -2.66 -2.61
68 4—tert—octylphenol -1.82 -2.66 -2.61
69 phenolphthalein —1.87 -1.47 —-1.30
70 kepone -1.89 -2.66 -2.61
71 heptyl-4-hydroxybenzoate -2.09 -2.66 -2.61
72 bisphenol A -2.11 -2.66 -2.61
73 naringenin -2.13 -2.66 -2.61
74 4-Cl-4'-biphenylol -2.18 —2.66 -2.61
75 3—deoxyestrone 2.2 -1.47 —-1.55
76 4—octylphenol -2.31 -2.66 -2.61
77 fisetin -2.35 -2.14 -2.09
78 3'.4'7—-trihydroxyisoflavone -2.35 -2.66 -2.61
79 biochanin A -2.37 -2.66 -2.61
80 4-OH-chalcone —2.43 -2.66 -2.61
81 4'-OH-chalcone —2.43 -2.66 -2.61
82 2,2“methylenebis[4—chlorophenol) —2.45 -2.07 -1.95
83 4,4'-dihydroxybenzophenone —2.46 —2.66 -2.61
84 Dbenzyl-4-hydroxybenzoate -2.54 -2.66 -2.61
85 2,4-dihyroxybenzophenone -2.61 -2.66 -2.61
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Table 1. (Continued)

No Compound Name log RBA log RBA  CoSCoSA
Exp 16 Bin 15 Bin + Lo;54
86 4'-hydroxyflavanone —2.65 -3.15 -2.96
87 3a~—androstanediol -2.67 -2.66 -2.61
88 4-phenethylphenol -2.69 -2.66 -2.61
89 prunetin -2.74 -2.66 -2.61
90 doisynoestrol -2.74 -2.66 -2.61
91 myricetin -2.75 -2.66 -2.61
92 2-Cl-4-biphenylol 277 -3.21 -2.61
93 triphenylethylene —2.78 -2.66 -2.61
94 3'-OH-flavanone -2.78 -3.43 -3.31
95 chalcone -2.82 —2.66 -2.61
96 o.p'-DDT -2.85 -2.66 -2.61
97 4—heptyloxyphenol —2.88 -2.66 -2.61
98 dihydrotestosterone -2.89 -2.66 -2.61
99 formononetin -2.98 -2.66 -2.61
100 bis—[4-hydroxyphenyl)methane -3.02 -2.66 -2.61
101 p—phenylphenol -3.04 —2.66 -2.61
102 6-hydroxyflavanone -3.05 -2.14 -2.09
103 4,4'-sulfonyldiphenol -3.07 -1.47 —-1.30
104 butyl-4-hydroxybenzoate -3.07 -2.66 -2.61
105 diphenolic acid -3.13 -2.66 -2.61
106 1,3—diphenyltetramethyldisiloxane -3.16 -2.66 -2.61
107 propyl-4-hydroxybenzoate -3.22 -2.66 -2.61
108 ethyl-4-hydrobenzoate -3.22 -2.66 -2.61
109 phenol red -3.25 -2.66 -2.61
110 3,3',5,5'-tetraCl—4,4'-biphenyldiol -3.25 —2.66 -2.61
111 4-tert—amylphenol -3.26 -2.66 -3.53
112 baicalein -3.35 -2.66 -2.61
113 morin -3.35 —2.66 -2.61
114 4-sec—butylphenol -3.37 -2.07 -1.95
115 4-Cl-3—-methylphenol -3.38 -2.66 -3.53
116 6-hydroxyflavone -3.41 -2.66 -2.61
117 4-benzyloxyphenol -3.44 -2.66 -2.61
118 3—phenylphenol -3.44 -2.14 -2.09
119 methyl-4—hydrobenzoate -3.44 -2.66 -3.53
120 2-sec—butylphenol -3.54 -3.20 -3.04
121 2,4'-dichlorobiphenyl -3.61 -2.66 -2.61
122 4-tert-butylphenol -3.61 -3.75 -3.53
123 2-Cl-4—methylphenol -3.66 -2.66 -3.53
124 phenolphthalin -3.67 -2.66 -2.61
125 4-Cl-2—methylphenol -3.67 -2.66 -3.53
126 7-hydroxyflavanone -3.73 -2.66 -2.61
127 3—ethylphenol -3.87 -2.90 -3.70
128 rutin -4.09 —2.66 -2.61
129 4—ethylphenol —4.17 -3.75 -3.53
130 4-methylphenol —4.50 -3.75 -3.53
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2.6 External Model Tests
Additionally, to further test the ruggedness of CoSCoSA models, we predicted the log RBAs of

compounds from two published external data sets, namely those of Waller [37] and Kuiper [38].
The log RBAs from those external data sets possessed a greater variability in binding activity. So,
by a previously published method, a set of compounds that had their binding activity determined in
all three labs (Waller, Kupier, and NCTR) were used to normalize the external data sets to the
NCTR data [10,39]. We then built the CoSCoSA models as before and used the resulting MLR
equations to predict the log RBA of the compounds in the test set. We used the published
normalized log RBA for 27 compounds from Waller and Kuiper data in our external testing of the
CoSCoSA models [10]. However, many of the occupied bins for the new compounds from the
external data set did not fall into the original 605 occupied bins; the original set of bins comprised
only 8.2% of the 2D COSY spectral plane. We inferred that in the different molecular contexts of
the external data sets, NMR chemical shift information was expressed in adjacent but non—included
bins. NMR chemical shifts exist along a continuum and the process of binning them for this type of

pattern recognition inherently compromises the pattern when it barely misses a selected bin.

To account for this source of confusion with the external data, we tried adding various fractions
of “near—-miss” signals into each compound’s spectrum. With this in mind we used the CoSCoSA
model’s MLR equation to predict the normalized log RBA of the compounds in the external test set.
However, compounds from the external test set with bins that were one bin away (one of 8 bins
surrounding a 2D bin) from the original 605 populated bins were modeled using none, one—quarter,
and one—half of that bin's intensity in the nearest neighboring bin used in the original CoSCoSA

model.

3 RESULTS AND DISCUSSION

Table 1 shows the compound name, compound number, and two CoSCoSA model predictions of
the log RBA for 130 compounds in the training set. Figure 1 shows the CoSCoSA model that was
based on the MLR analysis of 16 selected 2D bins from the *C—">C COSY spectral data. The 16
bin COSY model for the 130 estrogenic compounds had an explained variance #* of 0.827, a LOO
¢\> of 0.78 and an average leave—13—out cross—validated variance (gi3°) of 0.78 + 0.01. The
CoSCoSA model was based on COSY bins 28—12 (bin 1), 72-20 (bin 2), 54-28 (bin 3), 50-38 (bin
4), 64-56 (bin 5), 164—104 (bin 6), 152—-108 (bin 7), 156-110 (bin 8), 126—-112 (bin 9), 140-112
(bin 10), 142—-112 (bin 11), 154-112 (bin 12), 154-114 (bin 13), 156—114 (bin 14), 128-116 (bin
15), and 126120 (bin 16). All 2ppm bins were written using the format a—b, where a and b are the

ppm values corresponding to the two “connected” atoms. The MLR equation for the 16 bin
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CoSCoSA model is:

log RBA =0.00999%bin 1 + 0.03173xbin 2 + 0.0071xbin 3 + 0.01196xbin 4
+0.02191xbin 5 + 0.0093xbin 6 + 0.2329xbin 7 + 0.01324xbin §
+0.00737%bin 9 + 0.02558xbin 10 + 0.0392xbin 11 + 0.03094xbin 12
—0.00545xbin 13 + 0.00526xbin 14 + 0.00298xbin 15 — 0.00768xbin 16

4

3

(VD)o papipald

Log(RBA)
Figure 1. Plot of the predicted log RBA and experimental log RBA based on 16 bins.

All bins had more than three “hits” in the bin except for bins 152—108 and 140—112 that had only
two “hits” each. The correlation matrix for the 16 bins were calculated and only two sets of bins had
correlation between them that were greater than 0.5. The greatest average correlation between any
bin with the other 17 bins was 0.04 and many of the average correlations were much lower than
0.04. The lack of a large correlation among bins suggests that the resulting patterns were based on
essentially orthogonal data. The COSY bin 28—12 was most often associated with the CH; carbon
connected to the CH, in the ethyl groups in diethylstilbestrol and hexestrol-like compounds.
Twelve of the fourteen compounds with a COSY hit in 28—12 had a log RBA greater than —0.05.
Compounds that populated a COSY bin at 154—112 were most often associated with the 3 carbon
position connected to the 2 carbon position in the A—ring of 17p—estradiol like compounds. Nine of
the ten compounds with a COSY hit in bin 154-112 had a log RBA greater than —0.05. Fourteen
compounds had a “hit” in the COSY bin at 128-116. The 128-116 COSY bin was most often
associated with the 2 to 3 and 5 to 6 carbon positions in a phenol ring. Twelve of the fourteen
compounds with a COSY hit in bin 128-116 had a log RBA less than 0.60. The 24 compounds that
had a hit or multiple hits in the COSY bin at 156-114 was most often associated with the

hydroxylated carbon of a phenol ring connected to its two nearest neighboring carbons. Only 5 of
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the 24 compounds with a COSY hit in bin 156-114 had a log RBA less than —1.65. The 6
compounds that had a COSY bin at 64—56 was most often associated with the two carbons between
the oxygen ester and the nitrodimethyl of tamoxifen—like compounds. Similar spectral-structural
associations could be made for the other COSY bins effectively used for receptor binding prediction
in the CoSCoSA models.

(verg)SoT papiparg

Log(RBA)

Figure 2. Plot of the predicted log RBA and experimental log RBA based on 15 bins+L.; 53 variable.

Figure 2 shows results for the CoSCoSA model that was based on the MLR analysis of 15
selected 2D *C-"*C COSY bins plus the one distance variable. The distance variable, L7541, was
assigned a value of 1 when the maximum distance between non—hydrogen atoms in a compound
was less than 7.5 A (compact) and a value of zero for all other compounds. The L-754 variable
replaced the COSY bin at 154-114 (bin 13) in the previous 16 bin CoSCoSA model. The MLR
equation for the 15 bin—with—L7 53 CoSCoSA model is

log RBA =0.00969%bin 1 + 0.03122%bin 2 + 0.00637xbin 3 + 0.01066xbin 4
+0.02142%bin 5 + 0.00902xbin 6 + 0.2263xbin 7 + 0.01275xbin 8
+0.00732xbin 9 + 0.02507xbin 10 + 0.03934xbin 11 + 0.02666%bin 12
+0.00526%bin 14 + 0.00329%bin 15 —0.00701xbin 16 —0.91773xL<7 54

This 15 bin—with—L.; 53 model had an 7 of 0.83,a q12 0f 0.79 and an average q132 of 0.78 £ 0.01.
In this model, the L7554 variable selected 9 compounds all of which had a log RBA lower than

—3.26. Smaller, compact molecules tended to bind weakly.

In Figures 1 and 2, the line of compounds predicted to have a log RBA of —2.60 is a set of
compounds that did not have a hit in any of the 16 bins used to formulate the two CoSCoSA
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models. There were 56 compounds in the 16 bin CoSCoSA model that did not have any hit in one
of the 16 bins. The 15 bin—with—L-; 54 model had 52 compounds that did not have a hit in any of the
15 bins or L<754. The removal of the compounds with no hits from the CoSCoSA models did not
change the #* or ¢* of the model more than 2%. Three of the compounds in the 16 bin CoSCoSA
model had residuals greater than 2 standard deviations (3p—androstanediol, genistein, and
norethynodrel). In the 16 bin CoSCoSA model only one other compound had a predicted residual
greater than 2 standard deviations and it was 4—hydoxy—tamoxifen). The 15 bin—with—L-7 54 model
had 4 compounds with no hits that had residuals greater than 2 standard deviations. They are the
same 3 as before and 4,4'-sulfonyldiphenol. There were two compounds in the 15 bin—with—L-; 54
CoSCoSA model with predicted residuals greater than 2 standard deviations, 4-hydoxy—tamoxifen
and dihydroxymethoxychlor (HPTE). Almost all of the compounds with no hits in the 16 bins had
experimental log RBA lower than —1.0. The CoSCoSA models did not find a spectral relationship
for these weakly binding compounds to the estrogen receptor. Most of the other bins in both
CoSCoSA models were used to form a relationship between a spectral bin and binding to the

estrogen receptor with a log RBA stronger than —2.60.

Table 2. External Test Set Predictions. The Table contains the compound name, normalized experimental log RBA
values to the estrogen receptor for each compound, predicted log RBA from the 16 Bin 2D-CoSCoSA model, predicted
log RBA from the 15 Bin +L.; 53 CoSCoSA model, and predicted log RBA from the CoMFA model [38]. The plus and
minus sign reveals the variation seen when using none and one—half of a bin’s intensity in a neighboring bins used to
formulate the CoSCoSA model.

Name Normalized log RBA 16-CoSCoSA 15+L.;54 —CoSCoSA  CoMFA
2—tert—butylphenol —4.55 -2.66 -3.53 -3.83
3—tert-butylphenol —4.82 -1.50+0.64 -2.34£0.66 -3.33
2,4,6,—triCl-4'-biphenylol -0.16 -1.61 -1.56 -1.60
2-Cl-4,4'-biphenyldiol -0.61 -1.61 -1.56 —-1.49
2,6—dichloro—4'-biphenylol —-1.11 —-1.61 -1.56 -2.41
2,3,5,6,tetraCl-4,4'-biphenyldiol -2.18 -1.61 -1.56 —0.82
2,2'3.3'6,6'-hexaCl-4—biphenylol -2.74 -2.14 -2.08 -3.06
2,2'3,4',6,6'-hexaCl-4—biphenylol -2.60 -1.61 -1.56 —2.48
2,2',3,6,6'-pentaCl-4—biphenylol -1.97 -1.61 -1.56 -3.07
2,2'5,5'-tetraCl-biphenyl -2.67 -2.66 -2.61 -2.74
2,2'4,4' 5 5'-heaxCl-biphenyl -2.83 -2.66 -2.61 -1.52
2,2'4,4'6,6'-hexaCl-biphenyl —-1.87 -2.66 -2.61 -1.83
2,2'3,3',5,5'-hexaCl-6"-biphenylol -2.69 -2.36 -2.29 -3.01
4'—deoxyindenestrol -1.37 2.89+£0.63 2.96 +0.67 -0.53
4'-deoxyindenestrol -0.23 2.89+£0.63 2.96 £0.67 0.111
5'-deoxyindenestrol -0.59 -0.61 -0.59 —-1.00
5'-deoxyindenestrol 0.35 -0.61 -0.59 -0.59
Indenestrol A (R) 1.08 3.95+0.64 4.01 +£0.67 0.29
Indenestrol A (S) 2.39 3.95+0.64 4.01 £0.67 0.62
R 5020 -1.81 -2.45+0.18 -2.48+0.17 —-0.70
Zearalenone 0.91 0.51 0.51 -0.12
5—Androstenediol -0.49 -2.66 -2.61 —0.66
16a—bromoestradiol 1.41 -0.11 0.05 0.33
16—ketoestradiol -0.38 -0.11 0.05 0.58
17—epi—estriol 0.98 —-0.11 0.05 -0.16
2—OH-estrone -0.19 1.26 1.32 0.36
Raloxifene 1.34 0.17 £ 0.63 0.20 + 0.66 —0.24
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Table 2 shows the predictions for 27 compounds. The first 21 compounds show the predictions
for Waller’s data set [37] using both the 16 bin and 15 bin—plus—L<7 54 model of estrogen binding.
To make the predictions, we simulated the 2D spectra of the 21 compounds, again using ACD Labs
CNMR version 5.0 2D predictor software. The simulated spectra of the test set were binned into the
same 605 bins. However, many of the occupied bins for these compounds did not fall into the
original 605 occupied bins (that represent only 8.2% of the 2D COSY spectral plane). Therefore, if
the simulated spectra did not fall into one of the original 605 populated bins, we put none, one—
quarter, and one—half of the bin’s intensity into the neighboring bin or bins used in the CoSCoSA
model. We then built the CoSCoSA models as before and used its MLR equation to predict the
log RBA of the compounds in the test set. Only 6 of the 27 compounds from Waller and Kuiper
external data sets had binned COSY chemical shifts that were not in the original 605 bins and that
bin that was within one bin of those 16 bins used to formulate a CoSCoSA model. In Table 1, for
these 6 compounds we report predicted log RBA using one—quarter intensity in a neighboring bin
and plus or minus the deviation seen when predicting the log RBA when using none and one—half
intensity in the neighboring bin used for a CoSCoSA model. For Waller’s test set and one quarter of
a bin’s intensity in neighboring bins we achieved a qpredz of 0.50 for the 16 bin CoSCoSA model
and a qpredz 0.57 for the 15 bin—plus—L<;54 CoSCoSA model. When using one half of a bin’s
intensity in a neighboring bin we got a qpredz of 0.45 for the 16 bin CoSCoSA model and a qpredz
0.52 for the 15 bin—plus—L<; 54 CoSCoSA model. Using none of a bin’s intensity in a neighboring
bin we got a qpredz of 0.55 for the 16 bin CoSCoSA model and a qpred2 of 0.62 for the 15 bin—plus—
L<754 CoSCoSA model. A Comparative Mean Field Analysis (CoOMFA) model had a qpredz of 0.70
for Waller's normalized test set [10,37]. When Indenstrol A (R), Indenestrol A (S),
4'deoxyindenestrol (R), and 4'-deoxyindenestrol (S) are removed from Waller's test set and none of
a bin's intensity from neighboring bins a qpredz of 0.59 for the 16 bin model and a qpredz 0.74 for the
15 bin—plus—L<7 54 model are achieved. Further inspection of the predictions for Indenstrol A (R),
Indenestrol A (S), 4'deoxyindenestrol (R), and 4'-deoxyindenestrol (S) revealed that one chemical
shift prediction that was highly suspect (142 ppm). When we checked this prediction the structures
used in the prediction of this chemical shifts all the compounds had chemical shifts from 134 to 139

ppm and not 142 ppm.
Although both CoSCoSA models had an »* of 0.83, the LOO cross—validations of the models

were always above 0.78. The cross—validations of both CoSCoSA models remained consistently
above 0.78 whether LOO or leave—13—out (10% of training set) calculated them. Compared to
CoMFA models formed in three—dimensional space, the ruggedness under cross—validation of the
CoSCoSA models is related to the fact that the patterns are representations of a “digital-like”
occupancy number of two—dimensional bins. This was true not only for the COSY spectral data, but
also for the L-75x variable inputted in a “digital-like” yes or no manner. In contrast, a published

CoMFA model of the same 130 compounds based on analogue estimates of electric field spatial
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distributions at each grid point, had a remarkably good * of 0.91 but much less impressive cross—
validation results: qlz of 0.66 and a mean q132 of 0.65 [10]. The large falloff in CoMFA model
quality under cross—validation indicates the extent to which the model was based on non—linear
relationships among the input training data. By using semi—digital data representations and basing
our 2D—CoSCoSA models only on multiply populated bins, some of the non—linear relationships

are presumably removed.

We made log RBA predictions for 6 compounds from Kuiper’s data set that had known
experimental log RBA greater than —1.0 shown in Table 1 rows 22 to 27 [38]. We selected all 27
compounds from Kuiper’s and Waller’s data to make predictions. For 27 compounds, using one—
quarter of a bin's intensity in neighboring bins we had a qpmd2 of 0.42 for the 16 bin model and a
qpredz of 0.49 for the 15 bin—plus—L<754. When using one half of a bin’s intensity in a neighboring
bin the 16 bin model qpredz decreased to 0.38 and the qpred2 was 0.45 for the 15 bin—plus—L<7 54
model. When no intensity was used in the neighboring bins a qpredz of 0.46 for the 16 bin C model
and qpredz of 0.53 for the 15 bin—plus—L<; 54 model were obtained. A CoMFA model had a qpredz of
0.71 for the 27 compound normalized test set [10,37]. When Indenstrol A (R), Indenestrol A (S),
4'deoxyindenestrol (R), and 4'-deoxyindenestrol (S) are removed the 27 test compounds and one
quarter of a bin’s intensity in neighboring bins a qpred2 of 0.53 for the 16 bin model and a qpredz 0.64
for the 15 bin—plus—L<754 model are achieved.

When making predictions for Indenestrol A and Indenestrol B a deviation of 1.27 and 1.32
log RBA units due to the different models using none, one—quarter, and one—half of that bin’s
intensity in the nearest neighboring bin used in the original CoSCoSA models were obtained. This
deviation is consistent with the experimental log RBA difference in binding activity between
Indenestrol A and Indenestrol B of 1.31 log RBA units. The deviations for the other 3 of the 4
compounds due to different models using none, one—quarter, and one—half of a bin's intensity was
about 0.17 to 0.67 log RBA units.

It is possible that the addition of more long—range atom—to—atom bins could make 3D-QSDAR
modeling more accurate. When the CoSCoSA modeling becomes much more automated, it will
become easier to optimize the variable selection technique and optimum bin size [40]. Previously,
we have shown that 2D QSDAR models are very accurate and the addition of other through—space
distance related information from a 3D—connectivity matrix made the QSDAR more accurate [23—
25]. There is a need for NMR spectral prediction software that will incorporate the same atomic
numbering system used in the pdb or mol files generated by cheminformatics programs for the
numbering system of the chemical shift predictions. This will make the 3D—CoSCoSA modeling
much more feasible, especially for large, structurally diverse data sets that include flexible
structures. The 2D-QSDAR models had a qlz, and q132 that was consistently 0.13 better than
corresponding ¢,° and ¢;3> seen in 3D-QSAR models [10]. Both 2D-CoSCoSA models of
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estrogenic compounds are based on through—bond connectivity 2D bins. Some of the selected bins
in CoSCoSA models are associated with chemical shifts of neighboring carbon atoms in phenol
rings. Likewise, COMFA models showed a 0.05 increase in ¢;> when a phenol indicator was used
[10]. The X-ray structure of estradiol-estrogen receptor complex shows a pair of hydrogen bonds
between Glu 353 and Arg 394 and the 3 position of estradiol [41]. Similar hydrogen bonds are
found in co—crystal structures of diethylstillbesterol, 4-hydroxy—tamoxifen, and raloxifene with the
estrogen receptor [40,42]. Without the use of X—ray structural information, the CoSCoSA models
selected bins that represented a couple of different quantum states of hydrogen—bonding phenol
rings. It has been shown that cross—validation ¢,* of a COMFA model is largely dependent on the
subjective alignment of a molecule [43], whereas CoSCoSA models are independent of molecular
alignment. CoMFA is an “analog” technique that relies on externally calculated three—dimensional
physical fields. CoSCoSA modeling is “digital”—like and relies on internal NMR chemical shifts
and distance-related atom—to—atom properties. The NMR chemical shifts are directly related to the
Hamiltonian representation of the nuclear magnetic moment. The first order approximation for the
diamagnetic term of the chemical shielding tensor is proportional to the electrostatic potential at the
nucleus [26]. So the difference between two nuclear chemical shifts with similar electron orbital
configurations are largely dependent on the difference in electrostatic potential at their respective
nuclei. The electrostatic potential term in the Hamiltonian is used for CoMFA field calculations.
Therefore, some of the information content the two modeling types are based on is quite similar, but
the information is presented in different ways. The predictions based on the averaged CoMFA and
CoSCoSA averages were the most accurate, exemplifying one way the two methods can
complement each other. The use of a model based on the average of several models is not new,
decision tree models that have used the average of several types of models produced better

correlated models of internal and external test sets [44].

4 CONCLUSIONS

In the work presented here, the size of the two—dimensional bins used from the reduced 2D *C—
BC COSY matrix was not optimized. In any event, without serious bin size optimization efforts we
developed accurate models of estrogenic compounds binding to the estrogen receptor. Since only
8.2% of the available 2D chemical shift “space” had hits in bins (and only 4.6% of the space had
multiple hits), we believe that we can use this procedure effectively to build reliable models of this
and other specific endpoints for even larger sets of non—congeners. In our 2D—CoSCoSA models,
the #* and ¢, were still increasing with increasing number of bins used in the model. The addition
of the one three—dimensional parameter, L7 54, increased rz, qlz, q1 32, by 1% and increased the qpredz
by 6 to 8% over the 16 bin 2D-CoSCoSA model. The CoSCoSA models proposed in this paper

have not used information from other 2D planes available in a 3D-connectivity—matrix
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representation of a compound [23-25] except for L7 54, which means all 2D through—space planes
for distances greater than 7.5 A are null planes. Through-space distance 2D planes will provide
important information when more than one area in a compound is important for binding activity, as
is the case for most steroid receptor binding. The CoSCoSA models shown here were developed
with simulated >C NMR spectral data, which does not involve intensive computation. We believe
CoSCoSA models could be used with QSAR models of estrogen binding in phase III of the recently

reported integrated “four phase” approach for priority setting of potential estrogenic disruptors [39].

Once 3D information can be obtained, the use of selected structural pharmacophores as
“anchors” for defining the through—space distance spectral features in 3D—CoSCoSA models may
provide a beneficial approach [23-25]. Overall, CoOSCoSA modeling is very fast and can easily be
automated. At the very least, 3D—QSDAR modeling presents a new option in modeling techniques
that will complement SAR and 3D—-QSAR modeling techniques.
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